1lbi Citations

Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.

Science 271 1247-54 (1996)
Related entries: 1lbg, 1lbh

Cited: 475 times
EuropePMC logo PMID: 8638105

Abstract

The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-beta-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

Reviews - 1lbi mentioned but not cited (1)

  1. The Structure and Topology of α-Helical Coiled Coils. Lupas AN, Bassler J, Dunin-Horkawicz S. Subcell Biochem 82 95-129 (2017)

Articles - 1lbi mentioned but not cited (17)

  1. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Chan CT, Lee JW, Cameron DE, Bashor CJ, Collins JJ. Nat Chem Biol 12 82-86 (2016)
  2. Modeling the Lac repressor-operator assembly: the influence of DNA looping on Lac repressor conformation. Swigon D, Coleman BD, Olson WK. Proc Natl Acad Sci U S A 103 9879-9884 (2006)
  3. X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. Fujiwara Y, Minor DL. J Mol Biol 383 854-870 (2008)
  4. Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat. Deng Y, Liu J, Zheng Q, Eliezer D, Kallenbach NR, Lu M. Structure 14 247-255 (2006)
  5. Protein flexibility, not disorder, is intrinsic to molecular recognition. Janin J, Sternberg MJ. F1000 Biol Rep 5 2 (2013)
  6. Sequence dependence of transcription factor-mediated DNA looping. Johnson S, Lindén M, Phillips R. Nucleic Acids Res 40 7728-7738 (2012)
  7. Interplay of protein and DNA structure revealed in simulations of the lac operon. Czapla L, Grosner MA, Swigon D, Olson WK. PLoS One 8 e56548 (2013)
  8. Ligand-induced conformational changes in a thermophilic ribose-binding protein. Cuneo MJ, Beese LS, Hellinga HW. BMC Struct Biol 8 50 (2008)
  9. Transposon assisted gene insertion technology (TAGIT): a tool for generating fluorescent fusion proteins. Gregory JA, Becker EC, Jung J, Tuwatananurak I, Pogliano K. PLoS One 5 e8731 (2010)
  10. coliSNP database server mapping nsSNPs on protein structures. Kono H, Yuasa T, Nishiue S, Yura K. Nucleic Acids Res 36 D409-13 (2008)
  11. A library of coiled-coil domains: from regular bundles to peculiar twists. Szczepaniak K, Bukala A, da Silva Neto AM, Ludwiczak J, Dunin-Horkawicz S. Bioinformatics 36 5368-5376 (2021)
  12. AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators. Sousa FL, Parente DJ, Shis DL, Hessman JA, Chazelle A, Bennett MR, Teichmann SA, Swint-Kruse L. J Mol Biol 428 671-678 (2016)
  13. Mesoscale modeling of multi-protein-DNA assemblies: the role of the catabolic activator protein in Lac-repressor-mediated looping. Swigon D, Olson WK. Int J Non Linear Mech 43 1082-1093 (2008)
  14. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Glasgow A, Hobbs HT, Perry ZR, Wells ML, Marqusee S, Kortemme T. Nat Commun 14 1179 (2023)
  15. Designed architectural proteins that tune DNA looping in bacteria. Tse DH, Becker NA, Young RT, Olson WK, Peters JP, Schwab TL, Clark KJ, Maher LJ. Nucleic Acids Res 49 10382-10396 (2021)
  16. Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants. Ye F, Wang C, Fu Q, Yan XF, Bharath SR, Casanas A, Wang M, Song H, Zhang LH, Gao YG. J Biol Chem 295 12290-12304 (2020)
  17. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Sousa FL, Parente DJ, Hessman JA, Chazelle A, Teichmann SA, Swint-Kruse L. Data Brief 8 948-957 (2016)


Reviews citing this publication (74)

  1. Intrinsically disordered protein. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. J Mol Graph Model 19 26-59 (2001)
  2. Natively unfolded proteins: a point where biology waits for physics. Uversky VN. Protein Sci 11 739-756 (2002)
  3. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Deutscher J, Francke C, Postma PW. Microbiol Mol Biol Rev 70 939-1031 (2006)
  4. How do site-specific DNA-binding proteins find their targets? Halford SE, Marko JF. Nucleic Acids Res 32 3040-3052 (2004)
  5. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  6. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. Uversky VN, Oldfield CJ, Dunker AK. J Mol Recognit 18 343-384 (2005)
  7. Folding funnels and binding mechanisms. Ma B, Kumar S, Tsai CJ, Nussinov R. Protein Eng 12 713-720 (1999)
  8. A structural classification of substrate-binding proteins. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B. FEBS Lett 584 2606-2617 (2010)
  9. The structure and function of glutamate receptor ion channels. Madden DR. Nat Rev Neurosci 3 91-101 (2002)
  10. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol Cell 8 937-946 (2001)
  11. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Bewley CA, Gronenborn AM, Clore GM. Annu Rev Biophys Biomol Struct 27 105-131 (1998)
  12. The lac repressor. Lewis M. C R Biol 328 521-548 (2005)
  13. Why repetitive DNA is essential to genome function. Shapiro JA, von Sternberg R. Biol Rev Camb Philos Soc 80 227-250 (2005)
  14. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Apostolovic B, Danial M, Klok HA. Chem Soc Rev 39 3541-3575 (2010)
  15. Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Huffman JL, Brennan RG. Curr Opin Struct Biol 12 98-106 (2002)
  16. Roles of partly unfolded conformations in macromolecular self-assembly. Namba K. Genes Cells 6 1-12 (2001)
  17. The engineering of gene regulatory networks. Kaern M, Blake WJ, Collins JJ. Annu Rev Biomed Eng 5 179-206 (2003)
  18. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Koster DA, Crut A, Shuman S, Bjornsti MA, Dekker NH. Cell 142 519-530 (2010)
  19. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Gurova K. Future Oncol 5 1685-1704 (2009)
  20. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW. Funct Integr Genomics 6 165-185 (2006)
  21. Allostery in the LacI/GalR family: variations on a theme. Swint-Kruse L, Matthews KS. Curr Opin Microbiol 12 129-137 (2009)
  22. Transactivated and chemically inducible gene expression in plants. Moore I, Samalova M, Kurup S. Plant J 45 651-683 (2006)
  23. 50 years of allosteric interactions: the twists and turns of the models. Changeux JP. Nat Rev Mol Cell Biol 14 819-829 (2013)
  24. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Ogata K, Sato K, Tahirov TH. Curr Opin Struct Biol 13 40-48 (2003)
  25. Eukaryotic transcription factors as direct nutrient sensors. Sellick CA, Reece RJ. Trends Biochem Sci 30 405-412 (2005)
  26. Folding funnels and conformational transitions via hinge-bending motions. Kumar S, Ma B, Tsai CJ, Wolfson H, Nussinov R. Cell Biochem Biophys 31 141-164 (1999)
  27. Creating small-molecule-dependent switches to modulate biological functions. Buskirk AR, Liu DR. Chem Biol 12 151-161 (2005)
  28. A gamut of loops: meandering DNA. Semsey S, Virnik K, Adhya S. Trends Biochem Sci 30 334-341 (2005)
  29. DNA looping: the consequences and its control. Saiz L, Vilar JM. Curr Opin Struct Biol 16 344-350 (2006)
  30. Protein surface salt bridges and paths for DNA wrapping. Saecker RM, Record MT. Curr Opin Struct Biol 12 311-319 (2002)
  31. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Biotechnol Adv 35 575-596 (2017)
  32. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. van den Akker F. J Mol Biol 311 923-937 (2001)
  33. Tertiary templates for the design of diiron proteins. Summa CM, Lombardi A, Lewis M, DeGrado WF. Curr Opin Struct Biol 9 500-508 (1999)
  34. The Lac repressor: a second generation of structural and functional studies. Bell CE, Lewis M. Curr Opin Struct Biol 11 19-25 (2001)
  35. Activation and repression of E. coli promoters. Gralla JD. Curr Opin Genet Dev 6 526-530 (1996)
  36. Molecular mechanisms of cellular mechanics. Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Phys Chem Chem Phys 8 3692-3706 (2006)
  37. The function of auxiliary operators. Müller-Hill B. Mol Microbiol 29 13-18 (1998)
  38. Transcription control engineering and applications in synthetic biology. Engstrom MD, Pfleger BF. Synth Syst Biotechnol 2 176-191 (2017)
  39. Tuning the dials of Synthetic Biology. Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan GV, Papachristodoulou A, Polizzi K. Microbiology (Reading) 159 1236-1253 (2013)
  40. Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition. Oda M, Nakamura H. Genes Cells 5 319-326 (2000)
  41. Integrated stress responses in Salmonella. Shen S, Fang FC. Int J Food Microbiol 152 75-81 (2012)
  42. A good turn for DNA: the structure of integration host factor bound to DNA. Ellenberger T, Landy A. Structure 5 153-157 (1997)
  43. High local concentration: a fundamental strategy of life. Oehler S, Müller-Hill B. J Mol Biol 395 242-253 (2010)
  44. Light-controlled motility in prokaryotes and the problem of directional light perception. Wilde A, Mullineaux CW. FEMS Microbiol Rev 41 900-922 (2017)
  45. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. Lee SJ, Surma M, Hausner W, Thomm M, Boos W. Arch Microbiol 190 247-256 (2008)
  46. Loops in DNA: an overview of experimental and theoretical approaches. Allemand JF, Cocco S, Douarche N, Lia G. Eur Phys J E Soft Matter 19 293-302 (2006)
  47. Allostery and the lac Operon. Lewis M. J Mol Biol 425 2309-2316 (2013)
  48. Biomolecular Assemblies: Moving from Observation to Predictive Design. Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Chem Rev 118 11519-11574 (2018)
  49. Transcription regulation by repressosome and by RNA polymerase contact. Adhya S, Geanacopoulos M, Lewis DE, Roy S, Aki T. Cold Spring Harb Symp Quant Biol 63 1-9 (1998)
  50. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Lin JL, Wagner JM, Alper HS. Biotechnol Adv 35 950-970 (2017)
  51. Stochastic dynamics of macromolecular-assembly networks. Saiz L, Vilar JM. Mol Syst Biol 2 2006.0024 (2006)
  52. Plant Glycan Metabolism by Bifidobacteria. Kelly SM, Munoz-Munoz J, van Sinderen D. Front Microbiol 12 609418 (2021)
  53. Lac repressor-operator complex. Kercher MA, Lu P, Lewis M. Curr Opin Struct Biol 7 76-85 (1997)
  54. New structures of allosteric proteins revealing remarkable conformational changes. Mattevi A, Rizzi M, Bolognesi M. Curr Opin Struct Biol 6 824-829 (1996)
  55. Some repressors of bacterial transcription. Müller-Hill B. Curr Opin Microbiol 1 145-151 (1998)
  56. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  57. Regulation of sugar catabolism in Lactococcus lactis. Kowalczyk M, Bardowski J. Crit Rev Microbiol 33 1-13 (2007)
  58. Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. Randall TE, Eckartt K, Kakumanu S, Price-Whelan A, Dietrich LEP, Harrison JJ. J Bacteriol 204 e0043321 (2022)
  59. Evolutionary constraints in variable environments, from proteins to networks. Taute KM, Gude S, Nghe P, Tans SJ. Trends Genet 30 192-198 (2014)
  60. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. Front Mol Biosci 8 693710 (2021)
  61. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. Bondos SE, Swint-Kruse L, Matthews KS. J Biol Chem 290 24669-24677 (2015)
  62. Modulation of DNA-binding domains for sequence-specific DNA recognition. Marmorstein R, Fitzgerald MX. Gene 304 1-12 (2003)
  63. Say when: reversible control of gene expression in the mouse by lac. Scrable H. Semin Cell Dev Biol 13 109-119 (2002)
  64. Methods for transcription factor separation. Moxley RA, Jarrett HW, Mitra S. J Chromatogr B Analyt Technol Biomed Life Sci 797 269-288 (2003)
  65. Structural insights into the role of architectural proteins in DNA looping deduced from computer simulations. Olson WK, Grosner MA, Czapla L, Swigon D. Biochem Soc Trans 41 559-564 (2013)
  66. The physics of protein-DNA interaction networks in the control of gene expression. Saiz L. J Phys Condens Matter 24 193102 (2012)
  67. The Impact of Space and Time on the Functional Output of the Genome. Nollmann M, Bennabi I, Götz M, Gregor T. Cold Spring Harb Perspect Biol 14 a040378 (2022)
  68. Simple mechanisms for the evolution of protein complexity. Pillai AS, Hochberg GKA, Thornton JW. Protein Sci 31 e4449 (2022)
  69. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 197-207 (2016)
  70. Aspects of protein-DNA interactions: a review of quantitative thermodynamic theory for modelling synthetic circuits utilising LacI and CI repressors, IPTG and the reporter gene lacZ. Munro PD, Ackers GK, Shearwin KE. Biophys Rev 8 331-345 (2016)
  71. Towards a mutant analysis of the tertiary structures of functional DNA-binding motifs. Barker A, Müller-Hill B. FEBS Lett 432 1-3 (1998)
  72. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 123-133 (2016)
  73. Deconstruction of complex protein signaling switches: a roadmap toward engineering higher-order gene regulators. Davey JA, Wilson CJ. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9 (2017)
  74. Energetics of twisted DNA topologies. Xu W, Dunlap D, Finzi L. Biophys J 120 3242-3252 (2021)

Articles citing this publication (383)

  1. Scalable molecular dynamics with NAMD. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. J Comput Chem 26 1781-1802 (2005)
  2. Predicting deleterious amino acid substitutions. Ng PC, Henikoff S. Genome Res 11 863-874 (2001)
  3. Sequence complexity of disordered protein. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Proteins 42 38-48 (2001)
  4. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Zuo J, Niu QW, Chua NH. Plant J 24 265-273 (2000)
  5. Probing transcription factor dynamics at the single-molecule level in a living cell. Elf J, Li GW, Xie XS. Science 316 1191-1194 (2007)
  6. Structural basis of the redox switch in the OxyR transcription factor. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE. Cell 105 103-113 (2001)
  7. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. J Proteome Res 6 1882-1898 (2007)
  8. One-component systems dominate signal transduction in prokaryotes. Ulrich LE, Koonin EV, Zhulin IB. Trends Microbiol 13 52-56 (2005)
  9. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Slutsky M, Mirny LA. Biophys J 87 4021-4035 (2004)
  10. OxyR: a molecular code for redox-related signaling. Kim SO, Merchant K, Nudelman R, Beyer WF, Keng T, DeAngelo J, Hausladen A, Stamler JS. Cell 109 383-396 (2002)
  11. DNA bending: the prevalence of kinkiness and the virtues of normality. Dickerson RE. Nucleic Acids Res 26 1906-1926 (1998)
  12. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Stone EA, Sidow A. Genome Res 15 978-986 (2005)
  13. Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Müller CW, Herrmann BG. Nature 389 884-888 (1997)
  14. A database of macromolecular motions. Gerstein M, Krebs W. Nucleic Acids Res 26 4280-4290 (1998)
  15. The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Pérez-Rueda E, Collado-Vides J. Nucleic Acids Res 28 1838-1847 (2000)
  16. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Keenan RJ, Freymann DM, Walter P, Stroud RM. Cell 94 181-191 (1998)
  17. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ. Cell 91 85-97 (1997)
  18. Ribosome-mediated translational pause and protein domain organization. Thanaraj TA, Argos P. Protein Sci 5 1594-1612 (1996)
  19. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R. Cell 142 101-111 (2010)
  20. Probing allostery through DNA. Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, Wang S, Gu C, Yang L, Gao YQ, Su XD, Sun Y, Xie XS. Science 339 816-819 (2013)
  21. Combinatorial transcriptional control of the lactose operon of Escherichia coli. Kuhlman T, Zhang Z, Saier MH, Hwa T. Proc Natl Acad Sci U S A 104 6043-6048 (2007)
  22. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Pietrokovski S. Nucleic Acids Res 24 3836-3845 (1996)
  23. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. Plant J 41 899-918 (2005)
  24. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Cell 118 731-741 (2004)
  25. Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. Muraoka S, Okumura R, Ogawa N, Nonaka T, Miyashita K, Senda T. J Mol Biol 328 555-566 (2003)
  26. The lac operator-repressor system is functional in the mouse. Cronin CA, Gluba W, Scrable H. Genes Dev 15 1506-1517 (2001)
  27. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. Sclavi B, Woodson S, Sullivan M, Chance MR, Brenowitz M. J Mol Biol 266 144-159 (1997)
  28. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK. EMBO J 19 5167-5177 (2000)
  29. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. Pharmacol Rev 66 918-947 (2014)
  30. Modeling DNA deformations. Olson WK, Zhurkin VB. Curr Opin Struct Biol 10 286-297 (2000)
  31. Principles and applications of the photochemical control of cellular processes. Deiters A. Chembiochem 11 47-53 (2010)
  32. Plasticity in protein-DNA recognition: lac repressor interacts with its natural operator 01 through alternative conformations of its DNA-binding domain. Kalodimos CG, Bonvin AM, Salinas RK, Wechselberger R, Boelens R, Kaptein R. EMBO J 21 2866-2876 (2002)
  33. Conversion of a maltose receptor into a zinc biosensor by computational design. Marvin JS, Hellinga HW. Proc Natl Acad Sci U S A 98 4955-4960 (2001)
  34. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  35. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nowarski R, Britan-Rosich E, Shiloach T, Kotler M. Nat Struct Mol Biol 15 1059-1066 (2008)
  36. MiST: a microbial signal transduction database. Ulrich LE, Zhulin IB. Nucleic Acids Res 35 D386-90 (2007)
  37. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Villa E, Balaeff A, Schulten K. Proc Natl Acad Sci U S A 102 6783-6788 (2005)
  38. Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Gutiérrez-Ríos RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J. Genome Res 13 2435-2443 (2003)
  39. Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. Sunnerhagen M, Nilges M, Otting G, Carey J. Nat Struct Biol 4 819-826 (1997)
  40. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Kimata K, Takahashi H, Inada T, Postma P, Aiba H. Proc Natl Acad Sci U S A 94 12914-12919 (1997)
  41. The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ. Structure 5 1017-1032 (1997)
  42. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE, Saecker RM, Bond JP, Capp MW, Tsodikov OV, Melcher SE, Levandoski MM, Record MT. J Mol Biol 267 1186-1206 (1997)
  43. NikR-operator complex structure and the mechanism of repressor activation by metal ions. Schreiter ER, Wang SC, Zamble DB, Drennan CL. Proc Natl Acad Sci U S A 103 13676-13681 (2006)
  44. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, Saven JG, Vauthey E, Halazonetis TD. EMBO J 30 2167-2176 (2011)
  45. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Ogihara NL, Weiss MS, Degrado WF, Eisenberg D. Protein Sci 6 80-88 (1997)
  46. Local motions in a benchmark of allosteric proteins. Daily MD, Gray JJ. Proteins 67 385-399 (2007)
  47. Single-molecule studies of repressor-DNA interactions show long-range interactions. Wang YM, Tegenfeldt JO, Reisner W, Riehn R, Guan XJ, Guo L, Golding I, Cox EC, Sturm J, Austin RH. Proc Natl Acad Sci U S A 102 9796-9801 (2005)
  48. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Alekshun MN, Kim YS, Levy SB. Mol Microbiol 35 1394-1404 (2000)
  49. Transcriptional regulation in Archaea: in vivo demonstration of a repressor binding site in a methanogen. Cohen-Kupiec R, Blank C, Leigh JA. Proc Natl Acad Sci U S A 94 1316-1320 (1997)
  50. Concentration and length dependence of DNA looping in transcriptional regulation. Han L, Garcia HG, Blumberg S, Towles KB, Beausang JF, Nelson PC, Phillips R. PLoS One 4 e5621 (2009)
  51. Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA. J Biol Chem 274 6797-6803 (1999)
  52. The SIS domain: a phosphosugar-binding domain. Bateman A. Trends Biochem Sci 24 94-95 (1999)
  53. The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dimers. Grkovic S, Brown MH, Schumacher MA, Brennan RG, Skurray RA. J Bacteriol 183 7102-7109 (2001)
  54. A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. Metruccio MM, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N, Hill SA, Scarlato V, Delany I. PLoS Pathog 5 e1000710 (2009)
  55. The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. Jaeger J, Restle T, Steitz TA. EMBO J 17 4535-4542 (1998)
  56. TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility. McElroy C, Manfredo A, Wendt A, Gollnick P, Foster M. J Mol Biol 323 463-473 (2002)
  57. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Swaminathan K, Flynn P, Reece RJ, Marmorstein R. Nat Struct Biol 4 751-759 (1997)
  58. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J. J Bacteriol 185 4806-4815 (2003)
  59. Effects of DNA-distorting proteins on DNA elastic response. Yan J, Marko JF. Phys Rev E Stat Nonlin Soft Matter Phys 68 011905 (2003)
  60. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion. Vanzi F, Broggio C, Sacconi L, Pavone FS. Nucleic Acids Res 34 3409-3420 (2006)
  61. Structural and energetic origins of sequence-specific DNA bending: Monte Carlo simulations of papillomavirus E2-DNA binding sites. Rohs R, Sklenar H, Shakked Z. Structure 13 1499-1509 (2005)
  62. Lecture The emergence of protein complexes: quaternary structure, dynamics and allostery. Colworth Medal Lecture. Perica T, Marsh JA, Sousa FL, Natan E, Colwell LJ, Ahnert SE, Teichmann SA. Biochem Soc Trans 40 475-491 (2012)
  63. Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O'Gara F. J Bacteriol 184 3008-3016 (2002)
  64. Letter Formation of the hinge helix in the lac repressor is induced upon binding to the lac operator. Spronk CA, Slijper M, van Boom JH, Kaptein R, Boelens R. Nat Struct Biol 3 916-919 (1996)
  65. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Nucleic Acids Res 41 6750-6760 (2013)
  66. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Blank TE, Woods MP, Lebo CM, Xin P, Hopper JE. Mol Cell Biol 17 2566-2575 (1997)
  67. Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable lac repressor-DNA loops. Edelman LM, Cheong R, Kahn JD. Biophys J 84 1131-1145 (2003)
  68. Looping dynamics of linear DNA molecules and the effect of DNA curvature: a study by Brownian dynamics simulation. Merlitz H, Rippe K, Klenin KV, Langowski J. Biophys J 74 773-779 (1998)
  69. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. Petrushenko ZM, Cui Y, She W, Rybenkov VV. EMBO J 29 1126-1135 (2010)
  70. Structural analysis of lac repressor bound to allosteric effectors. Daber R, Stayrook S, Rosenberg A, Lewis M. J Mol Biol 370 609-619 (2007)
  71. The acidic tail of the high mobility group protein HMG-D modulates the structural selectivity of DNA binding. Payet D, Travers A. J Mol Biol 266 66-75 (1997)
  72. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping. Zhang Y, McEwen AE, Crothers DM, Levene SD. PLoS One 1 e136 (2006)
  73. Crystallographic analysis of Lac repressor bound to natural operator O1. Bell CE, Lewis M. J Mol Biol 312 921-926 (2001)
  74. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator. Spronk CA, Bonvin AM, Radha PK, Melacini G, Boelens R, Kaptein R. Structure 7 1483-1492 (1999)
  75. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. Taraban M, Zhan H, Whitten AE, Langley DB, Matthews KS, Swint-Kruse L, Trewhella J. J Mol Biol 376 466-481 (2008)
  76. Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. Nandi PK, Nicole JC. J Mol Biol 344 827-837 (2004)
  77. Operator-bound GalR dimers close DNA loops by direct interaction: tetramerization and inducer binding. Semsey S, Geanacopoulos M, Lewis DE, Adhya S. EMBO J 21 4349-4356 (2002)
  78. Designed hyperstable Lac repressor.DNA loop topologies suggest alternative loop geometries. Mehta RA, Kahn JD. J Mol Biol 294 67-77 (1999)
  79. Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells. Vukojevic V, Papadopoulos DK, Terenius L, Gehring WJ, Rigler R. Proc Natl Acad Sci U S A 107 4093-4098 (2010)
  80. The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose. Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C. J Mol Biol 273 226-237 (1997)
  81. Molecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase. Zhou M, Bhasin A, Reznikoff WS. J Mol Biol 276 913-925 (1998)
  82. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Plumbridge J. Nucleic Acids Res 29 506-514 (2001)
  83. Real-time observation of DNA looping dynamics of Type IIE restriction enzymes NaeI and NarI. van den Broek B, Vanzi F, Normanno D, Pavone FS, Wuite GJ. Nucleic Acids Res 34 167-174 (2006)
  84. DNA looping by the Sfi I restriction endonuclease. Wentzell LM, Halford SE. J Mol Biol 281 433-444 (1998)
  85. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. Schumacher MA, Seidel G, Hillen W, Brennan RG. J Mol Biol 368 1042-1050 (2007)
  86. Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction. Kwon SK, Kim SK, Lee DH, Kim JF. Sci Rep 5 16076 (2015)
  87. Correction of the NMR structure of the ETS1/DNA complex. Werner MH, Clore GM, Fisher CL, Fisher RJ, Trinh L, Shiloach J, Gronenborn AM. J Biomol NMR 10 317-328 (1997)
  88. Protein-induced fit: the CRP activator protein changes sequence-specific DNA recognition by the CytR repressor, a highly flexible LacI member. Pedersen H, Valentin-Hansen P. EMBO J 16 2108-2118 (1997)
  89. Strong DNA binding by covalently linked dimeric Lac headpiece: evidence for the crucial role of the hinge helices. Kalodimos CG, Folkers GE, Boelens R, Kaptein R. Proc Natl Acad Sci U S A 98 6039-6044 (2001)
  90. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. Zhou X, Lou Z, Fu S, Yang A, Shen H, Li Z, Feng Y, Bartlam M, Wang H, Rao Z. J Mol Biol 396 1012-1024 (2010)
  91. Interconvertible lac repressor-DNA loops revealed by single-molecule experiments. Wong OK, Guthold M, Erie DA, Gelles J. PLoS Biol 6 e232 (2008)
  92. Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models. Marklund EG, Mahmutovic A, Berg OG, Hammar P, van der Spoel D, Fange D, Elf J. Proc Natl Acad Sci U S A 110 19796-19801 (2013)
  93. Structure-based predictive models for allosteric hot spots. Demerdash ON, Daily MD, Mitchell JC. PLoS Comput Biol 5 e1000531 (2009)
  94. Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Deng Y, Liu J, Zheng Q, Yong W, Lu M. Structure 14 889-899 (2006)
  95. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL. Proteins 78 2058-2074 (2010)
  96. The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. Furuya K, Hutchinson CR. J Bacteriol 178 6310-6318 (1996)
  97. Engineered temperature compensation in a synthetic genetic clock. Hussain F, Gupta C, Hirning AJ, Ott W, Matthews KS, Josic K, Bennett MR. Proc Natl Acad Sci U S A 111 972-977 (2014)
  98. Flexibility of alpha-helices: results of a statistical analysis of database protein structures. Emberly EG, Mukhopadhyay R, Wingreen NS, Tang C. J Mol Biol 327 229-237 (2003)
  99. Gene repression by minimal lac loops in vivo. Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ. Nucleic Acids Res 38 8072-8082 (2010)
  100. Identification of two independent transcriptional activation domains in the Autographa californica multicapsid nuclear polyhedrosis virus IE1 protein. Slack JM, Blissard GW. J Virol 71 9579-9587 (1997)
  101. Rationally designed insulator-like elements can block enhancer action in vitro. Bondarenko VA, Jiang YI, Studitsky VM. EMBO J 22 4728-4737 (2003)
  102. Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG. Nucleic Acids Res 39 2931-2942 (2011)
  103. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. Wiese DE, Ernsting BR, Blumenthal RM, Matthews RG. J Mol Biol 270 152-168 (1997)
  104. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Flynn TC, Swint-Kruse L, Kong Y, Booth C, Matthews KS, Ma J. Protein Sci 12 2523-2541 (2003)
  105. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Oehler S, Alberti S, Müller-Hill B. Nucleic Acids Res 34 606-612 (2006)
  106. Single-molecule spectroscopic determination of lac repressor-DNA loop conformation. Morgan MA, Okamoto K, Kahn JD, English DS. Biophys J 89 2588-2596 (2005)
  107. Environmental dependence of genetic constraint. de Vos MG, Poelwijk FJ, Battich N, Ndika JD, Tans SJ. PLoS Genet 9 e1003580 (2013)
  108. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Purssell A, Poole K. Microbiology (Reading) 159 2058-2073 (2013)
  109. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J. Mol Plant Microbe Interact 18 311-323 (2005)
  110. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Zhan H, Swint-Kruse L, Matthews KS. Biochemistry 45 5896-5906 (2006)
  111. Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Resch M, Schiltz E, Titgemeyer F, Muller YA. Nucleic Acids Res 38 2485-2497 (2010)
  112. Structural basis for cooperative DNA binding by CAP and lac repressor. Balaeff A, Mahadevan L, Schulten K. Structure 12 123-132 (2004)
  113. Structural basis of the sulphate starvation response in E. coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. Stec E, Witkowska-Zimny M, Hryniewicz MM, Neumann P, Wilkinson AJ, Brzozowski AM, Verma CS, Zaim J, Wysocki S, Bujacz GD. J Mol Biol 364 309-322 (2006)
  114. Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. Alicea I, Marvin JS, Miklos AE, Ellington AD, Looger LL, Schreiter ER. J Mol Biol 414 356-369 (2011)
  115. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding. Hong J, Capp MW, Saecker RM, Record MT. Biochemistry 44 16896-16911 (2005)
  116. "Antiparallel" DNA loop in gal repressosome visualized by atomic force microscopy. Virnik K, Lyubchenko YL, Karymov MA, Dahlgren P, Tolstorukov MY, Semsey S, Zhurkin VB, Adhya S. J Mol Biol 334 53-63 (2003)
  117. A tale of two repressors. Lewis M. J Mol Biol 409 14-27 (2011)
  118. Coarse-grained model of entropic allostery. Hawkins RJ, McLeish TC. Phys Rev Lett 93 098104 (2004)
  119. Comparison of deterministic and stochastic models of the lac operon genetic network. Stamatakis M, Mantzaris NV. Biophys J 96 887-906 (2009)
  120. High-resolution crystal structure of the restriction-modification controller protein C.AhdI from Aeromonas hydrophila. McGeehan JE, Streeter SD, Papapanagiotou I, Fox GC, Kneale GG. J Mol Biol 346 689-701 (2005)
  121. Protein-protein communication: structural model of the repression complex formed by CytR and the global regulator CRP. Kallipolitis BH, Nørregaard-Madsen M, Valentin-Hansen P. Cell 89 1101-1109 (1997)
  122. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Ammar EM, Wang X, Rao CV. Sci Rep 8 609 (2018)
  123. Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric Induction. Razo-Mejia M, Barnes SL, Belliveau NM, Chure G, Einav T, Lewis M, Phillips R. Cell Syst 6 456-469.e10 (2018)
  124. Computational predictors fail to identify amino acid substitution effects at rheostat positions. Miller M, Bromberg Y, Swint-Kruse L. Sci Rep 7 41329 (2017)
  125. De novo design of a molecular switch: phosphorylation-dependent association of designed peptides. Signarvic RS, DeGrado WF. J Mol Biol 334 1-12 (2003)
  126. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR. Swint-Kruse L, Larson C, Pettitt BM, Matthews KS. Protein Sci 11 778-794 (2002)
  127. Modelling repressor proteins docking to DNA. Aloy P, Moont G, Gabb HA, Querol E, Aviles FX, Sternberg MJ. Proteins 33 535-549 (1998)
  128. Photochemical activation of protein expression in bacterial cells. Young DD, Deiters A. Angew Chem Int Ed Engl 46 4290-4292 (2007)
  129. Alternative geometries of DNA looping: an analysis using the SfiI endonuclease. Watson MA, Gowers DM, Halford SE. J Mol Biol 298 461-475 (2000)
  130. Dimerisation mutants of Lac repressor. I. A monomeric mutant, L251A, that binds Lac operator DNA as a dimer. Dong F, Spott S, Zimmermann O, Kisters-Woike B, Müller-Hill B, Barker A. J Mol Biol 290 653-666 (1999)
  131. Identification of a co-repressor binding site in catabolite control protein CcpA. Kraus A, Küster E, Wagner A, Hoffmann K, Hillen W. Mol Microbiol 30 955-963 (1998)
  132. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Swint-Kruse L, Elam CR, Lin JW, Wycuff DR, Shive Matthews K. Protein Sci 10 262-276 (2001)
  133. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping. Normanno D, Vanzi F, Pavone FS. Nucleic Acids Res 36 2505-2513 (2008)
  134. Ab initio thermodynamic modeling of distal multisite transcription regulation. Saiz L, Vilar JM. Nucleic Acids Res 36 726-731 (2008)
  135. Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis. Pinto UM, Winans SC. Mol Microbiol 73 32-42 (2009)
  136. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. Johnson S, Chen YJ, Phillips R. PLoS One 8 e75799 (2013)
  137. RNA recognition by transcriptional antiterminators of the BglG/SacY family: functional and structural comparison of the CAT domain from SacY and LicT. Declerck N, Vincent F, Hoh F, Aymerich S, van Tilbeurgh H. J Mol Biol 294 389-402 (1999)
  138. The analysis of the transcriptional activator PrnA reveals a tripartite nuclear localisation sequence. Pokorska A, Drevet C, Scazzocchio C. J Mol Biol 298 585-596 (2000)
  139. Thermodynamics of sequence-specific protein-DNA interactions. Härd T, Lundbäck T. Biophys Chem 62 121-139 (1996)
  140. DNA topology confers sequence specificity to nonspecific architectural proteins. Wei J, Czapla L, Grosner MA, Swigon D, Olson WK. Proc Natl Acad Sci U S A 111 16742-16747 (2014)
  141. Disruption of protein-mediated DNA looping by tension in the substrate DNA. Blumberg S, Tkachenko AV, Meiners JC. Biophys J 88 1692-1701 (2005)
  142. First-principles calculation of DNA looping in tethered particle experiments. Towles KB, Beausang JF, Garcia HG, Phillips R, Nelson PC. Phys Biol 6 025001 (2009)
  143. GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli, a key enzyme in the biosynthesis of GDP-L-fucose, displays the structural characteristics of the RED protein homology superfamily. Rizzi M, Tonetti M, Vigevani P, Sturla L, Bisso A, Flora AD, Bordo D, Bolognesi M. Structure 6 1453-1465 (1998)
  144. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. Glasfeld A, Koehler AN, Schumacher MA, Brennan RG. J Mol Biol 291 347-361 (1999)
  145. A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR. Resch M, Striegl H, Henssler EM, Sevvana M, Egerer-Sieber C, Schiltz E, Hillen W, Muller YA. Nucleic Acids Res 36 4390-4401 (2008)
  146. DNA-binding characteristics of the Escherichia coli CytR regulator: a relaxed spacing requirement between operator half-sites is provided by a flexible, unstructured interdomain linker. Jørgensen CI, Kallipolitis BH, Valentin-Hansen P. Mol Microbiol 27 41-50 (1998)
  147. Mass spectrometric study of the Escherichia coli repressor proteins, Ic1R and Gc1R, and their complexes with DNA. Donald LJ, Hosfield DJ, Cuvelier SL, Ens W, Standing KG, Duckworth HW. Protein Sci 10 1370-1380 (2001)
  148. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. Schumacher S, Clubb RT, Cai M, Mizuuchi K, Clore GM, Gronenborn AM. EMBO J 16 7532-7541 (1997)
  149. Structure of the lac operon galactoside acetyltransferase. Wang XG, Olsen LR, Roderick SL. Structure 10 581-588 (2002)
  150. Tetramer opening in LacI-mediated DNA looping. Rutkauskas D, Zhan H, Matthews KS, Pavone FS, Vanzi F. Proc Natl Acad Sci U S A 106 16627-16632 (2009)
  151. The effects of intersegmental transfers on target location by proteins. Sheinman M, Kafri Y. Phys Biol 6 016003 (2009)
  152. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping. Tsodikov OV, Saecker RM, Melcher SE, Levandoski MM, Frank DE, Capp MW, Record MT. J Mol Biol 294 639-655 (1999)
  153. Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. Kim JH, Chambliss GH. Nucleic Acids Res 25 3490-3496 (1997)
  154. Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators. Lu D, Fillet S, Meng C, Alguel Y, Kloppsteck P, Bergeron J, Krell T, Gallegos MT, Ramos J, Zhang X. Genes Dev 24 2556-2565 (2010)
  155. Description of nonspecific DNA-protein interaction and facilitated diffusion with a dynamical model. Florescu AM, Joyeux M. J Chem Phys 130 015103 (2009)
  156. Effects of the nucleoid protein HU on the structure, flexibility, and ring-closure properties of DNA deduced from Monte Carlo simulations. Czapla L, Swigon D, Olson WK. J Mol Biol 382 353-370 (2008)
  157. Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Aragón-Alcaide L, Strunnikov AV. Nat Cell Biol 2 812-818 (2000)
  158. Radiation damage to DNA in DNA-protein complexes. Spotheim-Maurizot M, Davídková M. Mutat Res 711 41-48 (2011)
  159. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. Penin F, Geourjon C, Montserret R, Böckmann A, Lesage A, Yang YS, Bonod-Bidaud C, Cortay JC, Nègre D, Cozzone AJ, Deléage G. J Mol Biol 270 496-510 (1997)
  160. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence. Tungtur S, Egan SM, Swint-Kruse L. Proteins 68 375-388 (2007)
  161. A rapid method to capture and screen for transcription factors by SELDI mass spectrometry. Forde CE, Gonzales AD, Smessaert JM, Murphy GA, Shields SJ, Fitch JP, McCutchen-Maloney SL. Biochem Biophys Res Commun 290 1328-1335 (2002)
  162. Develop reusable and combinable designs for transcriptional logic gates. Zhan J, Ding B, Ma R, Ma X, Su X, Zhao Y, Liu Z, Wu J, Liu H. Mol Syst Biol 6 388 (2010)
  163. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives. Meinhardt S, Swint-Kruse L. Proteins 73 941-957 (2008)
  164. Is nitrocellulose filter binding really a universal assay for protein-DNA interactions? Oehler S, Alex R, Barker A. Anal Biochem 268 330-336 (1999)
  165. Reversible modulation of cell cycle kinetics in NIH/3T3 mouse fibroblasts by inducible overexpression of mitochondrial manganese superoxide dismutase. Kim A, Zhong W, Oberley TD. Antioxid Redox Signal 6 489-500 (2004)
  166. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. Albanesi D, Reh G, Guerin ME, Schaeffer F, Debarbouille M, Buschiazzo A, Schujman GE, de Mendoza D, Alzari PM. PLoS Pathog 9 e1003108 (2013)
  167. Thermodynamic analysis of mutant lac repressors. Daber R, Sochor MA, Lewis M. J Mol Biol 409 76-87 (2011)
  168. A new membrane-bound OprI lipoprotein expression vector. High production of heterologous fusion proteins in gram (-) bacteria and the implications for oral vaccination. Cote-Sierra J, Jongert E, Bredan A, Gautam DC, Parkhouse M, Cornelis P, De Baetselier P, Revets H. Gene 221 25-34 (1998)
  169. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Hars U, Horlacher R, Boos W, Welte W, Diederichs K. Protein Sci 7 2511-2521 (1998)
  170. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Fulcrand G, Dages S, Zhi X, Chapagain P, Gerstman BS, Dunlap D, Leng F. Sci Rep 6 19243 (2016)
  171. Escherichia coli. Goodsell DS. Biochem Mol Biol Educ 37 325-332 (2009)
  172. Multilevel deconstruction of the In vivo behavior of looped DNA-protein complexes. Saiz L, Vilar JM. PLoS One 2 e355 (2007)
  173. Probing the elasticity of DNA on short length scales by modeling supercoiling under tension. Schöpflin R, Brutzer H, Müller O, Seidel R, Wedemann G. Biophys J 103 323-330 (2012)
  174. RADACK, a stochastic simulation of hydroxyl radical attack to DNA. Begusova M, Spotheim-Maurizot M, Sy D, Michalik V, Charlier M. J Biomol Struct Dyn 19 141-158 (2001)
  175. Reactive SINDy: Discovering governing reactions from concentration data. Hoffmann M, Fröhner C, Noé F. J Chem Phys 150 025101 (2019)
  176. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. Schlösser A, Weber A, Schrempf H. FEMS Microbiol Lett 196 77-83 (2001)
  177. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Landis L, Xu J, Johnson RC. Genes Dev 13 3081-3091 (1999)
  178. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence. Murphy TF, Brauer AL, Johnson A, Kirkham C. PLoS One 11 e0158689 (2016)
  179. DNA bending and expression of the divergent nagE-B operons. Plumbridge J, Kolb A. Nucleic Acids Res 26 1254-1260 (1998)
  180. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Pennetier C, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol 67 364-377 (2008)
  181. Dissecting protein-induced DNA looping dynamics in real time. Laurens N, Bellamy SR, Harms AF, Kovacheva YS, Halford SE, Wuite GJ. Nucleic Acids Res 37 5454-5464 (2009)
  182. Large-scale expression and thermodynamic characterization of a glutamate receptor agonist-binding domain. Madden DR, Abele R, Andersson A, Keinänen K. Eur J Biochem 267 4281-4289 (2000)
  183. Operator search by mutant Lac repressors. Barker A, Fickert R, Oehler S, Müller-hill B. J Mol Biol 278 549-558 (1998)
  184. Structure of a variant of lac repressor with increased thermostability and decreased affinity for operator. Bell CE, Barry J, Matthews KS, Lewis M. J Mol Biol 313 99-109 (2001)
  185. Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain. Ni L, Tonthat NK, Chinnam N, Schumacher MA. Nucleic Acids Res 41 1998-2008 (2013)
  186. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue. Zhan H, Taraban M, Trewhella J, Swint-Kruse L. Biochemistry 47 8058-8069 (2008)
  187. The genotype-phenotype landscape of an allosteric protein. Tack DS, Tonner PD, Pressman A, Olson ND, Levy SF, Romantseva EF, Alperovich N, Vasilyeva O, Ross D. Mol Syst Biol 17 e10179 (2021)
  188. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli. Schlösser A, Aldekamp T, Schrempf H. FEMS Microbiol Lett 190 127-132 (2000)
  189. Dimeric lac repressors exhibit phase-dependent co-operativity. Müller J, Barker A, Oehler S, Müller-Hill B. J Mol Biol 284 851-857 (1998)
  190. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. Chavarría M, Santiago C, Platero R, Krell T, Casasnovas JM, de Lorenzo V. J Biol Chem 286 9351-9359 (2011)
  191. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding. Franco IS, Mota LJ, Soares CM, de Sá-Nogueira I. J Bacteriol 188 3024-3036 (2006)
  192. Intrinsic curvature of DNA influences LacR-mediated looping. Goyal S, Lillian T, Blumberg S, Meiners JC, Meyhöfer E, Perkins NC. Biophys J 93 4342-4359 (2007)
  193. Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Cazelle B, Pokorska A, Hull E, Green PM, Stanway G, Scazzocchio C. Mol Microbiol 28 355-370 (1998)
  194. A single mutation in the core domain of the lac repressor reduces leakiness. Gatti-Lafranconi P, Dijkman WP, Devenish SR, Hollfelder F. Microb Cell Fact 12 67 (2013)
  195. DNA binding restricts the intrinsic conformational flexibility of methyl CpG binding protein 2 (MeCP2). Hansen JC, Wexler BB, Rogers DJ, Hite KC, Panchenko T, Ajith S, Black BE. J Biol Chem 286 18938-18948 (2011)
  196. FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. Nègre D, Oudot C, Prost JF, Murakami K, Ishihama A, Cozzone AJ, Cortay JC. J Mol Biol 276 355-365 (1998)
  197. Modeling DNA loops using the theory of elasticity. Balaeff A, Mahadevan L, Schulten K. Phys Rev E Stat Nonlin Soft Matter Phys 73 031919 (2006)
  198. Testing for DNA tracking by MOT1, a SNF2/SWI2 protein family member. Auble DT, Steggerda SM. Mol Cell Biol 19 412-423 (1999)
  199. The essential transfer protein TraM binds to DNA as a tetramer. Verdino P, Keller W, Strohmaier H, Bischof K, Lindner H, Koraimann G. J Biol Chem 274 37421-37428 (1999)
  200. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis. Müller W, Horstmann N, Hillen W, Sticht H. FEBS J 273 1251-1261 (2006)
  201. A rapid and sensitive high-throughput screening method to identify compounds targeting protein-nucleic acids interactions. Alonso N, Guillen R, Chambers JW, Leng F. Nucleic Acids Res 43 e52 (2015)
  202. DNA information: from digital code to analogue structure. Travers AA, Muskhelishvili G, Thompson JM. Philos Trans A Math Phys Eng Sci 370 2960-2986 (2012)
  203. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Xu J, Matthews KS. Biochemistry 48 4988-4998 (2009)
  204. High resolution mapping of E.coli transcription elongation complex in situ reveals protein interactions with the non-transcribed strand. Guérin M, Leng M, Rahmouni AR. EMBO J 15 5397-5407 (1996)
  205. Insertion mutagenesis of the lac repressor and its implications for structure-function analysis. Nelson BD, Manoil C, Traxler B. J Bacteriol 179 3721-3728 (1997)
  206. Macrodipoles. Unusual electric properties of biological macromolecules. Porschke D. Biophys Chem 66 241-257 (1997)
  207. Protein structural domains: analysis of the 3Dee domains database. Dengler U, Siddiqui AS, Barton GJ. Proteins 42 332-344 (2001)
  208. Radiation disrupts protein-DNA complexes through damage to the protein. The lac repressor-operator system. Eon S, Culard F, Sy D, Charlier M, Spotheim-Maurizot M. Radiat Res 156 110-117 (2001)
  209. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nodelman IM, Horvath KC, Levendosky RF, Winger J, Ren R, Patel A, Li M, Wang MD, Roberts E, Bowman GD. Nucleic Acids Res 44 7580-7591 (2016)
  210. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation. Binder D, Probst C, Grünberger A, Hilgers F, Loeschcke A, Jaeger KE, Kohlheyer D, Drepper T. PLoS One 11 e0160711 (2016)
  211. Differences between EcoRI nonspecific and "star" sequence complexes revealed by osmotic stress. Sidorova NY, Rau DC. Biophys J 87 2564-2576 (2004)
  212. Mapping the transition state for DNA bending by IHF. Vivas P, Velmurugu Y, Kuznetsov SV, Rice PA, Ansari A. J Mol Biol 418 300-315 (2012)
  213. Predicting interactions of winged-helix transcription factors with DNA. Roberts VA, Case DA, Tsui V. Proteins 57 172-187 (2004)
  214. Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d. Chen CY, Ko TP, Lin TW, Chou CC, Chen CJ, Wang AH. Nucleic Acids Res 33 430-438 (2005)
  215. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST, Schiemann O. Nucleic Acids Res 41 e11 (2013)
  216. The experimental folding landscape of monomeric lactose repressor, a large two-domain protein, involves two kinetic intermediates. Wilson CJ, Das P, Clementi C, Matthews KS, Wittung-Stafshede P. Proc Natl Acad Sci U S A 102 14563-14568 (2005)
  217. The structure of PurR mutant L54M shows an alternative route to DNA kinking. Arvidson DN, Lu F, Faber C, Zalkin H, Brennan RG. Nat Struct Biol 5 436-441 (1998)
  218. A Fifth of the Protein World: Rossmann-like Proteins as an Evolutionarily Successful Structural unit. Medvedev KE, Kinch LN, Dustin Schaeffer R, Pei J, Grishin NV. J Mol Biol 433 166788 (2021)
  219. A novel molecular switch. Daber R, Lewis M. J Mol Biol 391 661-670 (2009)
  220. Conformational changes necessary for gene regulation by Tet repressor assayed by reversible disulfide bond formation. Tiebel B, Aung-Hilbrich LM, Schnappinger D, Hillen W. EMBO J 17 5112-5119 (1998)
  221. Conformational changes of ribose-binding protein and two related repressors are tailored to fit the functional need. Mowbray SL, Björkman AJ. J Mol Biol 294 487-499 (1999)
  222. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose. Bruder M, Moo-Young M, Chung DA, Chou CP. Appl Microbiol Biotechnol 99 7579-7588 (2015)
  223. Local gene regulation details a recognition code within the LacI transcriptional factor family. Camas FM, Alm EJ, Poyatos JF. PLoS Comput Biol 6 e1000989 (2010)
  224. PRODORIC: state-of-the-art database of prokaryotic gene regulation. Dudek CA, Jahn D. Nucleic Acids Res 50 D295-D302 (2022)
  225. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Tempestini A, Monico C, Gardini L, Vanzi F, Pavone FS, Capitanio M. Nucleic Acids Res 46 5001-5011 (2018)
  226. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C. Gerk LP, Leven O, Müller-Hill B. J Mol Biol 299 805-812 (2000)
  227. Substitutions at Nonconserved Rheostat Positions Modulate Function by Rewiring Long-Range, Dynamic Interactions. Campitelli P, Swint-Kruse L, Ozkan SB. Mol Biol Evol 38 201-214 (2021)
  228. The transcriptional repressor TtgV recognizes a complex operator as a tetramer and induces convex DNA bending. Guazzaroni ME, Krell T, Gutiérrez del Arroyo P, Vélez M, Jiménez M, Rivas G, Ramos JL. J Mol Biol 369 927-939 (2007)
  229. CcpA mutants with differential activities in Bacillus subtilis. Sprehe M, Seidel G, Diel M, Hillen W. J Mol Microbiol Biotechnol 12 96-105 (2007)
  230. Comparison of simulated and experimentally determined dynamics for a variant of the Lacl DNA-binding domain, Nlac-P. Swint-Kruse L, Matthews KS, Smith PE, Pettitt BM. Biophys J 74 413-421 (1998)
  231. DNA-induced conformational changes in bacteriophage 434 repressor. Ciubotaru M, Bright FV, Ingersoll CM, Koudelka GB. J Mol Biol 294 859-873 (1999)
  232. Dimerisation mutants of Lac repressor. II. A single amino acid substitution, D278L, changes the specificity of dimerisation. Spott S, Dong F, Kisters-Woike B, Müller-Hill B. J Mol Biol 296 673-684 (2000)
  233. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. Eastwood EL, Jara KA, Bornelöv S, Munafò M, Frantzis V, Kneuss E, Barbar EJ, Czech B, Hannon GJ. Elife 10 e65557 (2021)
  234. Domain motions accompanying Tet repressor induction defined by changes of interspin distances at selectively labeled sites. Tiebel B, Radzwill N, Aung-Hilbrich LM, Helbl V, Steinhoff HJ, Hillen W. J Mol Biol 290 229-240 (1999)
  235. Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA. Embleton ML, Vologodskii AV, Halford SE. J Mol Biol 339 53-66 (2004)
  236. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors. Horton N, Lewis M, Lu P. J Mol Biol 265 1-7 (1997)
  237. FRET studies of a landscape of Lac repressor-mediated DNA loops. Haeusler AR, Goodson KA, Lillian TD, Wang X, Goyal S, Perkins NC, Kahn JD. Nucleic Acids Res 40 4432-4445 (2012)
  238. Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics. Mulligan PJ, Chen YJ, Phillips R, Spakowitz AJ. Biophys J 109 618-629 (2015)
  239. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Zhan H, Camargo M, Matthews KS. Biochemistry 49 8636-8645 (2010)
  240. SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. Krzeminski M, Loth K, Boelens R, Bonvin AM. BMC Bioinformatics 11 51 (2010)
  241. Structural adaptations that modulate monosaccharide, disaccharide, and trisaccharide specificities in periplasmic maltose-binding proteins. Cuneo MJ, Changela A, Beese LS, Hellinga HW. J Mol Biol 389 157-166 (2009)
  242. Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coli. Kato K, Marui T, Kasai S, Shinmyo A. J Biosci Bioeng 104 207-213 (2007)
  243. Computational analysis of looping of a large family of highly bent DNA by LacI. Lillian TD, Goyal S, Kahn JD, Meyhöfer E, Perkins NC. Biophys J 95 5832-5842 (2008)
  244. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. Falcon CM, Swint-Kruse L, Matthews KS. J Biol Chem 272 26818-26821 (1997)
  245. Engineering alternate cooperative-communications in the lactose repressor protein scaffold. Meyer S, Ramot R, Kishore Inampudi K, Luo B, Lin C, Amere S, Wilson CJ. Protein Eng Des Sel 26 433-443 (2013)
  246. Evolving Lac repressor for enhanced inducibility. Satya Lakshmi O, Rao NM. Protein Eng Des Sel 22 53-58 (2009)
  247. Modulation of DNA loop lifetimes by the free energy of loop formation. Chen YJ, Johnson S, Mulligan P, Spakowitz AJ, Phillips R. Proc Natl Acad Sci U S A 111 17396-17401 (2014)
  248. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Nucleic Acids Res 42 10265-10277 (2014)
  249. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. Tsunedomi R, Izu H, Kawai T, Matsushita K, Ferenci T, Yamada M. J Bacteriol 185 1783-1795 (2003)
  250. The strengths and limitations of using biolayer interferometry to monitor equilibrium titrations of biomolecules. Weeramange CJ, Fairlamb MS, Singh D, Fenton AW, Swint-Kruse L. Protein Sci 29 1018-1034 (2020)
  251. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells. Wu RH, Cheng TL, Lo SR, Hsu HC, Hung CF, Teng CF, Wu MP, Tsai WH, Chang WT. J Gene Med 9 620-634 (2007)
  252. Altered specificity in DNA binding by the lac repressor: a mutant lac headpiece that mimics the gal repressor. Kopke Salinas R, Folkers GE, Bonvin AM, Das D, Boelens R, Kaptein R. Chembiochem 6 1628-1637 (2005)
  253. An antiparallel four-helix bundle orients the high-affinity RNA binding sites in hnRNP C: a mechanism for RNA chaperonin activity. Shahied L, Braswell EH, LeStourgeon WM, Krezel AM. J Mol Biol 305 817-828 (2001)
  254. Database and software for the analysis of mutations at the lacI gene in both transgenic rodents and bacteria. Cariello NF, Gorelick NJ. Environ Mol Mutagen 28 397-404 (1996)
  255. Design and application of a lactulose biosensor. Wu J, Jiang P, Chen W, Xiong D, Huang L, Jia J, Chen Y, Jin JM, Tang SY. Sci Rep 7 45994 (2017)
  256. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Pühler A, Kalinowski J. BMC Genomics 18 562 (2017)
  257. A novel tetrameric PilZ domain structure from xanthomonads. Li TN, Chin KH, Fung KM, Yang MT, Wang AH, Chou SH. PLoS One 6 e22036 (2011)
  258. Dynamics of DNA-protein interaction deduced from in vitro DNA evolution. Dubertret B, Liu S, Ouyang Q, Libchaber A. Phys Rev Lett 86 6022-6025 (2001)
  259. Electrostatics and hydration at the homeodomain-DNA interface: chemical probes of an interfacial water cavity. Labeots LA, Weiss MA. J Mol Biol 269 113-128 (1997)
  260. Exploring the role of alanine in the structure of the Lac repressor tetramerization domain, a ferritin-like Alacoil. Solan A, Ratia K, Fairman R. J Mol Biol 317 601-612 (2002)
  261. Flexibility and adaptability in binding of E. coli cytidine repressor to different operators suggests a role in differential gene regulation. Tretyachenko-Ladokhina V, Cocco MJ, Senear DF. J Mol Biol 362 271-286 (2006)
  262. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. Küster E, Hilbich T, Dahl MK, Hillen W. J Bacteriol 181 4125-4128 (1999)
  263. Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Sorg RA, Gallay C, Van Maele L, Sirard JC, Veening JW. Proc Natl Acad Sci U S A 117 27608-27619 (2020)
  264. A quantitative understanding of lac repressor's binding specificity and flexibility. Zuo Z, Chang Y, Stormo GD. Quant Biol 3 69-80 (2015)
  265. Binding of L-branched-chain amino acids causes a conformational change in BkdR. Madhusudhan KT, Huang N, Braswell EH, Sokatch JR. J Bacteriol 179 276-279 (1997)
  266. Coevolutionary methods enable robust design of modular repressors by reestablishing intra-protein interactions. Jiang XL, Dimas RP, Chan CTY, Morcos F. Nat Commun 12 5592 (2021)
  267. Predictive shifts in free energy couple mutations to their phenotypic consequences. Chure G, Razo-Mejia M, Belliveau NM, Einav T, Kaczmarek ZA, Barnes SL, Lewis M, Phillips R. Proc Natl Acad Sci U S A 116 18275-18284 (2019)
  268. Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and beta-sheet DNA binding proteins. Acebo P, García de Lacoba M, Rivas G, Andreu JM, Espinosa M, del Solar G. Proteins 32 248-261 (1998)
  269. Structure of lambda CII: implications for recognition of direct-repeat DNA by an unusual tetrameric organization. Datta AB, Panjikar S, Weiss MS, Chakrabarti P, Parrack P. Proc Natl Acad Sci U S A 102 11242-11247 (2005)
  270. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Xu J, Liu S, Chen M, Ma J, Matthews KS. Biochemistry 50 9002-9013 (2011)
  271. Binding mechanisms of TATA box-binding proteins: DNA kinking is stabilized by specific hydrogen bonds. Pardo L, Campillo M, Bosch D, Pastor N, Weinstein H. Biophys J 78 1988-1996 (2000)
  272. Crystal structure of a 1.6-hexanediol bound tetrameric form of Escherichia coli lac-repressor refined to 2.1 A resolution. Stenberg KA, Vihinen M. Proteins 75 748-759 (2009)
  273. Engineered interphase chromosome loops guide intrachromosomal recombination. Kostriken R, Wedeen CJ. EMBO J 20 2907-2913 (2001)
  274. Engineering repressors with coevolutionary cues facilitates toggle switches with a master reset. Dimas RP, Jiang XL, Alberto de la Paz J, Morcos F, Chan CTY. Nucleic Acids Res 47 5449-5463 (2019)
  275. Homolog comparisons further reconcile in vitro and in vivo correlations of protein activities by revealing over-looked physiological factors. Tungtur S, Schwingen KM, Riepe JJ, Weeramange CJ, Swint-Kruse L. Protein Sci 28 1806-1818 (2019)
  276. Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein. Pusarla RH, Vinayachandran V, Bhargava P. FEBS J 274 2396-2410 (2007)
  277. The effect of LacI autoregulation on the performance of the lactose utilization system in Escherichia coli. Semsey S, Jauffred L, Csiszovszki Z, Erdossy J, Stéger V, Hansen S, Krishna S. Nucleic Acids Res 41 6381-6390 (2013)
  278. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition in Escherichia coli. Bréchemier-Baey D, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol 85 1007-1019 (2012)
  279. A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in Sinorhizobium meliloti. diCenzo GC, Muhammed Z, Østerås M, O'Brien SAP, Finan TM. Genetics 207 961-974 (2017)
  280. Analysis of CcpA mutations defective in carbon catabolite repression in Bacillus megaterium. Kraus A, Hillen W. FEMS Microbiol Lett 153 221-226 (1997)
  281. Effect of supercoiling on formation of protein-mediated DNA loops. Purohit PK, Nelson PC. Phys Rev E Stat Nonlin Soft Matter Phys 74 061907 (2006)
  282. Enhancement of LacI binding in vivo. Du M, Kodner S, Bai L. Nucleic Acids Res 47 9609-9618 (2019)
  283. Modelling DNA loops using continuum and statistical mechanics. Balaeff A, Koudella CR, Mahadevan L, Schulten K. Philos Trans A Math Phys Eng Sci 362 1355-1371 (2004)
  284. Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium. Küster-Schöck E, Wagner A, Völker U, Hillen W. J Bacteriol 181 7634-7638 (1999)
  285. Sliding and target location of DNA-binding proteins: an NMR view of the lac repressor system. Loth K, Gnida M, Romanuka J, Kaptein R, Boelens R. J Biomol NMR 56 41-49 (2013)
  286. Structural Insights into Nonspecific Binding of DNA by TrmBL2, an Archaeal Chromatin Protein. Ahmad MUD, Waege I, Hausner W, Thomm M, Boos W, Diederichs K, Welte W. J Mol Biol 427 3216-3229 (2015)
  287. The structure of Jann_2411 (DUF1470) from Jannaschia sp. at 1.45 Å resolution reveals a new fold (the ABATE domain) and suggests its possible role as a transcription regulator. Bakolitsa C, Bateman A, Jin KK, McMullan D, Krishna SS, Miller MD, Abdubek P, Acosta C, Astakhova T, Axelrod HL, Burra P, Carlton D, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Tien H, Trame CB, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley S, Wilson IA. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1198-1204 (2010)
  288. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Xia Y, Zheng KW, He YD, Liu HH, Wen CJ, Hao YH, Tan Z. Nucleic Acids Res 46 7418-7424 (2018)
  289. Weak operator binding enhances simulated Lac repressor-mediated DNA looping. Colasanti AV, Grosner MA, Perez PJ, Clauvelin N, Lu XJ, Olson WK. Biopolymers 99 1070-1081 (2013)
  290. A quantitative characterization of interaction between prion protein with nucleic acids. Bera A, Biring S. Biochem Biophys Rep 14 114-124 (2018)
  291. A superrepressor mutant of the arginine repressor with a correctly predicted alteration of ligand binding specificity. Niersbach H, Lin R, Van Duyne GD, Maas WK. J Mol Biol 279 753-760 (1998)
  292. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays. Hirsh AD, Lillian TD, Lionberger TA, Perkins NC. Biophys J 101 718-726 (2011)
  293. Operator recognition by the ROK transcription factor family members, NagC and Mlc. Bréchemier-Baey D, Domínguez-Ramírez L, Oberto J, Plumbridge J. Nucleic Acids Res 43 361-372 (2015)
  294. Optimized expression and purification of biophysical quantities of Lac repressor and Lac repressor regulatory domain. Stetz MA, Carter MV, Wand AJ. Protein Expr Purif 123 75-82 (2016)
  295. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonella typhimurium to Escherichia coli CytR. Thomsen LE, Pedersen M, Nørregaard-Madsen M, Valentin-Hansen P, Kallipolitis BH. J Mol Biol 288 165-175 (1999)
  296. Structure of FocB--a member of a family of transcription factors regulating fimbrial adhesin expression in uropathogenic Escherichia coli. Hultdin UW, Lindberg S, Grundström C, Huang S, Uhlin BE, Sauer-Eriksson AE. FEBS J 277 3368-3381 (2010)
  297. Supercoiling Effects on Short-Range DNA Looping in E. coli. Mogil LS, Becker NA, Maher LJ. PLoS One 11 e0165306 (2016)
  298. The Agrobacterium tumefaciens transcription factor BlcR is regulated via oligomerization. Pan Y, Fiscus V, Meng W, Zheng Z, Zhang LH, Fuqua C, Chen L. J Biol Chem 286 20431-20440 (2011)
  299. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation. Tretyachenko-Ladokhina V, Ross JB, Senear DF. J Mol Biol 316 531-546 (2002)
  300. CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria. Imam S, Noguera DR, Donohue TJ. mBio 6 e02461-14 (2015)
  301. DNA radiolysis in DNA-protein complexes: a stochastic simulation of attack by hydroxyl radicals. Begusova M, Giliberto S, Gras J, Sy D, Charlier M, Spotheim-Maurizot M. Int J Radiat Biol 79 385-391 (2003)
  302. Looping charged elastic rods: applications to protein-induced DNA loop formation. Cherstvy AG. Eur Biophys J 40 69-80 (2011)
  303. Protein-protein/DNA interaction networks: versatile macromolecular structures for the control of gene expression. Saiz L, Vilar JM. IET Syst Biol 2 247-255 (2008)
  304. Radiolysis of lac repressor by gamma-rays and heavy ions: a two-hit model for protein inactivation. Charlier M, Eon S, Sèche E, Bouffard S, Culard F, Spotheim-Maurizot M. Biophys J 82 2373-2382 (2002)
  305. Radiosensitivity of DNA in a specific protein-DNA complex: the lac repressor-lac operator complex. Begusová M, Eon S, Sy D, Culard F, Charlier M, Spotheim-Maurizot M. Int J Radiat Biol 77 645-654 (2001)
  306. Towards the rational design of synthetic cells with prescribed population dynamics. Dalchau N, Smith MJ, Martin S, Brown JR, Emmott S, Phillips A. J R Soc Interface 9 2883-2898 (2012)
  307. A novel feature of DNA recognition: a mutant Gcn4p bZip peptide with dual DNA binding specificities dependent of half-site spacing. Suckow M, Kisters-Woike B, Hollenberg CP. J Mol Biol 286 983-987 (1999)
  308. Deep representation learning improves prediction of LacI-mediated transcriptional repression. Garruss AS, Collins KM, Church GM. Proc Natl Acad Sci U S A 118 e2022838118 (2021)
  309. Detection of protein-DNA interaction and regulation using gold nanoparticles. Fang J, Yu L, Gao P, Cai Y, Wei Y. Anal Biochem 399 262-267 (2010)
  310. Evidence of a conserved intrinsically disordered region in the C-terminus of the stringent response protein Rel from mycobacteria. Ekal L, Ganesh B, Joshi H, Lama D, Jain V. FEBS Lett 588 1839-1849 (2014)
  311. Homology model of the closed, functionally active, form of the amino terminal domain of mGlur1. Costantino G, Macchiarulo A, Pellicciari R. Bioorg Med Chem 9 847-852 (2001)
  312. Interpretable modeling of genotype-phenotype landscapes with state-of-the-art predictive power. Tonner PD, Pressman A, Ross D. Proc Natl Acad Sci U S A 119 e2114021119 (2022)
  313. Ligand interactions with lactose repressor protein and the repressor-operator complex: the effects of ionization and oligomerization on binding. Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS. Biophys Chem 126 94-105 (2007)
  314. Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single-helix peptides. Akanuma S, Matsuba T, Ueno E, Umeda N, Yamagishi A. J Biochem 147 371-379 (2010)
  315. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. Arch Virol 163 1531-1547 (2018)
  316. Oligomerization of Hmo1 mediated by box A is essential for DNA binding in vitro and in vivo. Kasahara K, Higashino A, Unzai S, Yoshikawa H, Kokubo T. Genes Cells 21 1333-1352 (2016)
  317. Rationally designed coiled-coil DNA looping peptides control DNA topology. Gowetski DB, Kodis EJ, Kahn JD. Nucleic Acids Res 41 8253-8265 (2013)
  318. Specific hydrophobic residues in the alpha4 helix of lambdaCII are crucial for maintaining its tetrameric structure and directing the lysogenic choice. Parua PK, Datta AB, Parrack P. J Gen Virol 91 306-312 (2010)
  319. Structure of Leishmania donovani coronin coiled coil domain reveals an antiparallel 4 helix bundle with inherent asymmetry. Nayak AR, Karade SS, Srivastava VK, Rana AK, Gupta CM, Sahasrabuddhe AA, Pratap JV. J Struct Biol 195 129-138 (2016)
  320. The Role of Integration Host Factor in Escherichia coli Persister Formation. Nicolau SE, Lewis K. mBio 13 e0342021 (2022)
  321. What controls DNA looping? Perez PJ, Clauvelin N, Grosner MA, Colasanti AV, Olson WK. Int J Mol Sci 15 15090-15108 (2014)
  322. Wrapped-around models for the lac operon complex. La Penna G, Perico A. Biophys J 98 2964-2973 (2010)
  323. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. Nat Commun 13 1910 (2022)
  324. A lethal mutant of the catabolite gene activator protein CAP of Escherichia coli. Lopata M, Schlieper D, von Wilcken-Bergmann B, Müller-Hill B. Biol Chem 378 1153-1162 (1997)
  325. A novel DMAPP-responding genetic circuit sensor for high-throughput screening and evolving isoprene synthase. Liu CL, Cai JY, Bi HR, Tan TW. Appl Microbiol Biotechnol 102 1381-1391 (2018)
  326. Copurification of the Lac repressor with polyhistidine-tagged proteins in immobilized metal affinity chromatography. Owens RM, Grant A, Davies N, O'Connor CD. Protein Expr Purif 21 352-360 (2001)
  327. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope. Fulcrand G, Chapagain P, Dunlap D, Leng F. FEBS Lett 590 613-618 (2016)
  328. High-affinity quasi-specific sites in the genome: how the DNA-binding proteins cope with them. Chakrabarti J, Chandra N, Raha P, Roy S. Biophys J 101 1123-1129 (2011)
  329. Insights into Genome Architecture Deduced from the Properties of Short Lac Repressor-mediated DNA Loops. Perez PJ, Olson WK. Biophys Rev 8 135-144 (2016)
  330. Novel strategies to overcome expression problems encountered with toxic proteins: application to the production of Lac repressor proteins for NMR studies. Romanuka J, van den Bulke H, Kaptein R, Boelens R, Folkers GE. Protein Expr Purif 67 104-112 (2009)
  331. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31. Wilson SE, Smith MC. Nucleic Acids Res 26 2457-2463 (1998)
  332. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. Environ Microbiol 24 6071-6085 (2022)
  333. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor. Goffinont S, Davidkova M, Spotheim-Maurizot M. Biochem Biophys Res Commun 386 300-304 (2009)
  334. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction. Sengupta R, Capp MW, Shkel IA, Record MT. Nucleic Acids Res 45 12671-12680 (2017)
  335. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression. Brunwasser-Meirom M, Pollak Y, Goldberg S, Levy L, Atar O, Amit R. Nat Commun 7 10407 (2016)
  336. A LexA mutant repressor with a relaxed inter-domain linker. Oertel-Buchheit P, Reinbolt J, John M, Granger-Schnarr M, Schnarr M. Protein Sci 7 512-515 (1998)
  337. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, Di Cicco A, Renoud S, Doré J, Lévy D, Vial L, Lavire C, Moréra S. Nucleic Acids Res 49 529-546 (2021)
  338. Configurational transitions in Fourier series-represented DNA supercoils. Liu G, Schlick T, Olson AJ, Olson WK. Biophys J 73 1742-1762 (1997)
  339. Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Sakaguchi-Mikami A, Taniguchi A, Sode K, Yamazaki T. Biotechnol Bioeng 108 725-733 (2011)
  340. DNA topology: dynamic DNA looping. Travers A. Curr Biol 16 R838-40 (2006)
  341. In situ imaging and isolation of proteins using dsDNA oligonucleotides. Dellaire G, Nisman R, Eskiw CH, Bazett-Jones DP. Nucleic Acids Res 32 e165 (2004)
  342. Insertion mutagenesis of Escherichiacoli GroEL. Amatore D, Baneyx F. Biochem Biophys Res Commun 302 246-252 (2003)
  343. Long-range interactions between transcription factors. Wang YM, Tegenfeldt JO, Sturm J, Austin RH. Nanotechnology 16 1993-1999 (2005)
  344. Mapping Protein-Protein Interaction Interface Peptides with Jun-Fos Assisted Phage Display and Deep Sequencing. Huang W, Soeung V, Boragine DM, Palzkill T. ACS Synth Biol 9 1882-1896 (2020)
  345. Modification of DNA radiolysis by DNA-binding proteins: structural aspects. Davídková M, Stísová V, Goffinont S, Gillard N, Castaing B, Spotheim-Maurizot M. Radiat Prot Dosimetry 122 100-105 (2006)
  346. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems. Lomnitz JG, Savageau MA. Sci Rep 6 32375 (2016)
  347. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation. Revalee JD, Blab GA, Wilson HD, Kahn JD, Meiners JC. Biophys J 106 705-715 (2014)
  348. The apparently symmetrical hexagonal bilayer hemoglobin from Lumbricus terrestris has a large dipole moment. Takashima S, Kuchumov AR, Vinogradov SN. Biophys Chem 77 27-35 (1999)
  349. A study of the CopF repressor of plasmid pAMbeta1 by phage display. d'Alençon E, Ehrlich SD. J Bacteriol 182 2973-2977 (2000)
  350. Efficient control of raf gene expression by CAP and two Raf repressors that bend DNA in opposite directions. Muiznieks I, Rostoks N, Schmitt R. Biol Chem 380 19-29 (1999)
  351. Price of disorder in the lac repressor hinge helix. Seckfort D, Montgomery Pettitt B. Biopolymers 110 e23239 (2019)
  352. Radiation abolishes inducer binding to lactose repressor. Gillard N, Spotheim-Maurizot M, Charlier M. Radiat Res 163 433-446 (2005)
  353. Robustness of DNA looping across multiple cell divisions in individual bacteria. Chang C, Garcia-Alcala M, Saiz L, Vilar JMG, Cluzel P. Proc Natl Acad Sci U S A 119 e2200061119 (2022)
  354. Structural and functional analyses of the cellulase transcription regulator CelR. Fu Y, Yeom SJ, Kwon KK, Hwang J, Kim H, Woo EJ, Lee DH, Lee SG. FEBS Lett 592 2776-2785 (2018)
  355. News Structure of a paradigm. Miller JH. Nat Struct Biol 3 310-312 (1996)
  356. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI. Kipper K, Eremina N, Marklund E, Tubasum S, Mao G, Lehmann LC, Elf J, Deindl S. PLoS One 13 e0198416 (2018)
  357. The lac repressor hinge helix in context: The effect of the DNA binding domain and symmetry. Seckfort D, Lynch GC, Pettitt BM. Biochim Biophys Acta Gen Subj 1864 129538 (2020)
  358. The natural DNA bending angle in the lac repressor headpiece-O1 operator complex is determined by protein-DNA contacts and water release. Barr D, van der Vaart A. Phys Chem Chem Phys 14 2070-2077 (2012)
  359. The transcriptional regulator GalR self-assembles to form highly regular tubular structures. Agerschou ED, Christiansen G, Schafer NP, Madsen DJ, Brodersen DE, Semsey S, Otzen DE. Sci Rep 6 27672 (2016)
  360. A chimeric activator of transcription that uses two DNA-binding domains to make simultaneous contact with pairs of recognition sites. Langdon RC, Burr T, Pagan-Westphal S, Hochschild A. Mol Microbiol 41 885-896 (2001)
  361. Characterization of Gene Repression by Designed Transcription Activator-like Effector Dimer Proteins. Becker NA, Peters JP, Schwab TL, Phillips WJ, Wallace JP, Clark KJ, Maher LJ. Biophys J 119 2045-2054 (2020)
  362. Design and expression of oligomeric fibronectin fusion protein: a strategy for enhancing cell adhesion activity. Chung CP, Jang JH. Biotechnol Lett 27 811-816 (2005)
  363. Development of an ELISA using a recombinant P46-like lipoprotein for diagnosis of Mycoplasma pulmonis infection in rodents. Asano A, Torigoe D, Sasaki N, Agui T. J Vet Med Sci 76 151-157 (2014)
  364. Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids. Catana DA, Renard BL, Maturano M, Payrastre C, Tarrat N, Escudier JM. J Nucleic Acids 2012 215876 (2012)
  365. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator. Maity TS, Jha RK, Strauss CE, Dunbar J. FEBS J 279 2534-2543 (2012)
  366. GFP-linked zinc finger protein sp1. fluorescence study and implication for N-terminal zinc finger 1 as hinge finger. Matsushita K, Sugiura Y. Bioorg Med Chem 11 53-58 (2003)
  367. Lactose repressor hinge domain independently binds DNA. Xu JS, Hewitt MN, Gulati JS, Cruz MA, Zhan H, Liu S, Matthews KS. Protein Sci 27 839-847 (2018)
  368. Mechanism of action of the Rep protein from the Dictyostelium Ddp2 plasmid family. Shammat IM, Welker DL. Plasmid 41 248-259 (1999)
  369. Modulating binding affinity, specificity, and configurations by multivalent interactions. Deng Y, Efremov AK, Yan J. Biophys J 121 1868-1880 (2022)
  370. Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle. Dies M, Galera-Laporta L, Garcia-Ojalvo J. Integr Biol (Camb) 8 533-541 (2016)
  371. Precision engineering of biological function with large-scale measurements and machine learning. Tack DS, Tonner PD, Pressman A, Olson ND, Levy SF, Romantseva EF, Alperovich N, Vasilyeva O, Ross D. PLoS One 18 e0283548 (2023)
  372. Structural Insight into the DNA Binding Function of Transcription Factor ERF. Hou C, McCown C, Ivanov DN, Tsodikov OV. Biochemistry (2020)
  373. Unique 31P spectral response to the formation of a specific restriction enzyme-DNA complex. Dupureur CM. Nucleosides Nucleotides Nucleic Acids 25 747-764 (2006)
  374. "Cold-sensitive" mutants of the Lac repressor. Barker A, Oehler S, Müller-Hill B. J Bacteriol 189 2174-2175 (2007)
  375. A capture approach for supercoiled plasmid DNA using a triplex-forming oligonucleotide. Ruigrok VJ, Westra ER, Brouns SJ, Escudé C, Smidt H, van der Oost J. Nucleic Acids Res 41 e111 (2013)
  376. A loop-controlled rrnB P1 promoter for high-level expression of heterologous proteins in Escherichia coli. Zhao X, Shen W, Ben P, Kong Y, Cao H, Cui Z. Biotechnol Lett 33 327-332 (2011)
  377. Crystal structure of TTHA0807, a CcpA regulator, from Thermus thermophilus HB8. Kumarevel T, Tanaka T, Shinkai A, Yokoyama S. Proteins 77 747-751 (2009)
  378. Effect of NaeI-L43K mutation on protein dynamics and DNA conformation: Insights from molecular dynamics simulations. Ramachandrakurup S, Ramakrishnan V. J Mol Graph Model 76 456-465 (2017)
  379. Effect of helix length on the stability of the Lac repressor antiparallel coiled coil. Little W, Robblee JP, Dahlberg CL, Kokona B, Fairman R. Biopolymers 104 395-404 (2015)
  380. Energetic differences between the specific binding of a 40 bp DNA duplex and the lac promoter to lac repressor protein. Ramprakesh J, Schwarz FP. Arch Biochem Biophys 438 162-173 (2005)
  381. Genetic switching by the Lac repressor is based on two-state Monod-Wyman-Changeux allostery. Romanuka J, Folkers GE, Gnida M, Kovačič L, Wienk H, Kaptein R, Boelens R. Proc Natl Acad Sci U S A 120 e2311240120 (2023)
  382. Mathematical modeling of the apo and holo transcriptional regulation in Escherichia coli. Alvarez-Vasquez FJ, Freyre-González JA, Balderas-Martínez YI, Delgado-Carrillo MI, Collado-Vides J. Mol Biosyst 11 994-1003 (2015)
  383. Transcription factor seeks DNA-cognate site preferred. Mackay J. J Mol Biol 426 1370-1372 (2014)