1m8w Citations

Modular recognition of RNA by a human pumilio-homology domain.

Cell 110 501-12 (2002)
Related entries: 1m8x, 1m8y

Cited: 338 times
EuropePMC logo PMID: 12202039

Abstract

Puf proteins are developmental regulators that control mRNA stability and translation by binding sequences in the 3' untranslated regions of their target mRNAs. We have determined the structure of the RNA binding domain of the human Puf protein, Pumilio1, bound to a high-affinity RNA ligand. The RNA binds the concave surface of the molecule, where each of the protein's eight repeats makes contacts with a different RNA base via three amino acid side chains at conserved positions. We have mutated these three side chains in one repeat, thereby altering the sequence specificity of Pumilio1. Thus, the high affinity and specificity of the PUM-HD for RNA is achieved using multiple copies of a simple repeated motif.

Reviews - 1m8w mentioned but not cited (1)

  1. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Corley M, Burns MC, Yeo GW. Mol Cell 78 9-29 (2020)

Articles - 1m8w mentioned but not cited (15)

  1. Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T. PLoS One 8 e57286 (2013)
  2. Comparative analysis of editosome proteins in trypanosomatids. Worthey EA, Schnaufer A, Mian IS, Stuart K, Salavati R. Nucleic Acids Res 31 6392-6408 (2003)
  3. Engineering RNA endonucleases with customized sequence specificities. Choudhury R, Tsai YS, Dominguez D, Wang Y, Wang Z. Nat Commun 3 1147 (2012)
  4. DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. Tuszynska I, Bujnicki JM. BMC Bioinformatics 12 348 (2011)
  5. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization. Tam PP, Barrette-Ng IH, Simon DM, Tam MW, Ang AL, Muench DG. BMC Plant Biol 10 44 (2010)
  6. Predicting RNA-binding sites from the protein structure based on electrostatics, evolution and geometry. Chen YC, Lim C. Nucleic Acids Res 36 e29 (2008)
  7. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei. McDermott SM, Guo X, Carnes J, Stuart K. J Biol Chem 290 24914-24931 (2015)
  8. Blind tests of RNA-protein binding affinity prediction. Kappel K, Jarmoskaite I, Vaidyanathan PP, Greenleaf WJ, Herschlag D, Das R. Proc Natl Acad Sci U S A 116 8336-8341 (2019)
  9. Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions. Kobren SN, Singh M. Nucleic Acids Res 47 582-593 (2019)
  10. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells. Cao J, Arha M, Sudrik C, Mukherjee A, Wu X, Kane RS. Nucleic Acids Res 43 4353-4362 (2015)
  11. Structural basis for the specific recognition of 18S rRNA by APUM23. Bao H, Wang N, Wang C, Jiang Y, Liu J, Xu L, Wu J, Shi Y. Nucleic Acids Res 45 12005-12014 (2017)
  12. Protein-assisted RNA fragment docking (RnaX) for modeling RNA-protein interactions using ModelX. Delgado Blanco J, Radusky LG, Cianferoni D, Serrano L. Proc Natl Acad Sci U S A 116 24568-24573 (2019)
  13. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  14. A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences. Agarwal A, Singh K, Kant S, Bahadur RP. Comput Struct Biotechnol J 20 3195-3207 (2022)
  15. Expanding the repertoire of human tandem repeat RNA-binding proteins. Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. PLoS One 18 e0290890 (2023)


Reviews citing this publication (75)

  1. Gene regulation by long non-coding RNAs and its biological functions. Statello L, Guo CJ, Chen LL, Huarte M. Nat Rev Mol Cell Biol 22 96-118 (2021)
  2. A census of human RNA-binding proteins. Gerstberger S, Hafner M, Tuschl T. Nat Rev Genet 15 829-845 (2014)
  3. RNA-binding proteins and post-transcriptional gene regulation. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. FEBS Lett 582 1977-1986 (2008)
  4. RNA-binding proteins: modular design for efficient function. Lunde BM, Moore C, Varani G. Nat Rev Mol Cell Biol 8 479-490 (2007)
  5. Pentatricopeptide repeat proteins in plants. Barkan A, Small I. Annu Rev Plant Biol 65 415-442 (2014)
  6. Chloroplast RNA metabolism. Stern DB, Goldschmidt-Clermont M, Hanson MR. Annu Rev Plant Biol 61 125-155 (2010)
  7. Principles and properties of eukaryotic mRNPs. Mitchell SF, Parker R. Mol Cell 54 547-558 (2014)
  8. Multiple modes of RNA recognition by zinc finger proteins. Hall TM. Curr Opin Struct Biol 15 367-373 (2005)
  9. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Auweter SD, Oberstrass FC, Allain FH. Nucleic Acids Res 34 4943-4959 (2006)
  10. PUF proteins: repression, activation and mRNA localization. Quenault T, Lithgow T, Traven A. Trends Cell Biol 21 104-112 (2011)
  11. U2AF homology motifs: protein recognition in the RRM world. Kielkopf CL, Lücke S, Green MR. Genes Dev 18 1513-1526 (2004)
  12. Protein families and RNA recognition. Chen Y, Varani G. FEBS J 272 2088-2097 (2005)
  13. RNA metabolism in plant mitochondria. Hammani K, Giegé P. Trends Plant Sci 19 380-389 (2014)
  14. RNA-amino acid binding: a stereochemical era for the genetic code. Yarus M, Widmann JJ, Knight R. J Mol Evol 69 406-429 (2009)
  15. The molecular machinery of germ line specification. Ewen-Campen B, Schwager EE, Extavour CG. Mol Reprod Dev 77 3-18 (2010)
  16. Roles of Puf proteins in mRNA degradation and translation. Miller MA, Olivas WM. Wiley Interdiscip Rev RNA 2 471-492 (2011)
  17. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Kramer S, Carrington M. Trends Parasitol 27 23-30 (2011)
  18. Post-transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Goldstrohm AC, Hall TMT, McKenney KM. Trends Genet 34 972-990 (2018)
  19. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Gerstberger S, Hafner M, Ascano M, Tuschl T. Adv Exp Med Biol 825 1-55 (2014)
  20. The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Kolev NG, Ullu E, Tschudi C. Cell Microbiol 16 482-489 (2014)
  21. Engineering RNA-binding proteins for biology. Chen Y, Varani G. FEBS J 280 3734-3754 (2013)
  22. Finding the target sites of RNA-binding proteins. Li X, Kazan H, Lipshitz HD, Morris QD. Wiley Interdiscip Rev RNA 5 111-130 (2014)
  23. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Nakamura T, Yagi Y, Kobayashi K. Plant Cell Physiol 53 1171-1179 (2012)
  24. RNA-binding proteins in early development. Colegrove-Otero LJ, Minshall N, Standart N. Crit Rev Biochem Mol Biol 40 21-73 (2005)
  25. Alternative splicing in cancers: From aberrant regulation to new therapeutics. Song X, Zeng Z, Wei H, Wang Z. Semin Cell Dev Biol 75 13-22 (2018)
  26. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Blackwell E, Ceman S. Mol Reprod Dev 79 163-175 (2012)
  27. Consensus design of repeat proteins. Forrer P, Binz HK, Stumpp MT, Plückthun A. Chembiochem 5 183-189 (2004)
  28. Bacterial translational control at atomic resolution. Romby P, Springer M. Trends Genet 19 155-161 (2003)
  29. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Beckmann BM, Castello A, Medenbach J. Pflugers Arch 468 1029-1040 (2016)
  30. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Filipovska A, Rackham O. Mol Biosyst 8 699-708 (2012)
  31. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Wang M, Ogé L, Perez-Garcia MD, Hamama L, Sakr S. Int J Mol Sci 19 E410 (2018)
  32. Helical repeats modular proteins are major players for organelle gene expression. Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F, Salinas T, Giegé P. Biochimie 100 141-150 (2014)
  33. Single molecule fluorescence approaches shed light on intracellular RNAs. Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Chem Rev 114 3224-3265 (2014)
  34. Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. Wang Y, Wang Z, Tanaka Hall TM. FEBS J 280 3755-3767 (2013)
  35. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Ascano M, Gerstberger S, Tuschl T. Curr Opin Genet Dev 23 20-28 (2013)
  36. Nucleic acid recognition by tandem helical repeats. Rubinson EH, Eichman BF. Curr Opin Struct Biol 22 101-109 (2012)
  37. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Ceman S, Saugstad J. Pharmacol Ther 130 26-37 (2011)
  38. Regulation of maternal mRNAs in early development. Farley BM, Ryder SP. Crit Rev Biochem Mol Biol 43 135-162 (2008)
  39. Nanos genes and their role in development and beyond. De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Cell Mol Life Sci 75 1929-1946 (2018)
  40. De-coding and re-coding RNA recognition by PUF and PPR repeat proteins. Hall TM. Curr Opin Struct Biol 36 116-121 (2016)
  41. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Vos PD, Leedman PJ, Filipovska A, Rackham O. Cell Mol Life Sci 76 3745-3752 (2019)
  42. Aetiological coding sequence variants in non-syndromic premature ovarian failure: From genetic linkage analysis to next generation sequencing. Laissue P. Mol Cell Endocrinol 411 243-257 (2015)
  43. Repressive translational control in germ cells. Lai F, King ML. Mol Reprod Dev 80 665-676 (2013)
  44. Pumilio Puf domain RNA-binding proteins in Arabidopsis. Abbasi N, Park YI, Choi SB. Plant Signal Behav 6 364-368 (2011)
  45. Engineering RNA-binding proteins with diverse activities. Wei H, Wang Z. Wiley Interdiscip Rev RNA 6 597-613 (2015)
  46. Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Nishanth MJ, Simon B. Mol Biol Rep 47 785-807 (2020)
  47. Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Yokota S. Histochem Cell Biol 138 1-11 (2012)
  48. Of social molecules: The interactive assembly of ASH1 mRNA-transport complexes in yeast. Niedner A, Edelmann FT, Niessing D. RNA Biol 11 998-1009 (2014)
  49. Structure and function of nematode RNA-binding proteins. Kaymak E, Wee LM, Ryder SP. Curr Opin Struct Biol 20 305-312 (2010)
  50. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review. Andries O, Kitada T, Bodner K, Sanders NN, Weiss R. Expert Rev Vaccines 14 313-331 (2015)
  51. Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking. Bann DV, Parent LJ. Viruses 4 963-979 (2012)
  52. The Enigmatic Roles of PPR-SMR Proteins in Plants. Zhang Y, Lu C. Adv Sci (Weinh) 6 1900361 (2019)
  53. Translational repressors in Drosophila. Dean KA, Aggarwal AK, Wharton RP. Trends Genet 18 572-577 (2002)
  54. Engineering reprogrammable RNA-binding proteins for study and manipulation of the transcriptome. Abil Z, Zhao H. Mol Biosyst 11 2658-2665 (2015)
  55. mRNA localization in metazoans: A structural perspective. Lazzaretti D, Bono F. RNA Biol 14 1473-1484 (2017)
  56. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Wang X, Voronina E. Front Cell Dev Biol 8 29 (2020)
  57. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria. van Gijtenbeek LA, Kok J. Front Microbiol 8 1161 (2017)
  58. Advances in imaging RNA in plants. Christensen NM, Oparka KJ, Tilsner J. Trends Plant Sci 15 196-203 (2010)
  59. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  60. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Ban T, Zhu JK, Melcher K, Xu HE. Cell Mol Life Sci 72 1045-1058 (2015)
  61. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Lou L, Ding L, Wang T, Xiang Y. Int J Mol Sci 21 E6822 (2020)
  62. Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities. Pauff S, Withers JM, McKean IJ, Mackay SP, Burley GA. Curr Opin Biotechnol 48 153-158 (2017)
  63. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. Shotwell CR, Cleary JD, Berglund JA. Wiley Interdiscip Rev RNA 11 e1573 (2020)
  64. Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide? Gazestani VH, Lu Z, Salavati R. Trends Parasitol 30 234-240 (2014)
  65. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Wallis CP, Scott LH, Filipovska A, Rackham O. Philos Trans R Soc Lond B Biol Sci 375 20190185 (2020)
  66. On the segregation of protein ionic residues by charge type. Parker MS, Balasubramaniam A, Parker SL. Amino Acids 43 2231-2247 (2012)
  67. Protein reconstitution methods for visualizing biomolecular function in living cells. Ozawa T. Yakugaku Zasshi 129 289-295 (2009)
  68. Programmable RNA manipulation in living cells. Pei Y, Lu M. Cell Mol Life Sci 76 4861-4867 (2019)
  69. Biophysical highlights from 54 years of macromolecular crystallography. Richardson JS, Richardson DC. Biophys J 106 510-525 (2014)
  70. The Role of Pumilio RNA Binding Protein in Plants. Huh SU. Biomolecules 11 1851 (2021)
  71. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Albarqi MMY, Ryder SP. Front Cell Dev Biol 10 1094295 (2022)
  72. Detecting mitochondrial RNA and other cellular events in living cells. Umezawa Y. Anal Bioanal Chem 391 1591-1598 (2008)
  73. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Oliveira C, Holetz FB, Alves LR, Ávila AR. Pathogens 12 32 (2022)
  74. Methods for the directed evolution of biomolecular interactions. Xie VC, Styles MJ, Dickinson BC. Trends Biochem Sci 47 403-416 (2022)
  75. Reviewing PTBP1 Domain Modularity in the Pre-Genomic Era: A Foundation to Guide the Next Generation of Exploring PTBP1 Structure-Function Relationships. Carico C, Placzek WJ. Int J Mol Sci 24 11218 (2023)

Articles citing this publication (247)

  1. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. Cell 141 129-141 (2010)
  2. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT. Cell 164 69-80 (2016)
  3. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. Gerber AP, Herschlag D, Brown PO. PLoS Biol 2 E79 (2004)
  4. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I. PLoS Genet 8 e1002910 (2012)
  5. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D. Proc Natl Acad Sci U S A 103 4487-4492 (2006)
  6. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang HW, Wang J, Zhu JK, Shi Y, Yan N. Nature 504 168-171 (2013)
  7. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. PLoS One 3 e3164 (2008)
  8. RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates. Schmitz-Linneweber C, Williams-Carrier R, Barkan A. Plant Cell 17 2791-2804 (2005)
  9. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Prikryl J, Rojas M, Schuster G, Barkan A. Proc Natl Acad Sci U S A 108 415-420 (2011)
  10. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Ozawa T, Natori Y, Sato M, Umezawa Y. Nat Methods 4 413-419 (2007)
  11. Engineering RNA sequence specificity of Pumilio repeats. Cheong CG, Hall TM. Proc Natl Acad Sci U S A 103 13635-13639 (2006)
  12. Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Fujii S, Bond CS, Small ID. Proc Natl Acad Sci U S A 108 1723-1728 (2011)
  13. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Gu W, Deng Y, Zenklusen D, Singer RH. Genes Dev 18 1452-1465 (2004)
  14. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Aviv T, Lin Z, Lau S, Rendl LM, Sicheri F, Smibert CA. Nat Struct Biol 10 614-621 (2003)
  15. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. J Biol Chem 287 36370-36383 (2012)
  16. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. Vessey JP, Vaccani A, Xie Y, Dahm R, Karra D, Kiebler MA, Macchi P. J Neurosci 26 6496-6508 (2006)
  17. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. Li X, Quon G, Lipshitz HD, Morris Q. RNA 16 1096-1107 (2010)
  18. Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Morris AR, Mukherjee N, Keene JD. Mol Cell Biol 28 4093-4103 (2008)
  19. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Cell 121 529-539 (2005)
  20. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M. RNA 11 447-458 (2005)
  21. RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Garcia-Jove Navarro M, Kashida S, Chouaib R, Souquere S, Pierron G, Weil D, Gueroui Z. Nat Commun 10 3230 (2019)
  22. A universal code for RNA recognition by PUF proteins. Filipovska A, Razif MF, Nygård KK, Rackham O. Nat Chem Biol 7 425-427 (2011)
  23. Engineering splicing factors with designed specificities. Wang Y, Cheong CG, Hall TM, Wang Z. Nat Methods 6 825-830 (2009)
  24. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Gennarino VA, Singh RK, White JJ, De Maio A, Han K, Kim JY, Jafar-Nejad P, di Ronza A, Kang H, Sayegh LS, Cooper TA, Orr HT, Sillitoe RV, Zoghbi HY. Cell 160 1087-1098 (2015)
  25. A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J. Nat Struct Mol Biol 19 176-183 (2012)
  26. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Yang Q, Gilmartin GM, Doublié S. Proc Natl Acad Sci U S A 107 10062-10067 (2010)
  27. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p. Miller MT, Higgin JJ, Hall TM. Nat Struct Mol Biol 15 397-402 (2008)
  28. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H. Curr Biol 22 420-425 (2012)
  29. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. Archer SK, Luu VD, de Queiroz RA, Brems S, Clayton C. PLoS Pathog 5 e1000565 (2009)
  30. Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Campbell ZT, Bhimsaria D, Valley CT, Rodriguez-Martinez JA, Menichelli E, Williamson JR, Ansari AZ, Wickens M. Cell Rep 1 570-581 (2012)
  31. Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Friedersdorf MB, Keene JD. Genome Biol 15 R2 (2014)
  32. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Wang Y, Opperman L, Wickens M, Hall TM. Proc Natl Acad Sci U S A 106 20186-20191 (2009)
  33. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Shen C, Zhang D, Guan Z, Liu Y, Yang Z, Yang Y, Wang X, Wang Q, Zhang Q, Fan S, Zou T, Yin P. Nat Commun 7 11285 (2016)
  34. Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. Williams-Carrier R, Kroeger T, Barkan A. RNA 14 1930-1941 (2008)
  35. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M. Nat Struct Mol Biol 12 945-951 (2005)
  36. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M. Mech Dev 120 865-880 (2003)
  37. Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F. Nat Struct Mol Biol 13 168-176 (2006)
  38. Structure of a Mycobacterium tuberculosis NusA-RNA complex. Beuth B, Pennell S, Arnvig KB, Martin SR, Taylor IA. EMBO J 24 3576-3587 (2005)
  39. Structural basis for RNA recognition by a dimeric PPR-protein complex. Ke J, Chen RZ, Ban T, Zhou XE, Gu X, Tan MH, Chen C, Kang Y, Brunzelle JS, Zhu JK, Melcher K, Xu HE. Nat Struct Mol Biol 20 1377-1382 (2013)
  40. Model of the brain tumor-Pumilio translation repressor complex. Edwards TA, Wilkinson BD, Wharton RP, Aggarwal AK. Genes Dev 17 2508-2513 (2003)
  41. Characterization of a family of RanBP2-type zinc fingers that can recognize single-stranded RNA. Nguyen CD, Mansfield RE, Leung W, Vaz PM, Loughlin FE, Grant RP, Mackay JP. J Mol Biol 407 273-283 (2011)
  42. Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains. Dong S, Wang Y, Cassidy-Amstutz C, Lu G, Bigler R, Jezyk MR, Li C, Hall TM, Wang Z. J Biol Chem 286 26732-26742 (2011)
  43. Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM, Lacomme C, Oparka KJ. Plant J 57 758-770 (2009)
  44. A 5' cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs. Zhu D, Stumpf CR, Krahn JM, Wickens M, Hall TM. Proc Natl Acad Sci U S A 106 20192-20197 (2009)
  45. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. Miao J, Li J, Fan Q, Li X, Li X, Cui L. J Cell Sci 123 1039-1049 (2010)
  46. Rational design of α-helical tandem repeat proteins with closed architectures. Doyle L, Hallinan J, Bolduc J, Parmeggiani F, Baker D, Stoddard BL, Bradley P. Nature 528 585-588 (2015)
  47. RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. Hammani K, Cook WB, Barkan A. Proc Natl Acad Sci U S A 109 5651-5656 (2012)
  48. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. Müller M, Heym RG, Mayer A, Kramer K, Schmid M, Cramer P, Urlaub H, Jansen RP, Niessing D. PLoS Biol 9 e1000611 (2011)
  49. Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Weidmann CA, Goldstrohm AC. Mol Cell Biol 32 527-540 (2012)
  50. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Stoddart D, Heron AJ, Klingelhoefer J, Mikhailova E, Maglia G, Bayley H. Nano Lett 10 3633-3637 (2010)
  51. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Pérez-Cano L, Fernández-Recio J. Proteins 78 25-35 (2010)
  52. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Lindner SE, Mikolajczak SA, Vaughan AM, Moon W, Joyce BR, Sullivan WJ, Kappe SH. Cell Microbiol 15 1266-1283 (2013)
  53. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. Jackson JS, Houshmandi SS, Lopez Leban F, Olivas WM. RNA 10 1625-1636 (2004)
  54. A protein-RNA specificity code enables targeted activation of an endogenous human transcript. Campbell ZT, Valley CT, Wickens M. Nat Struct Mol Biol 21 732-738 (2014)
  55. Targeted translational regulation using the PUF protein family scaffold. Cooke A, Prigge A, Opperman L, Wickens M. Proc Natl Acad Sci U S A 108 15870-15875 (2011)
  56. The NHL domain of BRAT is an RNA-binding domain that directly contacts the hunchback mRNA for regulation. Loedige I, Stotz M, Qamar S, Kramer K, Hennig J, Schubert T, Löffler P, Längst G, Merkl R, Urlaub H, Meister G. Genes Dev 28 749-764 (2014)
  57. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC. RNA 20 1298-1319 (2014)
  58. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5' splice site-like sequences. Loughlin FE, Mansfield RE, Vaz PM, McGrath AP, Setiyaputra S, Gamsjaeger R, Chen ES, Morris BJ, Guss JM, Mackay JP. Proc Natl Acad Sci U S A 106 5581-5586 (2009)
  59. Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Milburn CC, Boudeau J, Deak M, Alessi DR, van Aalten DM. Nat Struct Mol Biol 11 193-200 (2004)
  60. Delineation of pentatricopeptide repeat codes for target RNA prediction. Yan J, Yao Y, Hong S, Yang Y, Shen C, Zhang Q, Zhang D, Zou T, Yin P. Nucleic Acids Res 47 3728-3738 (2019)
  61. A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Merendino L, Perron K, Rahire M, Howald I, Rochaix JD, Goldschmidt-Clermont M. Nucleic Acids Res 34 262-274 (2006)
  62. Alternate modes of cognate RNA recognition by human PUMILIO proteins. Lu G, Hall TM. Structure 19 361-367 (2011)
  63. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC. Elife 5 e17096 (2016)
  64. Glucose-Regulated Phosphorylation of the PUF Protein Puf3 Regulates the Translational Fate of Its Bound mRNAs and Association with RNA Granules. Lee CD, Tu BP. Cell Rep 11 1638-1650 (2015)
  65. Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity. Gupta YK, Nair DT, Wharton RP, Aggarwal AK. Structure 16 549-557 (2008)
  66. Understanding and engineering RNA sequence specificity of PUF proteins. Lu G, Dolgner SJ, Hall TM. Curr Opin Struct Biol 19 110-115 (2009)
  67. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. Miao J, Fan Q, Parker D, Li X, Li J, Cui L. PLoS Pathog 9 e1003268 (2013)
  68. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Nucleic Acids Res 46 362-386 (2018)
  69. Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ, Dubois DC. Am J Physiol Regul Integr Comp Physiol 295 R1031-47 (2008)
  70. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. Müller K, Matuschewski K, Silvie O. PLoS One 6 e19860 (2011)
  71. Molecular characterization of Arabidopsis thaliana PUF proteins--binding specificity and target candidates. Francischini CW, Quaggio RB. FEBS J 276 5456-5470 (2009)
  72. A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Blewett NH, Goldstrohm AC. Mol Cell Biol 32 4181-4194 (2012)
  73. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman FA, Choquet Y. Mol Cell Biol 28 5529-5542 (2008)
  74. Pumilio-2 regulates translation of Nav1.6 to mediate homeostasis of membrane excitability. Driscoll HE, Muraro NI, He M, Baines RA. J Neurosci 33 9644-9654 (2013)
  75. The potential for manipulating RNA with pentatricopeptide repeat proteins. Yagi Y, Nakamura T, Small I. Plant J 78 772-782 (2014)
  76. A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. Stumpf CR, Kimble J, Wickens M. RNA 14 1550-1557 (2008)
  77. An Important Role of Pumilio 1 in Regulating the Development of the Mammalian Female Germline. Mak W, Fang C, Holden T, Dratver MB, Lin H. Biol Reprod 94 134 (2016)
  78. An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Flores BN, Li X, Malik AM, Martinez J, Beg AA, Barmada SJ. Cell Rep 27 1133-1150.e8 (2019)
  79. Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. Ulbricht RJ, Olivas WM. RNA 14 246-262 (2008)
  80. Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification. Yakubovskaya E, Guja KE, Mejia E, Castano S, Hambardjieva E, Choi WS, Garcia-Diaz M. Structure 20 1940-1947 (2012)
  81. The C-terminal alpha-alpha superhelix of Pat is required for mRNA decapping in metazoa. Braun JE, Tritschler F, Haas G, Igreja C, Truffault V, Weichenrieder O, Izaurralde E. EMBO J 29 2368-2380 (2010)
  82. Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos. Raisch T, Bhandari D, Sabath K, Helms S, Valkov E, Weichenrieder O, Izaurralde E. EMBO J 35 974-990 (2016)
  83. PPR-SMR protein SOT1 has RNA endonuclease activity. Zhou W, Lu Q, Li Q, Wang L, Ding S, Zhang A, Wen X, Zhang L, Lu C. Proc Natl Acad Sci U S A 114 E1554-E1563 (2017)
  84. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets. Hogan GJ, Brown PO, Herschlag D. PLoS Biol 13 e1002307 (2015)
  85. Identification of synaptic targets of Drosophila pumilio. Chen G, Li W, Zhang QS, Regulski M, Sinha N, Barditch J, Tully T, Krainer AR, Zhang MQ, Dubnau J. PLoS Comput Biol 4 e1000026 (2008)
  86. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site. Valley CT, Porter DF, Qiu C, Campbell ZT, Hall TM, Wickens M. Proc Natl Acad Sci U S A 109 6054-6059 (2012)
  87. The PUF binding landscape in metazoan germ cells. Prasad A, Porter DF, Kroll-Conner PL, Mohanty I, Ryan AR, Crittenden SL, Wickens M, Kimble J. RNA 22 1026-1043 (2016)
  88. The prospects for designer single-stranded RNA-binding proteins. Mackay JP, Font J, Segal DJ. Nat Struct Mol Biol 18 256-261 (2011)
  89. Translational repression by PUF proteins in vitro. Chritton JJ, Wickens M. RNA 16 1217-1225 (2010)
  90. A single C. elegans PUF protein binds RNA in multiple modes. Koh YY, Opperman L, Stumpf C, Mandan A, Keles S, Wickens M. RNA 15 1090-1099 (2009)
  91. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Wang S, Chim B, Su Y, Khil P, Wong M, Wang X, Foroushani A, Smith PT, Liu X, Li R, Ganesan S, Kanellopoulou C, Hafner M, Muljo SA. Genes Dev 33 1048-1068 (2019)
  92. Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio-like protein from Trypanosoma cruzi. Dallagiovanna B, Correa A, Probst CM, Holetz F, Smircich P, de Aguiar AM, Mansur F, da Silva CV, Mortara RA, Garat B, Buck GA, Goldenberg S, Krieger MA. J Biol Chem 283 8266-8273 (2008)
  93. Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. Rahire M, Laroche F, Cerutti L, Rochaix JD. Plant J 72 652-661 (2012)
  94. Stacking interactions in PUF-RNA complexes. Koh YY, Wang Y, Qiu C, Opperman L, Gross L, Tanaka Hall TM, Wickens M. RNA 17 718-727 (2011)
  95. Divergence of Pumilio/fem-3 mRNA binding factor (PUF) protein specificity through variations in an RNA-binding pocket. Qiu C, Kershner A, Wang Y, Holley CP, Wilinski D, Keles S, Kimble J, Wickens M, Hall TM. J Biol Chem 287 6949-6957 (2012)
  96. A novel function of human Pumilio proteins in cytoplasmic sensing of viral infection. Narita R, Takahasi K, Murakami E, Hirano E, Yamamoto SP, Yoneyama M, Kato H, Fujita T. PLoS Pathog 10 e1004417 (2014)
  97. A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Fehrenbacher KL, Boldogh IR, Pon LA. Mol Biol Cell 16 5094-5102 (2005)
  98. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Jiménez-Menéndez N, Fernández-Millán P, Rubio-Cosials A, Arnan C, Montoya J, Jacobs HT, Bernadó P, Coll M, Usón I, Solà M. Nat Struct Mol Biol 17 891-893 (2010)
  99. Pentatricopeptide repeats: modular blocks for building RNA-binding proteins. Filipovska A, Rackham O. RNA Biol 10 1426-1432 (2013)
  100. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins. Arvola RM, Weidmann CA, Tanaka Hall TM, Goldstrohm AC. RNA Biol 14 1445-1456 (2017)
  101. Identification of a conserved interface between PUF and CPEB proteins. Campbell ZT, Menichelli E, Friend K, Wu J, Kimble J, Williamson JR, Wickens M. J Biol Chem 287 18854-18862 (2012)
  102. Interaction of the conserved meiotic regulators, BOULE (BOL) and PUMILIO-2 (PUM2). Urano J, Fox MS, Reijo Pera RA. Mol Reprod Dev 71 290-298 (2005)
  103. A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Qiu C, McCann KL, Wine RN, Baserga SJ, Hall TM. Proc Natl Acad Sci U S A 111 18554-18559 (2014)
  104. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. Abil Z, Denard CA, Zhao H. J Biol Eng 8 7 (2014)
  105. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J. Sci Signal 5 ra39 (2012)
  106. Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Kershaw CJ, Costello JL, Talavera D, Rowe W, Castelli LM, Sims PF, Grant CM, Ashe MP, Hubbard SJ, Pavitt GD. Sci Rep 5 15518 (2015)
  107. Carbon source-dependent alteration of Puf3p activity mediates rapid changes in the stabilities of mRNAs involved in mitochondrial function. Miller MA, Russo J, Fischer AD, Lopez Leban FA, Olivas WM. Nucleic Acids Res 42 3954-3970 (2014)
  108. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. Mol Cell 74 966-981.e18 (2019)
  109. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression. Huh SU, Paek KH. BMC Plant Biol 14 75 (2014)
  110. Yeast Puf3 mutants reveal the complexity of Puf-RNA binding and identify a loop required for regulation of mRNA decay. Houshmandi SS, Olivas WM. RNA 11 1655-1666 (2005)
  111. A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. Kuo MW, Wang SH, Chang JC, Chang CH, Huang LJ, Lin HH, Yu AL, Li WH, Yu J. PLoS One 4 e4980 (2009)
  112. Characterization of PfPuf2, member of the Puf family RNA-binding proteins from the malaria parasite Plasmodium falciparum. Fan Q, Li J, Kariuki M, Cui L. DNA Cell Biol 23 753-760 (2004)
  113. Mutagenesis of individual pentatricopeptide repeat motifs affects RNA binding activity and reveals functional partitioning of Arabidopsis PROTON gradient regulation3. Fujii S, Sato N, Shikanai T. Plant Cell 25 3079-3088 (2013)
  114. Programmable RNA-binding protein composed of repeats of a single modular unit. Adamala KP, Martin-Alarcon DA, Boyden ES. Proc Natl Acad Sci U S A 113 E2579-88 (2016)
  115. RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR-RNA interactions. Miranda RG, McDermott JJ, Barkan A. Nucleic Acids Res 46 2613-2623 (2018)
  116. The design and structural characterization of a synthetic pentatricopeptide repeat protein. Gully BS, Shah KR, Shah KR, Lee M, Shearston K, Smith NM, Sadowska A, Blythe AJ, Bernath-Levin K, Stanley WA, Small ID, Bond CS. Acta Crystallogr D Biol Crystallogr 71 196-208 (2015)
  117. Tinkering evolution of post-transcriptional RNA regulons: puf3p in fungi as an example. Jiang H, Guan W, Gu Z. PLoS Genet 6 e1001030 (2010)
  118. Beyond cleaved small RNA targets: unraveling the complexity of plant RNA degradome data. Hou CY, Wu MT, Lu SH, Hsing YI, Chen HM. BMC Genomics 15 15 (2014)
  119. Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting. Liu G, Mercer TR, Shearwood AM, Siira SJ, Hibbs ME, Mattick JS, Rackham O, Filipovska A. Cell Rep 5 839-848 (2013)
  120. SLIRP stabilizes LRPPRC via an RRM-PPR protein interface. Spåhr H, Rozanska A, Li X, Atanassov I, Lightowlers RN, Chrzanowska-Lightowlers ZM, Rackham O, Larsson NG. Nucleic Acids Res 44 6868-6882 (2016)
  121. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Loizeau K, Qu Y, Depp S, Fiechter V, Ruwe H, Lefebvre-Legendre L, Schmitz-Linneweber C, Goldschmidt-Clermont M. Nucleic Acids Res 42 3286-3297 (2014)
  122. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino PL, Goldstrohm AC. Nucleic Acids Res 48 1843-1871 (2020)
  123. A Nucleolar PUF RNA-binding Protein with Specificity for a Unique RNA Sequence. Zhang C, Muench DG. J Biol Chem 290 30108-30118 (2015)
  124. Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. Enwerem III, Elrod ND, Chang CT, Lin A, Ji P, Bohn JA, Levdansky Y, Wagner EJ, Valkov E, Goldstrohm AC. RNA 27 445-464 (2021)
  125. Treatment of type 1 myotonic dystrophy by engineering site-specific RNA endonucleases that target (CUG)(n) repeats. Zhang W, Wang Y, Dong S, Choudhury R, Jin Y, Wang Z. Mol Ther 22 312-320 (2014)
  126. Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Caro F, Bercovich N, Atorrasagasti C, Levin MJ, Vázquez MP. Exp Parasitol 113 112-124 (2006)
  127. Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay. Jiang P, Singh M, Coller HA. PLoS Comput Biol 9 e1003075 (2013)
  128. Puf3p induces translational repression of genes linked to oxidative stress. Rowe W, Kershaw CJ, Castelli LM, Costello JL, Ashe MP, Grant CM, Sims PF, Pavitt GD, Hubbard SJ. Nucleic Acids Res 42 1026-1041 (2014)
  129. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Guallar D, Wang J. Front Biol (Beijing) 9 389-409 (2014)
  130. RNA-binding specificity landscape of the pentatricopeptide repeat protein PPR10. Miranda RG, Rojas M, Montgomery MP, Gribbin KP, Barkan A. RNA 23 586-599 (2017)
  131. Spontaneous dominant mutations in chlamydomonas highlight ongoing evolution by gene diversification. Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ, Pascal K, Girard-Bascou J, Vallon O, Wollman FA, Choquet Y. Plant Cell 27 984-1001 (2015)
  132. Target selection by natural and redesigned PUF proteins. Porter DF, Koh YY, VanVeller B, Raines RT, Wickens M. Proc Natl Acad Sci U S A 112 15868-15873 (2015)
  133. Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains. Cao J, Arha M, Sudrik C, Schaffer DV, Kane RS. Angew Chem Int Ed Engl 53 4900-4904 (2014)
  134. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Zhang J, McCann KL, Qiu C, Gonzalez LE, Baserga SJ, Hall TM. Nat Commun 7 13085 (2016)
  135. PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2. Liu Y, Qu L, Liu Y, Roizman B, Zhou GG. Proc Natl Acad Sci U S A 114 E6902-E6911 (2017)
  136. Prediction of interacting single-stranded RNA bases by protein-binding patterns. Shulman-Peleg A, Shatsky M, Nussinov R, Wolfson HJ. J Mol Biol 379 299-316 (2008)
  137. Recurrent rewiring and emergence of RNA regulatory networks. Wilinski D, Buter N, Klocko AD, Lapointe CP, Selker EU, Gasch AP, Wickens M. Proc Natl Acad Sci U S A 114 E2816-E2825 (2017)
  138. A rapid method for assessing the RNA-binding potential of a protein. Bendak K, Loughlin FE, Cheung V, O'Connell MR, Crossley M, Mackay JP. Nucleic Acids Res 40 e105 (2012)
  139. Evaluating conformational changes in protein structures binding RNA. Ellis JJ, Jones S. Proteins 70 1518-1526 (2008)
  140. Pum2 Shapes the Transcriptome in Developing Axons through Retention of Target mRNAs in the Cell Body. Martínez JC, Randolph LK, Iascone DM, Pernice HF, Polleux F, Hengst U. Neuron 104 931-946.e5 (2019)
  141. Sequence-specific m6A demethylation in RNA by FTO fused to RCas9. Rau K, Rösner L, Rentmeister A. RNA 25 1311-1323 (2019)
  142. Tetramolecular fluorescence complementation for detection of specific RNAs in vitro. Kellermann SJ, Rath AK, Rentmeister A. Chembiochem 14 200-204 (2013)
  143. Antagonistic and cooperative AGO2-PUM interactions in regulating mRNAs. Sternburg EL, Estep JA, Nguyen DK, Li Y, Karginov FV. Sci Rep 8 15316 (2018)
  144. Divergent RNA binding specificity of yeast Puf2p. Yosefzon Y, Koh YY, Chritton JJ, Lande A, Leibovich L, Barziv L, Petzold C, Yakhini Z, Mandel-Gutfreund Y, Wickens M, Arava Y. RNA 17 1479-1488 (2011)
  145. Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation. HafezQorani S, Lafzi A, de Bruin RG, van Zonneveld AJ, van der Veer EP, Son YA, Kazan H. Nucleic Acids Res 44 e83 (2016)
  146. Mutational analysis of Trypanosoma brucei editosome proteins KREPB4 and KREPB5 reveals domains critical for function. Carnes J, Schnaufer A, McDermott SM, Domingo G, Proff R, Steinberg AG, Kurtz I, Stuart K. RNA 18 1897-1909 (2012)
  147. Trypanosoma cruzi: molecular characterization of TcPUF6, a Pumilio protein. Dallagiovanna B, Pérez L, Sotelo-Silveira J, Smircich P, Duhagon MA, Garat B. Exp Parasitol 109 260-264 (2005)
  148. Co-occupancy of two Pumilio molecules on a single hunchback NRE. Gupta YK, Lee TH, Edwards TA, Escalante CR, Kadyrova LY, Wharton RP, Aggarwal AK. RNA 15 1029-1035 (2009)
  149. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS). Lou TF, Weidmann CA, Killingsworth J, Tanaka Hall TM, Goldstrohm AC, Campbell ZT. Methods 118-119 171-181 (2017)
  150. Nop9 binds the central pseudoknot region of 18S rRNA. Wang B, Ye K. Nucleic Acids Res 45 3559-3567 (2017)
  151. The role of RNA conformation in RNA-protein recognition. Kligun E, Mandel-Gutfreund Y. RNA Biol 12 720-727 (2015)
  152. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. Plant J 92 1092-1105 (2017)
  153. RCAS: an RNA centric annotation system for transcriptome-wide regions of interest. Uyar B, Yusuf D, Wurmus R, Rajewsky N, Ohler U, Akalin A. Nucleic Acids Res 45 e91 (2017)
  154. Structure and RNA binding of the mouse Pumilio-2 Puf domain. Jenkins HT, Baker-Wilding R, Edwards TA. J Struct Biol 167 271-276 (2009)
  155. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans. Hubstenberger A, Cameron C, Shtofman R, Gutman S, Evans TC. Dev Biol 366 218-231 (2012)
  156. Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin. Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. J Mol Biol 392 115-128 (2009)
  157. Upregulation of PUM1 Expression in Preeclampsia Impairs Trophoblast Invasion by Negatively Regulating the Expression of the lncRNA HOTAIR. Zhang Y, He XY, Qin S, Mo HQ, Li X, Wu F, Zhang J, Li X, Mao L, Peng YQ, Guo YN, Lin Y, Tian FJ. Mol Ther 28 631-641 (2020)
  158. A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity. Qiu C, Bhat VD, Rajeev S, Zhang C, Lasley AE, Wine RN, Campbell ZT, Hall TMT. Elife 8 e48968 (2019)
  159. Expanding RNA binding specificity and affinity of engineered PUF domains. Zhao YY, Mao MW, Zhang WJ, Wang J, Li HT, Yang Y, Wang Z, Wu JW. Nucleic Acids Res 46 4771-4782 (2018)
  160. Biochemical characterization of the Caenorhabditis elegans FBF.CPB-1 translational regulation complex identifies conserved protein interaction hotspots. Menichelli E, Wu J, Campbell ZT, Wickens M, Williamson JR. J Mol Biol 425 725-737 (2013)
  161. Genetic encoding of fluorescent RNA ensures a bright future for visualizing nucleic acid dynamics. Dictenberg J. Trends Biotechnol 30 621-626 (2012)
  162. Live-Cell Imaging and Functional Dissection of Xist RNA Reveal Mechanisms of X Chromosome Inactivation and Reactivation. Ha N, Lai LT, Chelliah R, Zhen Y, Yi Vanessa SP, Lai SK, Li HY, Ludwig A, Sandin S, Chen L, Zhang LF. iScience 8 1-14 (2018)
  163. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Yamada T, Yoshimura H, Shimada R, Hattori M, Eguchi M, Fujiwara TK, Kusumi A, Ozawa T. Sci Rep 6 38910 (2016)
  164. A protein.protein interaction platform involved in recruitment of GLD-3 to the FBF.fem-3 mRNA complex. Wu J, Campbell ZT, Menichelli E, Wickens M, Williamson JR. J Mol Biol 425 738-754 (2013)
  165. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data. Polishchuk M, Paz I, Kohen R, Mesika R, Yakhini Z, Mandel-Gutfreund Y. Methods 118-119 73-81 (2017)
  166. Cell-free selection of RNA-binding proteins using in vitro compartmentalization. Chen Y, Mandic J, Varani G. Nucleic Acids Res 36 e128 (2008)
  167. Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast. Russo J, Olivas WM. Mol Biol Cell 26 1015-1029 (2015)
  168. Expanding the RNA-recognition code of PUF proteins. Hall TM. Nat Struct Mol Biol 21 653-655 (2014)
  169. Toward Identifying Subnetworks from FBF Binding Landscapes in Caenorhabditis Spermatogenic or Oogenic Germlines. Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. G3 (Bethesda) 9 153-165 (2019)
  170. Editorial Pentatricopeptide repeat proteins: a set of modular RNA-specific binders massively used for organelle gene expression. Giegé P. RNA Biol 10 1417-1418 (2013)
  171. Puf4 regulates both splicing and decay of HXL1 mRNA encoding the unfolded protein response transcription factor in Cryptococcus neoformans. Glazier VE, Kaur JN, Brown NT, Rivera AA, Panepinto JC. Eukaryot Cell 14 385-395 (2015)
  172. Solution structure of the Vts1 SAM domain in the presence of RNA. Edwards TA, Butterwick JA, Zeng L, Gupta YK, Wang X, Wharton RP, Palmer AG, Aggarwal AK. J Mol Biol 356 1065-1072 (2006)
  173. The essential functions of KREPB4 are developmentally distinct and required for endonuclease association with editosomes. McDermott SM, Stuart K. RNA 23 1672-1684 (2017)
  174. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse. Marrero E, Rossi SG, Darr A, Tsoulfas P, Rotundo RL. J Biol Chem 286 36492-36499 (2011)
  175. Characterization of TgPuf1, a member of the Puf family RNA-binding proteins from Toxoplasma gondii. Liu M, Miao J, Liu T, Sullivan WJ, Cui L, Chen X. Parasit Vectors 7 141 (2014)
  176. Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. Bhat VD, McCann KL, Wang Y, Fonseca DR, Shukla T, Alexander JC, Qiu C, Wickens M, Lo TW, Tanaka Hall TM, Campbell ZT. Elife 8 e43788 (2019)
  177. Finding the missing code of RNA recognition by PUF proteins. Chen Y, Varani G. Chem Biol 18 821-823 (2011)
  178. Organization of cell-regulatory systems through modular-protein-interaction domains. Pawson T. Philos Trans A Math Phys Eng Sci 361 1251-1262 (2003)
  179. Distinct RNA-binding modules in a single PUF protein cooperate to determine RNA specificity. Qiu C, Dutcher RC, Porter DF, Arava Y, Wickens M, Hall TMT. Nucleic Acids Res 47 8770-8784 (2019)
  180. Identification and expression analysis of rainbow trout pumilio-1 and pumilio-2. Kurisaki I, Iwai T, Yamashita M, Kobayashi M, Ito E, Matsuoka I. Cell Tissue Res 327 33-42 (2007)
  181. Novel insights into global translational regulation through Pumilio family RNA-binding protein Puf3p revealed by ribosomal profiling. Wang Z, Sun X, Wee J, Guo X, Gu Z. Curr Genet 65 201-212 (2019)
  182. Comment SAM breaks its stereotype. Hall TM. Nat Struct Biol 10 677-679 (2003)
  183. Upregulated hPuf-A promotes breast cancer tumorigenesis. Fan CC, Lee LY, Yu MY, Tzen CY, Chou C, Chang MS. Tumour Biol 34 2557-2564 (2013)
  184. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Schmitt-Engel C, Cerny AC, Schoppmeier M. Dev Biol 364 224-235 (2012)
  185. Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. Wolfe MB, Schagat TL, Paulsen MT, Magnuson B, Ljungman M, Park D, Zhang C, Campbell ZT, Goldstrohm AC, Freddolino PL. RNA 26 1680-1703 (2020)
  186. Comment Splitting or stacking fluorescent proteins to visualize mRNA in living cells. Tyagi S. Nat Methods 4 391-392 (2007)
  187. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. BMC Biol 18 77 (2020)
  188. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Alemasova EE, Lavrik OI. Acta Naturae 9 4-16 (2017)
  189. Multiple Puf proteins regulate the stability of ribosome biogenesis transcripts. Fischer AD, Olivas WM. RNA Biol 15 1228-1243 (2018)
  190. Specific Recognition of a Single-Stranded RNA Sequence by a Synthetic Antibody Fragment. Shao Y, Huang H, Qin D, Li NS, Koide A, Staley JP, Koide S, Kossiakoff AA, Piccirilli JA. J Mol Biol 428 4100-4114 (2016)
  191. The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. Azizi H, Dumas C, Papadopoulou B. RNA 23 1874-1885 (2017)
  192. Crystallization of a paraspeckle protein PSPC1-NONO heterodimer. Passon DM, Lee M, Fox AH, Bond CS. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1231-1234 (2011)
  193. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Mao M, Hu Y, Yang Y, Qian Y, Wei H, Fan W, Yang Y, Li X, Wang Z. Cell Syst 7 510-520.e4 (2018)
  194. Nuclear Speckle-related Protein 70 Binds to Serine/Arginine-rich Splicing Factors 1 and 2 via an Arginine/Serine-like Region and Counteracts Their Alternative Splicing Activity. Kim CH, Kim YD, Choi EK, Kim HR, Na BR, Im SH, Jun CD. J Biol Chem 291 6169-6181 (2016)
  195. Puf6 primes 60S pre-ribosome nuclear export at low temperature. Gerhardy S, Oborská-Oplová M, Gillet L, Börner R, van Nues R, Leitner A, Michel E, Petkowski JJ, Granneman S, Sigel RKO, Aebersold R, Panse VG, Panse VG. Nat Commun 12 4696 (2021)
  196. Shape-specific nucleotide binding of single-stranded RNA by the GLD-1 STAR domain. Lehmann-Blount KA, Williamson JR. J Mol Biol 346 91-104 (2005)
  197. Structural basis for multifunctional roles of human Ints3 C-terminal domain. Li J, Ma X, Banerjee S, Baruah S, Schnicker NJ, Roh E, Ma W, Liu K, Bode AM, Dong Z. J Biol Chem 296 100112 (2021)
  198. A Genetically Encodable System for Sequence-Specific Detection of RNAs in Two Colors. Kellermann SJ, Rentmeister A. Chembiochem 17 895-899 (2016)
  199. Expanding the binding specificity for RNA recognition by a PUF domain. Zhou W, Melamed D, Banyai G, Meyer C, Tuschl T, Wickens M, Cao J, Fields S. Nat Commun 12 5107 (2021)
  200. Programmable design of functional ribonucleoprotein complexes. Rath AK, Kellermann SJ, Rentmeister A. Chem Asian J 9 2045-2051 (2014)
  201. The dinoflagellate Lingulodinium has predicted casein kinase 2 sites in many RNA binding proteins. Roy S, Roy S, Morse D. Protist 165 330-342 (2014)
  202. Bipartite interaction sites differentially modulate RNA-binding affinity of a protein complex essential for germline stem cell self-renewal. Qiu C, Wine RN, Campbell ZT, Hall TMT. Nucleic Acids Res 50 536-548 (2022)
  203. Characterization of RNP Networks of PUM1 and PUM2 Post-Transcriptional Regulators in TCam-2 Cells, a Human Male Germ Cell Model. Smialek MJ, Ilaslan E, Sajek MP, Swiercz A, Janecki DM, Kusz-Zamelczyk K, Wozniak T, Kotecki M, Handschuh L, Figlerowicz M, Jaruzelska J, Jaruzelska J. Cells 9 E984 (2020)
  204. CompMoby: comparative MobyDick for detection of cis-regulatory motifs. Chaivorapol C, Melton C, Wei G, Yeh RF, Ramalho-Santos M, Blelloch R, Li H. BMC Bioinformatics 9 455 (2008)
  205. Engineering specificity changes on a RanBP2 zinc finger that binds single-stranded RNA. Vandevenne M, O'Connell MR, Helder S, Shepherd NE, Matthews JM, Kwan AH, Segal DJ, Mackay JP. Angew Chem Int Ed Engl 53 7848-7852 (2014)
  206. Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues. Wang HN, Xu Y, Tao LJ, Zhou J, Qiu MX, Teng YH, Deng FJ. Mol Biol Rep 39 2811-2819 (2012)
  207. Post-transcriptional control of fungal cell wall synthesis. Hall RA, Wallace EWJ. Cell Surf 8 100074 (2022)
  208. Structural and functional similarities and differences in nucleolar Pumilio RNA-binding proteins between Arabidopsis and the charophyte Chara corallina. Park SH, Kim HS, Kalita PJ, Choi SB. BMC Plant Biol 20 230 (2020)
  209. A FACS-based screening strategy to assess sequence-specific RNA-binding of Pumilio protein variants in E. coli. Kellermann SJ, Rentmeister A. Biol Chem 398 69-75 (2017)
  210. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. Nat Commun 13 4522 (2022)
  211. A conserved domain of Drosophila RNA-binding protein Pumilio interacts with multiple CCR4-NOT deadenylase complex subunits to repress target mRNAs. Haugen RJ, Arvola RM, Connacher RP, Roden RT, Goldstrohm AC. J Biol Chem 298 102270 (2022)
  212. Daz- and pumilio-like genes are asymmetrically localized in Pelophylax (Rana) oocytes and are expressed during early spermatogenesis. Marracci S, Michelotti V, Casola C, Giacoma C, Ragghianti M. J Exp Zool B Mol Dev Evol 316 330-338 (2011)
  213. Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins. Abil Z, Gumy LF, Zhao H, Hoogenraad CC. ACS Synth Biol 6 950-956 (2017)
  214. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Oncogene 41 1155-1165 (2022)
  215. Pumilio genes from the Platyhelminthes. Koziol U, Marín M, Castillo E. Dev Genes Evol 218 47-53 (2008)
  216. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Dev Biol 462 129-140 (2020)
  217. RNA: jack of all trades and master of all. Pompon J, Garcia-Blanco MA. Cell 160 579-580 (2015)
  218. Structure and dynamics of the quaternary hunchback mRNA translation repression complex. Macošek J, Simon B, Linse JB, Jagtap PKA, Winter SL, Foot J, Lapouge K, Perez K, Rettel M, Ivanović MT, Masiewicz P, Murciano B, Savitski MM, Loedige I, Hub JS, Gabel F, Hennig J. Nucleic Acids Res 49 8866-8885 (2021)
  219. Dissection and prediction of RNA-binding sites on proteins. Pérez-Cano L, Fernández-Recio J. Biomol Concepts 1 345-355 (2010)
  220. Effects of PUMILIO1 and PUMILIO2 knockdown on cardiomyogenic differentiation of human embryonic stem cells culture. Silva ILZ, Robert AW, Cabo GC, Spangenberg L, Stimamiglio MA, Dallagiovanna B, Gradia DF, Shigunov P. PLoS One 15 e0222373 (2020)
  221. Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications? Cao H. OMICS 19 521-541 (2015)
  222. Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs. Katsantoni M, van Nimwegen E, Zavolan M. Genome Biol 24 77 (2023)
  223. Methods of split reporter reconstitution for the analysis of biomolecules. Yoshimura H, Ozawa T. Chem Rec 14 492-501 (2014)
  224. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Bhondeley M, Liu Z. Genetics 215 463-482 (2020)
  225. Pumilio RNA recognition: the consequence of promiscuity. Ryder SP. Structure 19 277-279 (2011)
  226. Spatial correlation statistics enable transcriptome-wide characterization of RNA structure binding. Busa VF, Favorov AV, Fertig EJ, Leung AKL. Cell Rep Methods 1 100088 (2021)
  227. Structural characterization of NORAD reveals a stabilizing role of spacers and two new repeat units. Chorostecki U, Saus E, Gabaldón T. Comput Struct Biotechnol J 19 3245-3254 (2021)
  228. Thermodynamic modeling reveals widespread multivalent binding by RNA-binding proteins. Sohrabi-Jahromi S, Söding J. Bioinformatics 37 i308-i316 (2021)
  229. Visualization and characterization of RNA-protein interactions in living cells. Duan N, Arroyo M, Deng W, Cardoso MC, Leonhardt H. Nucleic Acids Res 49 e107 (2021)
  230. De Novo Sequencing and High-Contiguity Genome Assembly of Moniezia expansa Reveals Its Specific Fatty Acid Metabolism and Reproductive Stem Cell Regulatory Network. Liu Y, Wang Z, Huang W, Pang S, Qian L, Zhang Y, Meng J, Xu M, Wang W, Wang Y, Lu B, Zhao Y, Xian J, Bo X, Yue B. Front Cell Infect Microbiol 11 693914 (2021)
  231. Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Yagi Y, Teramoto T, Kaieda S, Imai T, Sasaki T, Yagi M, Maekawa N, Nakamura T. Cells 11 3529 (2022)
  232. Mammalian pumilio proteins control cellular morphology, migration, and adhesion. Sternburg EL, Lillibridge JJ, Phandthong R, Karginov FV. Sci Rep 13 3002 (2023)
  233. Mini-III RNase-based dual-color system for in vivo mRNA tracking. Zhang L, Chen L, Chen J, Shen W, Meng A. Development 147 dev190728 (2020)
  234. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. Wharton TH, Nomie KJ, Wharton RP. PLoS One 13 e0194865 (2018)
  235. Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. Zhang J, Teramoto T, Qiu C, Wine RN, Gonzalez LE, Baserga SJ, Tanaka Hall TM. RNA 26 1049-1059 (2020)
  236. PUM1 Promotes Tumor Progression by Activating DEPTOR-Meditated Glycolysis in Gastric Cancer. Yin S, Liu H, Zhou Z, Xu X, Wang P, Chen W, Deng G, Wang H, Yu H, Gu L, Huo M, Li M, Zeng L, He Y, Zhang C. Adv Sci (Weinh) 10 e2301190 (2023)
  237. Role of the Pumilio gene in the reproductive system of Schistosoma japonicum. Xia Y, He S, Sun Z, Wang X, Shao W, Ren C, Shen J, Liu M. Parasitol Res 119 501-511 (2020)
  238. Variation analysis of PUM1 gene in Chinese women with primary ovarian insufficiency. Luo W, Ke H, Liu R, Qin Y, Mak W, Ma J, Zhao S, Chen ZJ. J Assist Reprod Genet 35 727-731 (2018)
  239. Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. Feng W, Zhang H, Cao Y, Yang C, Khalid MHB, Yang Q, Li W, Wang Y, Fu F, Yu H. Int J Mol Sci 24 14036 (2023)
  240. Case Reports Heterozygous Mutation of Sodium Voltage-Gated Channel Alpha Subunit 2 and Pumilio Homolog 1 Genes in a Pediatric Patient: A Case Report. Al-Sharif F, Attiah FO, AlKhateeb NA, Taher HO, Alamer MF, Gazzaz RY, Ba Sahel MO, Alsharif RM. Cureus 14 e30577 (2022)
  241. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Nat Commun 14 7323 (2023)
  242. Nature-inspired engineering of an artificial ligase enzyme by domain fusion. Tong CL, Kanwar N, Morrone DJ, Seelig B. Nucleic Acids Res 50 11175-11185 (2022)
  243. Nested PUF Proteins: Extending Target RNA Elements for Gene Regulation. Shinoda K, Tsuji S, Futaki S, Imanishi M. Chembiochem 19 171-176 (2018)
  244. Phosphorylation of PUF-A/PUM3 on Y259 modulates PUF-A stability and cell proliferation. Lin HW, Lee JY, Chou NL, Shih TW, Chang MS. PLoS One 16 e0256282 (2021)
  245. Preparation of cooperative RNA recognition complexes for crystallographic structural studies. Qiu C, Goldstrohm AC, Tanaka Hall TM. Methods Enzymol 623 1-22 (2019)
  246. Structural recognition of the mRNA 3' UTR by PUF-8 restricts the lifespan of C. elegans. Xu Z, Zhao J, Hong M, Zeng C, Guang S, Shi Y. Nucleic Acids Res 49 10082-10097 (2021)
  247. Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins. Ping N, Hara-Kuge S, Yagi Y, Kazama T, Nakamura T. Sci Rep 14 251 (2024)


Related citations provided by authors (1)

  1. Crystal structure of a Pumilio Homology Domain. Wang X, Zamore PD, Hall TMT Mol. Cell 7 855-865 (2001)