1ju2 Citations

The hydroxynitrile lyase from almond: a lyase that looks like an oxidoreductase.

Structure 9 803-15 (2001)
Cited: 51 times
EuropePMC logo PMID: 11566130

Abstract

Background

Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase, a key enzyme of this process, cleaves a cyanohydrin into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, alpha/beta hydrolases, and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis.

Results

We have determined the crystal structure of a 61 kDa hydroxynitrile lyase isoenzyme from Prunus amygdalus (PaHNL1) to 1.5 A resolution. Clear electron density originating from four glycosylation sites could be observed. As concerns the overall protein fold including the FAD cofactor, PaHNL1 belongs to the family of GMC oxidoreductases. The active site for the HNL reaction is probably at a very similar position as the active sites in homologous oxidases.

Conclusion

There is strong evidence from the structure and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Since key residues implicated in oxidoreductase activity are also present in PaHNL1, it is not obvious why this enzyme shows no oxidase activity. Similarly, features proposed to be relevant for hydroxy-nitrile lyase activity in other hydroxynitrile lyases, i.e., a general base and a positive charge to stabilize the cyanide, are not obviously present in the putative active site of PaHNL1. Therefore, the reason for its HNL activity is far from being well understood at this point.

Articles - 1ju2 mentioned but not cited (4)

  1. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Dreveny I, Kratky C, Gruber K. Protein Sci 11 292-300 (2002)
  2. Crystal Structure of Alcohol Oxidase from Pichia pastoris. Koch C, Neumann P, Valerius O, Feussner I, Ficner R. PLoS One 11 e0149846 (2016)
  3. Discovering rules for protein-ligand specificity using support vector inductive logic programming. Kelley LA, Shrimpton PJ, Muggleton SH, Sternberg MJ. Protein Eng Des Sel 22 561-567 (2009)
  4. Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. Nottoli M, Mikhalev A, Stamm B, Lipparini F. J Phys Chem B 126 8827-8837 (2022)


Reviews citing this publication (6)

  1. Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Purkarthofer T, Skranc W, Schuster C, Griengl H. Appl Microbiol Biotechnol 76 309-320 (2007)
  2. Enantiocomplementary enzymes: classification, molecular basis for their enantiopreference, and prospects for mirror-image biotransformations. Mugford PF, Wagner UG, Jiang Y, Faber K, Kazlauskas RJ. Angew Chem Int Ed Engl 47 8782-8793 (2008)
  3. How to overcome limitations in biotechnological processes - examples from hydroxynitrile lyase applications. Andexer JN, Langermann JV, Kragl U, Pohl M. Trends Biotechnol 27 599-607 (2009)
  4. Progress in Stereoselective Construction of C-C Bonds Enabled by Aldolases and Hydroxynitrile Lyases. Liu M, Wei D, Wen Z, Wang JB. Front Bioeng Biotechnol 9 653682 (2021)
  5. Modern Approaches to Discovering New Hydroxynitrile Lyases for Biocatalysis. Padhi SK. Chembiochem 18 152-160 (2017)
  6. Structures of almond hydroxynitrile lyase isoenzyme 5 provide a rationale for the lack of oxidoreductase activity in flavin dependent HNLs. Pavkov-Keller T, Bakhuis J, Steinkellner G, Jolink F, Keijmel E, Birner-Gruenberger R, Gruber K. J Biotechnol 235 24-31 (2016)

Articles citing this publication (41)

  1. Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain alpha-,omega-dicarboxylic fatty acids and formation of extracellular matrix. Kurdyukov S, Faust A, Trenkamp S, Bär S, Franke R, Efremova N, Tietjen K, Schreiber L, Saedler H, Yephremov A. Planta 224 315-329 (2006)
  2. An algal photoenzyme converts fatty acids to hydrocarbons. Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E, Richaud P, Brugière S, Couté Y, Nurizzo D, Müller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. Science 357 903-907 (2017)
  3. Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. Krolikowski KA, Victor JL, Wagler TN, Lolle SJ, Pruitt RE. Plant J 35 501-511 (2003)
  4. Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. Lario PI, Sampson N, Vrielink A. J Mol Biol 326 1635-1650 (2003)
  5. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. Hallberg BM, Leitner C, Haltrich D, Divne C. J Mol Biol 341 781-796 (2004)
  6. Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Riveros-Rosas H, Julián-Sánchez A, Villalobos-Molina R, Pardo JP, Piña E. Eur J Biochem 270 3309-3334 (2003)
  7. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D. Gene 338 1-14 (2004)
  8. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. Biotechnol Biofuels 12 118 (2019)
  9. Expansion and evolution of insect GMC oxidoreductases. Iida K, Cox-Foster DL, Yang X, Ko WY, Cavener DR. BMC Evol Biol 7 75 (2007)
  10. IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation. Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W. Plant Physiol 173 307-325 (2017)
  11. Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. Ferreira P, Hernandez-Ortega A, Herguedas B, Martínez AT, Medina M. J Biol Chem 284 24840-24847 (2009)
  12. Cis-trans peptide variations in structurally similar proteins. Joseph AP, Srinivasan N, de Brevern AG. Amino Acids 43 1369-1381 (2012)
  13. Discovery and molecular and biocatalytic properties of hydroxynitrile lyase from an invasive millipede, Chamberlinius hualienensis. Dadashipour M, Ishida Y, Yamamoto K, Asano Y. Proc Natl Acad Sci U S A 112 10605-10610 (2015)
  14. Laboratory evolved biocatalysts for stereoselective syntheses of substituted benzaldehyde cyanohydrins. Liu Z, Pscheidt B, Avi M, Gaisberger R, Hartner FS, Schuster C, Skranc W, Gruber K, Glieder A. Chembiochem 9 58-61 (2008)
  15. HOTHEAD-Like HTH1 is Involved in Anther Cutin Biosynthesis and is Required for Pollen Fertility in Rice. Xu Y, Liu S, Liu Y, Ling S, Chen C, Yao J. Plant Cell Physiol 58 1238-1248 (2017)
  16. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity. Dreveny I, Andryushkova AS, Glieder A, Gruber K, Kratky C. Biochemistry 48 3370-3377 (2009)
  17. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJ, Martínez AT. FEBS J 273 4878-4888 (2006)
  18. Hydroxynitrile lyases with α/β-hydrolase fold: two enzymes with almost identical 3D structures but opposite enantioselectivities and different reaction mechanisms. Andexer JN, Staunig N, Eggert T, Kratky C, Pohl M, Gruber K. Chembiochem 13 1932-1939 (2012)
  19. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. Vonck J, Parcej DN, Mills DJ. PLoS One 11 e0159476 (2016)
  20. Serine scanning: a tool to prove the consequences of N-glycosylation of proteins. Weis R, Gaisberger R, Gruber K, Glieder A. J Biotechnol 129 50-61 (2007)
  21. Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris. Fukuta Y, Nanda S, Kato Y, Yurimoto H, Sakai Y, Komeda H, Asano Y. Biosci Biotechnol Biochem 75 214-220 (2011)
  22. Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily. Lanfranchi E, Pavkov-Keller T, Koehler EM, Diepold M, Steiner K, Darnhofer B, Hartler J, Van Den Bergh T, Joosten HJ, Gruber-Khadjawi M, Thallinger GG, Birner-Gruenberger R, Gruber K, Winkler M, Glieder A. Sci Rep 7 46738 (2017)
  23. Identification of Pru du 6 as a potential marker allergen for almond allergy. Kabasser S, Hafner C, Chinthrajah S, Sindher SB, Kumar D, Kost LE, Long AJ, Nadeau KC, Breiteneder H, Bublin M. Allergy 76 1463-1472 (2021)
  24. Synthesis of (R)-β-nitro alcohols catalyzed by R-selective hydroxynitrile lyase from Arabidopsis thaliana in the aqueous-organic biphasic system. Fuhshuku K, Asano Y. J Biotechnol 153 153-159 (2011)
  25. A kinetic model for enzyme interfacial activity and stability: pa-hydroxynitrile lyase at the diisopropyl ether/water interface. Cascão Pereira LG, Hickel A, Radke CJ, Blanch HW. Biotechnol Bioeng 78 595-605 (2002)
  26. Carving the active site of almond R-HNL for increased enantioselectivity. Weis R, Gaisberger R, Skranc W, Gruber K, Glieder A. Angew Chem Int Ed Engl 44 4700-4704 (2005)
  27. A novel screening assay for hydroxynitrile lyases suitable for high-throughput screening. Krammer B, Rumbold K, Tschemmernegg M, Pöchlauer P, Schwab H. J Biotechnol 129 151-161 (2007)
  28. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Golden E, Yu LJ, Meilleur F, Blakeley MP, Duff AP, Karton A, Vrielink A. Sci Rep 7 40517 (2017)
  29. Engineering of choline oxidase from Arthrobacter nicotianae for potential use as biological bleach in detergents. Ribitsch D, Winkler S, Gruber K, Karl W, Wehrschütz-Sigl E, Eiteljörg I, Schratl P, Remler P, Stehr R, Bessler C, Mussmann N, Sauter K, Maurer KH, Schwab H. Appl Microbiol Biotechnol 87 1743-1752 (2010)
  30. The crystal structure and catalytic mechanism of hydroxynitrile lyase from passion fruit, Passiflora edulis. Motojima F, Nuylert A, Asano Y. FEBS J 285 313-324 (2018)
  31. Counteracting expression deficiencies by anticipating posttranslational modification of PaHNL5-L1Q-A111G by genetic engineering. Gaisberger R, Weis R, Luiten R, Skranc W, Wubbolts M, Griengl H, Glieder A. J Biotechnol 129 30-38 (2007)
  32. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family. Liu X, Ohta T, Kawabata T, Kawai F. Int J Mol Sci 14 1218-1231 (2013)
  33. Hydroxynitrile lyases from cyanogenic millipedes: molecular cloning, heterologous expression, and whole-cell biocatalysis for the production of (R)-mandelonitrile. Yamaguchi T, Nuylert A, Ina A, Tanabe T, Asano Y. Sci Rep 8 3051 (2018)
  34. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines. Motojima F, Izumi A, Nuylert A, Zhai Z, Dadashipour M, Shichida S, Yamaguchi T, Nakano S, Asano Y. FEBS J 288 1679-1695 (2021)
  35. Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. Gonaus C, Maresch D, Schropp K, Ó Conghaile P, Leech D, Gorton L, Peterbauer CK. Enzyme Microb Technol 99 57-66 (2017)
  36. Immunoglobulin E-Binding Pattern of Canadian Peanut Allergic Children and Cross-Reactivity with Almond, Hazelnut and Pistachio. Pitre M, L'Hocine L, Achouri A, Blaquière M, Des Roches A. Biomolecules 10 E1091 (2020)
  37. Stereoselective biocatalytic synthesis of (S)-2-hydroxy-2-methylbutyric acid via substrate engineering by using "thio-disguised" precursors and oxynitrilase catalysis. Fechter MH, Gruber K, Avi M, Skranc W, Schuster C, Pöchlauer P, Klepp KO, Griengl H. Chemistry 13 3369-3376 (2007)
  38. Discovery and Structural Analysis to Improve the Enantioselectivity of Hydroxynitrile Lyase from Parafontaria laminata Millipedes for (R)-2-Chloromandelonitrile Synthesis. Nuylert A, Nakabayashi M, Yamaguchi T, Asano Y. ACS Omega 5 27896-27908 (2020)
  39. Structural characterization of Linum usitatissimum hydroxynitrile lyase: A new cyanohydrin decomposition mechanism involving a cyano-zinc complex. Zheng D, Nakabayashi M, Asano Y. J Biol Chem 298 101650 (2022)
  40. Effects of protease-assisted aqueous extraction on almond protein profile, digestibility, and antigenicity. Furlan Goncalves Dias F, Huang YP, Schauer J, Barile D, Van de Water J, Leite Nobrega de Moura Bell JM. Curr Res Food Sci 6 100488 (2023)
  41. Random strand transfer recombination (RSTR) for homology-independent nucleic acid recombination. Reiter B, Faschinger A, Glieder A, Schwab H. J Biotechnol 129 39-49 (2007)