1imb Citations

Structural analysis of inositol monophosphatase complexes with substrates.

Abstract

The structures of ternary complexes of human inositol monophosphatase with inhibitory Gd3+ and either D- or L-myo-inositol 1-phosphate have been determined to 2.2-2.3 A resolution using X-ray crystallography. Substrate and metal are bound identically in each active site of the phosphatase dimer. The substrate is present at full occupancy, while the metal is present at only 35% occupancy, suggesting that Li+ from the crystallization solvent partially replaces Gd3+ upon substrate binding. The phosphate groups of both substrates interact with the phosphatase in the same manner with one phosphate oxygen bound to the octahedrally coordinated active site metal and another oxygen forming hydrogen bonds with the amide groups of residues 94 and 95. The active site orientations of the inositol rings of D- and L-myo-inositol 1-phosphate differ by rotation of nearly 60 degrees about the phosphate ester bond. Each substrate utilizes the same key residues (Asp 93, Ala 196, Glu 213, and Asp 220) to form the same number of hydrogen bonds with the enzyme. Mutagenesis experiments confirm the interaction of Glu 213 with the inositol ring and suggest that interactions with Ser 165 may develop during the transition state. The structural data suggest that the active site nucleophile is a metal-bound water that is activated by interaction with Glu 70 and Thr 95. Expulsion of the ester oxygen appears to be promoted by three aspartate residues acting together (90, 93, and 220), either to donate a proton to the leaving group or to form another metal binding site from which a second Mg2+ coordinates the leaving group during the transition state.

Articles - 1imb mentioned but not cited (12)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. PocketPicker: analysis of ligand binding-sites with shape descriptors. Weisel M, Proschak E, Schneider G. Chem Cent J 1 7 (2007)
  3. Deamidation of human proteins. Robinson NE, Robinson AB. Proc Natl Acad Sci U S A 98 12409-12413 (2001)
  4. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. Shin S, Lee TH, Ha NC, Koo HM, Kim SY, Lee HS, Kim YS, Oh BH. EMBO J 21 2509-2516 (2002)
  5. Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics. Azuara C, Orland H, Bon M, Koehl P, Delarue M. Biophys J 95 5587-5605 (2008)
  6. Identifying unexpected therapeutic targets via chemical-protein interactome. Yang L, Chen J, Shi L, Hudock MP, Wang K, He L. PLoS One 5 e9568 (2010)
  7. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  8. A structural basis for lithium and substrate binding of an inositide phosphatase. Dollins DE, Xiong JP, Endo-Streeter S, Anderson DE, Bansal VS, Ponder JW, Ren Y, York JD. J Biol Chem 296 100059 (2021)
  9. Binding of mycotoxins to proteins involved in neuronal plasticity: a combined in silico/wet investigation. Scafuri B, Varriale A, Facchiano A, D'Auria S, Raggi ME, Marabotti A. Sci Rep 7 15156 (2017)
  10. Improving the performance of the PLB index for ligand-binding site prediction using dihedral angles and the solvent-accessible surface area. Cao C, Xu S. Sci Rep 6 33232 (2016)
  11. A new definition and properties of the similarity value between two protein structures. Saberi Fathi SM. J Biol Phys 42 621-636 (2016)
  12. Exploring the landscape of protein-ligand interaction energy using probabilistic approach. Pacholczyk M, Kimmel M. J Comput Biol 18 843-850 (2011)


Reviews citing this publication (5)

  1. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Jothivasan VK, Hamilton CJ. Nat Prod Rep 25 1091-1117 (2008)
  2. Inositol monophosphatase--a putative target for Li+ in the treatment of bipolar disorder. Atack JR, Broughton HB, Pollack SJ. Trends Neurosci 18 343-349 (1995)
  3. Structure and mechanism of inositol monophosphatase. Atack JR, Broughton HB, Pollack SJ. FEBS Lett 361 1-7 (1995)
  4. Inositol monophosphatase inhibitors--lithium mimetics? Atack JR. Med Res Rev 17 215-224 (1997)
  5. Inhibitors of inositol monophosphatase. Fauroux CM, Freeman S. J Enzyme Inhib 14 97-108 (1999)

Articles citing this publication (33)

  1. Discriminating between homodimeric and monomeric proteins in the crystalline state. Ponstingl H, Henrick K, Thornton JM. Proteins 41 47-57 (2000)
  2. Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. York JD, Ponder JW, Majerus PW. Proc Natl Acad Sci U S A 92 5149-5153 (1995)
  3. SuperStar: a knowledge-based approach for identifying interaction sites in proteins. Verdonk ML, Cole JC, Taylor R. J Mol Biol 289 1093-1108 (1999)
  4. IMPA1 is essential for embryonic development and lithium-like pilocarpine sensitivity. Cryns K, Shamir A, Van Acker N, Levi I, Daneels G, Goris I, Bouwknecht JA, Andries L, Kass S, Agam G, Belmaker H, Bersudsky Y, Steckler T, Moechars D. Neuropsychopharmacology 33 674-684 (2008)
  5. Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Villeret V, Huang S, Fromm HJ, Lipscomb WN. Proc Natl Acad Sci U S A 92 8916-8920 (1995)
  6. X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S, Martínez-Ripoll M, Blundell TL, Serrano R. J Mol Biol 295 927-938 (2000)
  7. An alternative mechanism for amidase signature enzymes. Labahn J, Neumann S, Büldt G, Kula MR, Granzin J. J Mol Biol 322 1053-1064 (2002)
  8. Genomic structure and chromosomal localization of a human myo-inositol monophosphatase gene (IMPA). Sjøholt G, Molven A, Løvlie R, Wilcox A, Sikela JM, Steen VM. Genomics 45 113-122 (1997)
  9. The role of metal ions in phosphate ester hydrolysis. Kamerlin SC, Wilkie J. Org Biomol Chem 5 2098-2108 (2007)
  10. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Mezzetti A, Schrag JD, Cheong CS, Kazlauskas RJ. Chem Biol 12 427-437 (2005)
  11. Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Chen L, Roberts MF. Appl Environ Microbiol 64 2609-2615 (1998)
  12. Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Chen L, Roberts MF. Appl Environ Microbiol 65 4559-4567 (1999)
  13. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). Kalujnaia S, McVee J, Kasciukovic T, Stewart AJ, Cramb G. FASEB J 24 3981-3991 (2010)
  14. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis. Movahedzadeh F, Wheeler PR, Dinadayala P, Av-Gay Y, Parish T, Daffé M, Stoker NG. BMC Microbiol 10 50 (2010)
  15. Structural Studies of Medicago truncatula Histidinol Phosphate Phosphatase from Inositol Monophosphatase Superfamily Reveal Details of Penultimate Step of Histidine Biosynthesis in Plants. Ruszkowski M, Dauter Z. J Biol Chem 291 9960-9973 (2016)
  16. Kinetic characterization of enzyme forms involved in metal ion activation and inhibition of myo-inositol monophosphatase. Strasser F, Pelton PD, Ganzhorn AJ. Biochem J 307 ( Pt 2) 585-593 (1995)
  17. 7Li nuclear-magnetic-resonance study of lithium binding to myo-inositolmonophosphatase. Saudek V, Vincendon P, Do QT, Atkinson RA, Sklenar V, Pelton PD, Piriou F, Ganzhorn AJ. Eur J Biochem 240 288-291 (1996)
  18. Crystal structure of human myo-inositol monophosphatase 2, the product of the putative susceptibility gene for bipolar disorder, schizophrenia, and febrile seizures. Arai R, Ito K, Ohnishi T, Ohba H, Akasaka R, Bessho Y, Hanawa-Suetsugu K, Yoshikawa T, Shirouzu M, Yokoyama S. Proteins 67 732-742 (2007)
  19. Effects of chronic lithium administration on rat brain phosphatidylinositol cycle constituents, membrane phospholipids and amino acids. Pettegrew JW, Panchalingam K, McClure RJ, Gershon S, Muenz LR, Levine J. Bipolar Disord 3 189-201 (2001)
  20. Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+. Brown AK, Meng G, Ghadbane H, Scott DJ, Dover LG, Nigou J, Besra GS, Fütterer K. BMC Struct Biol 7 55 (2007)
  21. Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition. Li Z, Stieglitz KA, Shrout AL, Wei Y, Weis RM, Stec B, Roberts MF. Protein Sci 19 309-318 (2010)
  22. The 6-OH group of D-inositol 1-phosphate serves as an H-bond donor in the catalytic hydrolysis of the phosphate ester by inositol monophosphatase. Miller DJ, Beaton MW, Wilkie J, Gani D. Chembiochem 1 262-271 (2000)
  23. Creation of salt-insensitive 3'(2'),5'-bisphosphate nucleotidase by modeling and mutagenesis approach. Aggarwal M, Kishan KV, Mondal AK. Arch Biochem Biophys 469 174-183 (2008)
  24. Inhibition of myo-inositol monophosphatase isoforms by aromatic phosphonates. Ganzhorn AJ, Hoflack J, Pelton PD, Strasser F, Chanal MC, Piettre SR. Bioorg Med Chem 6 1865-1874 (1998)
  25. Evidence for two distinct Mg2+ binding sites in G(s alpha) and G(i alpha1) proteins. Malarkey CS, Wang G, Ballicora MA, Mota de Freitas DE. Biochem Biophys Res Commun 372 866-869 (2008)
  26. Editorial Inositol monophosphatase inhibitors: a novel treatment for bipolar disorder? Atack JR. Biol Psychiatry 37 761-763 (1995)
  27. Crystal structure of cbbF from Zymomonas mobilis and its functional implication. Hwang HJ, Park SY, Kim JS. Biochem Biophys Res Commun 445 78-83 (2014)
  28. Identification of rat liver glucose-3-phosphatase as an inositol monophosphatase inhibited by lithium. Canales J, Buitrago F, Faraldo A, Avalos M, Cameselle JC. Arch Biochem Biophys 343 27-34 (1997)
  29. Binding of the activating ion Co(II) to myo-inositol monophosphatase monitored by fluorescence and phosphorescence spectroscopy. Kwon OS, Churchich JE. J Protein Chem 16 1-9 (1997)
  30. The preparation of new phosphorus-centered functional groups for modified oligonucleotides and other natural phosphates. Gautier A, Lopin C, Garipova G, Dubert O, Kalinina I, Salcedo C, Balieu S, Glatigny S, Valnot JY, Gouhier G, Piettre SR. Molecules 10 1048-1073 (2005)
  31. Kinetic mechanism of the Zn-dependent aryl-phosphatase activity of myo-inositol-1-phosphatase. Caselli A, Casolaro M, Ranaldi F, Manao G, Camici G, Giachetti E. Biophys Chem 125 435-443 (2007)
  32. Partially folded conformations of inositol monophosphatase endowed with catalytic activity. Lau CK, Lo SC, Li W, Churchich DR, Kwok F, Churchich JE. J Protein Chem 17 789-797 (1998)
  33. Study on Wangzaozin-A-Inducing Cancer Apoptosis and Its Theoretical Protein Targets. Chen J, Wang S, Lu X. Technol Cancer Res Treat 15 589-596 (2016)


Related citations provided by authors (2)

  1. Cdna Cloning of Human and Rat Brain Myo-Inositol Monophosphatase. Expression and Characterization of the Human Recombinant Enzyme. Mcallister G, Whiting P, Hammond EA, Knowles MR, Atack JR, Bailey FJ, Maigetter R, Ragan CI Biochem. J. 284 749- (1992)
  2. Structure of Inositol Monophosphatase, the Putative Target of Lithium Therapy. Bone R, Springer JP, Atack JR Proc. Natl. Acad. Sci. U.S.A. 89 10031- (1992)