1ixz Citations

Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8.

Structure 10 1415-23 (2002)
Related entries: 1iy0, 1iy1, 1iy2

Cited: 67 times
EuropePMC logo PMID: 12377127

Abstract

FtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore.

Articles - 1ixz mentioned but not cited (2)

  1. Structural studies on Helicobacter pyloriATP-dependent protease, FtsH. Kim SH, Kang GB, Song HE, Park SJ, Bea MH, Eom SH. J Synchrotron Radiat 15 208-210 (2008)
  2. Essential functions linked with structural disorder in organisms of minimal genome. Pancsa R, Tompa P. Biol Direct 11 45 (2016)


Reviews citing this publication (15)

  1. Evolutionary relationships and structural mechanisms of AAA+ proteins. Erzberger JP, Berger JM. Annu Rev Biophys Biomol Struct 35 93-114 (2006)
  2. Proteolysis in bacterial regulatory circuits. Gottesman S. Annu Rev Cell Dev Biol 19 565-587 (2003)
  3. Cellular functions, mechanism of action, and regulation of FtsH protease. Ito K, Akiyama Y. Annu Rev Microbiol 59 211-231 (2005)
  4. Molecular machines for protein degradation. Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Chembiochem 6 222-256 (2005)
  5. Quality control of photosystem II: impact of light and heat stresses. Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y. Photosynth Res 98 589-608 (2008)
  6. Quality control of cytoplasmic membrane proteins in Escherichia coli. Akiyama Y. J Biochem 146 449-454 (2009)
  7. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. Muramatsu M, Hihara Y. J Plant Res 125 11-39 (2012)
  8. The AAA+ superfamily--a myriad of motions. Tucker PA, Sallai L. Curr Opin Struct Biol 17 641-652 (2007)
  9. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. Kato Y, Sakamoto W. Front Plant Sci 9 855 (2018)
  10. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. Lu Y. Front Plant Sci 7 168 (2016)
  11. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Protein Sci 15 1815-1828 (2006)
  12. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. J Struct Biol 146 113-122 (2004)
  13. Protein binding and disruption by Clp/Hsp100 chaperones. Maurizi MR, Xia D. Structure 12 175-183 (2004)
  14. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  15. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. Yoshioka-Nishimura M, Yamamoto Y. J Photochem Photobiol B 137 100-106 (2014)

Articles citing this publication (50)

  1. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Bowman GD, O'Donnell M, Kuriyan J. Nature 429 724-730 (2004)
  2. Structural and mechanistic studies of VPS4 proteins. Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI. EMBO J 24 3658-3669 (2005)
  3. Substrate recognition by the AAA+ chaperone ClpB. Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A. Nat Struct Mol Biol 11 607-615 (2004)
  4. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Davies JM, Brunger AT, Weis WI. Structure 16 715-726 (2008)
  5. The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Yu F, Park S, Rodermel SR. Plant J 37 864-876 (2004)
  6. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Zaltsman A, Ori N, Adam Z. Plant Cell 17 2782-2790 (2005)
  7. Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. Dreveny I, Kondo H, Uchiyama K, Shaw A, Zhang X, Freemont PS. EMBO J 23 1030-1039 (2004)
  8. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA. Mol Cell 11 659-669 (2003)
  9. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Suno R, Niwa H, Tsuchiya D, Zhang X, Yoshida M, Morikawa K. Mol Cell 22 575-585 (2006)
  10. Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. Rappas M, Schumacher J, Niwa H, Buck M, Zhang X. J Mol Biol 357 481-492 (2006)
  11. Plant mitochondria contain at least two i-AAA-like complexes. Urantowka A, Knorpp C, Olczak T, Kolodziejczak M, Janska H. Plant Mol Biol 59 239-252 (2005)
  12. Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. Hersch SJ, Wang M, Zou SB, Moon KM, Foster LJ, Ibba M, Navarre WW. mBio 4 e00180-13 (2013)
  13. The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Bieniossek C, Niederhauser B, Baumann UM. Proc Natl Acad Sci U S A 106 21579-21584 (2009)
  14. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. Saikawa N, Akiyama Y, Ito K. J Struct Biol 146 123-129 (2004)
  15. Quality control of photosystem II: Thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. Khatoon M, Inagawa K, Pospísil P, Yamashita A, Yoshioka M, Lundin B, Horie J, Morita N, Jajoo A, Yamamoto Y, Yamamoto Y. J Biol Chem 284 25343-25352 (2009)
  16. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF. BMC Genomics 14 485 (2013)
  17. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Structure 15 179-189 (2007)
  18. Modeling AAA+ ring complexes from monomeric structures. Diemand AV, Lupas AN. J Struct Biol 156 230-243 (2006)
  19. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Biochem Biophys Res Commun 359 503-509 (2007)
  20. The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations. Chiba S, Ito K, Akiyama Y. Mol Microbiol 60 448-457 (2006)
  21. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. Besche H, Tamura N, Tamura T, Zwickl P. FEBS Lett 574 161-166 (2004)
  22. Atomic resolution x-ray structure of the substrate recognition domain of higher plant ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase. Henderson JN, Kuriata AM, Fromme R, Salvucci ME, Wachter RM. J Biol Chem 286 35683-35688 (2011)
  23. Quality control of photosystem II: FtsH hexamers are localized near photosystem II at grana for the swift repair of damage. Yoshioka M, Nakayama Y, Yoshida M, Ohashi K, Morita N, Kobayashi H, Yamamoto Y. J Biol Chem 285 41972-41981 (2010)
  24. FtsH2 and FtsH5: two homologous subunits use different integration mechanisms leading to the same thylakoid multimeric complex. Rodrigues RA, Silva-Filho MC, Cline K. Plant J 65 600-609 (2011)
  25. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: self-assembly of rubisco activase. Chakraborty M, Kuriata AM, Nathan Henderson J, Salvucci ME, Wachter RM, Levitus M. Biophys J 103 949-958 (2012)
  26. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. Mol Plant 10 99-114 (2017)
  27. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. Lowth BR, Kirstein-Miles J, Saiyed T, Brötz-Oesterhelt H, Morimoto RI, Truscott KN, Dougan DA. J Struct Biol 179 193-201 (2012)
  28. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Okuno T, Yamanaka K, Ogura T. Genes Cells 11 261-268 (2006)
  29. Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement. Graef M, Langer T. J Struct Biol 156 101-108 (2006)
  30. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Structure 11 253-263 (2003)
  31. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation. Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM. J Biol Chem 290 24222-24236 (2015)
  32. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AH, Baumeister W, De Mot R, Zwickl P. J Struct Biol 146 155-165 (2004)
  33. Variegated tobacco leaves generated by chloroplast FtsH suppression: implication of FtsH function in the maintenance of thylakoid membranes. Kato Y, Kouso T, Sakamoto W. Plant Cell Physiol 53 391-404 (2012)
  34. Crystal structure of the ATPase domain of the human AAA+ protein paraplegin/SPG7. Karlberg T, van den Berg S, Hammarström M, Sagemark J, Johansson I, Holmberg-Schiavone L, Schüler H. PLoS One 4 e6975 (2009)
  35. Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Karnataki A, DeRocher AE, Feagin JE, Parsons M. Mol Biochem Parasitol 166 126-133 (2009)
  36. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. Okuno T, Yamanaka K, Ogura T. J Struct Biol 156 109-114 (2006)
  37. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana. Qi Y, Zhao J, An R, Zhang J, Liang S, Shao J, Liu X, An L, Yu F. Photosynth Res 127 355-367 (2016)
  38. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Arch Biochem Biophys 501 239-243 (2010)
  39. Identification of a cysteine residue important for the ATPase activity of C. elegans fidgetin homologue. Yakushiji Y, Yamanaka K, Ogura T. FEBS Lett 578 191-197 (2004)
  40. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. J Mol Biol 381 1-12 (2008)
  41. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. J Struct Biol 146 148-154 (2004)
  42. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein. Peng W, Lin Z, Li W, Lu J, Shen Y, Wang C. J Biol Chem 288 29305-29312 (2013)
  43. A blue native-PAGE analysis of membrane protein complexes in Clostridium thermocellum. Peng Y, Luo Y, Yu T, Xu X, Fan K, Zhao Y, Yang K. BMC Microbiol 11 22 (2011)
  44. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum. Tanveer A, Allen SM, Jackson KE, Charan M, Ralph SA, Habib S. PLoS One 8 e74408 (2013)
  45. The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry. Carvalho V, Prabudiansyah I, Kovacik L, Chami M, Kieffer R, van der Valk R, de Lange N, Engel A, Aubin-Tam ME. J Biol Chem 296 100029 (2021)
  46. The yjoB gene of Bacillus subtilis encodes a protein that is a novel member of the AAA family. Kotschwar M, Diermeier S, Schumann W. FEMS Microbiol Lett 230 241-249 (2004)
  47. Characterization of FtsH Essentiality in Streptococcus mutans via Genetic Suppression. Wang Y, Cao W, Merritt J, Xie Z, Liu H. Front Genet 12 659220 (2021)
  48. Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state. Liu W, Schoonen M, Wang T, McSweeney S, Liu Q. Commun Biol 5 257 (2022)
  49. Crystal structure and biochemical analysis suggest that YjoB ATPase is a putative substrate-specific molecular chaperone. Kwon E, Dahal P, Kim DY. Proc Natl Acad Sci U S A 119 e2207856119 (2022)
  50. Structural consideration of mammalian D-aspartyl endopeptidase. Kinouchi T, Fujii N. Chem Biodivers 7 1403-1407 (2010)