1mhd Citations

Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling.

Cell 94 585-94 (1998)
Cited: 433 times
EuropePMC logo PMID: 9741623

Abstract

The Smad family of proteins, which are frequently targeted by tumorigenic mutations in cancer, mediate TGF-beta signaling from cell membrane to nucleus. The crystal structure of a Smad3 MH1 domain bound to an optimal DNA sequence determined at 2.8 A resolution reveals a novel DNA-binding motif. In the crystals, base-specific DNA recognition is provided exclusively by a conserved 11-residue beta hairpin that is embedded in the major groove of DNA. A surface loop region, to which tumorigenic mutations map, has been identified as a functional surface important for Smad activity. This structure establishes a framework for understanding how Smad proteins may act in concert with other transcription factors in the regulation of TGF-beta-responsive genes.

Reviews - 1mhd mentioned but not cited (4)

  1. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. Bone Res 3 15005 (2015)
  2. Structural determinants of Smad function in TGF-β signaling. Macias MJ, Martin-Malpartida P, Massagué J. Trends Biochem Sci 40 296-308 (2015)
  3. Transcriptional Control by the SMADs. Hill CS. Cold Spring Harb Perspect Biol 8 a022079 (2016)
  4. The Twofold Role of Osteogenic Small Molecules in Parkinson's Disease Therapeutics: Crosstalk of Osteogenesis and Neurogenesis. Tavakol S. Biomed Res Int 2022 3813541 (2022)

Articles - 1mhd mentioned but not cited (13)



Reviews citing this publication (136)

  1. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Shi Y, Massagué J. Cell 113 685-700 (2003)
  2. TGFβ signalling in context. Massagué J. Nat Rev Mol Cell Biol 13 616-630 (2012)
  3. TGFbeta signaling in growth control, cancer, and heritable disorders. Massagué J, Blain SW, Lo RS. Cell 103 295-309 (2000)
  4. TGF-beta signaling in tumor suppression and cancer progression. Derynck R, Akhurst RJ, Balmain A. Nat Genet 29 117-129 (2001)
  5. Transforming growth factor-beta regulation of immune responses. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Annu Rev Immunol 24 99-146 (2006)
  6. Transcriptional control by the TGF-beta/Smad signaling system. Massagué J, Wotton D. EMBO J 19 1745-1754 (2000)
  7. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  8. How cells read TGF-beta signals. Massagué J. Nat Rev Mol Cell Biol 1 169-178 (2000)
  9. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Schmierer B, Hill CS. Nat Rev Mol Cell Biol 8 970-982 (2007)
  10. Smads: transcriptional activators of TGF-beta responses. Derynck R, Zhang Y, Feng XH. Cell 95 737-740 (1998)
  11. Bone morphogenetic protein receptors and signal transduction. Miyazono K, Kamiya Y, Morikawa M. J Biochem 147 35-51 (2010)
  12. The logic of TGFbeta signaling. Massagué J, Gomis RR. FEBS Lett 580 2811-2820 (2006)
  13. Specificity, diversity, and regulation in TGF-beta superfamily signaling. Piek E, Heldin CH, Ten Dijke P. FASEB J 13 2105-2124 (1999)
  14. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Chinenov Y, Kerppola TK. Oncogene 20 2438-2452 (2001)
  15. Contextual determinants of TGFβ action in development, immunity and cancer. David CJ, Massagué J. Nat Rev Mol Cell Biol 19 419-435 (2018)
  16. BMP signalling in skeletal development, disease and repair. Salazar VS, Gamer LW, Rosen V. Nat Rev Endocrinol 12 203-221 (2016)
  17. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. Verrecchia F, Mauviel A. J Invest Dermatol 118 211-215 (2002)
  18. Specificity, versatility, and control of TGF-β family signaling. Derynck R, Budi EH. Sci Signal 12 eaav5183 (2019)
  19. Smads as transcriptional co-modulators. Attisano L, Wrana JL. Curr Opin Cell Biol 12 235-243 (2000)
  20. Signaling of transforming growth factor-beta family members through Smad proteins. Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Eur J Biochem 267 6954-6967 (2000)
  21. The TGFbeta superfamily signaling pathway. Weiss A, Attisano L. Wiley Interdiscip Rev Dev Biol 2 47-63 (2013)
  22. TGF-β Signaling. Tzavlaki K, Moustakas A. Biomolecules 10 E487 (2020)
  23. The role of TGF-β/SMAD4 signaling in cancer. Zhao M, Mishra L, Deng CX. Int J Biol Sci 14 111-123 (2018)
  24. Regulation of cell proliferation by Smad proteins. Ten Dijke P, Goumans MJ, Itoh F, Itoh S. J Cell Physiol 191 1-16 (2002)
  25. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Schiller M, Javelaud D, Mauviel A. J Dermatol Sci 35 83-92 (2004)
  26. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Seoane J, Gomis RR. Cold Spring Harb Perspect Biol 9 a022277 (2017)
  27. The dynamic roles of TGF-β in cancer. Meulmeester E, Ten Dijke P. J Pathol 223 205-218 (2011)
  28. TGF-beta signaling: a tale of two responses. Rahimi RA, Leof EB. J Cell Biochem 102 593-608 (2007)
  29. Intracellular BMP signaling regulation in vertebrates: pathway or network? von Bubnoff A, Cho KW. Dev Biol 239 1-14 (2001)
  30. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. Brown KA, Pietenpol JA, Moses HL. J Cell Biochem 101 9-33 (2007)
  31. How the Smads regulate transcription. Ross S, Hill CS. Int J Biochem Cell Biol 40 383-408 (2008)
  32. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Wan YY, Flavell RA. Immunol Rev 220 199-213 (2007)
  33. Role of Smads in TGFβ signaling. Heldin CH, Moustakas A. Cell Tissue Res 347 21-36 (2012)
  34. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. Lebrun JJ. ISRN Mol Biol 2012 381428 (2012)
  35. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Raftery LA, Sutherland DJ. Dev Biol 210 251-268 (1999)
  36. Promiscuity and specificity in BMP receptor activation. Mueller TD, Nickel J. FEBS Lett 586 1846-1859 (2012)
  37. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Shu DY, Lovicu FJ. Prog Retin Eye Res 60 44-65 (2017)
  38. Regulation of Smad signalling by protein associations and signalling crosstalk. Zhang Y, Derynck R. Trends Cell Biol 9 274-279 (1999)
  39. The story so far: Molecular regulation of the heme oxygenase-1 gene in renal injury. Sikorski EM, Hock T, Hill-Kapturczak N, Agarwal A. Am J Physiol Renal Physiol 286 F425-41 (2004)
  40. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Welt C, Sidis Y, Keutmann H, Schneyer A. Exp Biol Med (Maywood) 227 724-752 (2002)
  41. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N. Cell Signal 25 2017-2024 (2013)
  42. The Smad pathway. Wrana JL, Attisano L. Cytokine Growth Factor Rev 11 5-13 (2000)
  43. TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Loboda A, Sobczak M, Jozkowicz A, Dulak J. Mediators Inflamm 2016 8319283 (2016)
  44. Transforming growth factor-beta signal transduction in epithelial cells. Yue J, Mulder KM. Pharmacol Ther 91 1-34 (2001)
  45. Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. Mimeault M, Batra SK. J Cell Physiol 224 626-635 (2010)
  46. Controlling cell fate by bone morphogenetic protein receptors. ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ. Mol Cell Endocrinol 211 105-113 (2003)
  47. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Miyazono K. Bone 25 91-93 (1999)
  48. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Papageorgis P. J Oncol 2015 587193 (2015)
  49. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY. Exp Biol Med (Maywood) 231 534-544 (2006)
  50. Basics of TGF-beta and pancreatic cancer. Truty MJ, Urrutia R. Pancreatology 7 423-435 (2007)
  51. TGF-beta and the Smad signal transduction pathway. Mehra A, Wrana JL. Biochem Cell Biol 80 605-622 (2002)
  52. Integration of the TGF-beta pathway into the cellular signalling network. Lutz M, Knaus P. Cell Signal 14 977-988 (2002)
  53. Transforming growth factor-β/Smad signalling in diabetic nephropathy. Lan HY. Clin Exp Pharmacol Physiol 39 731-738 (2012)
  54. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Gaarenstroom T, Hill CS. Semin Cell Dev Biol 32 107-118 (2014)
  55. The roles for cytokines in the generation and maintenance of regulatory T cells. Wan YY, Flavell RA. Immunol Rev 212 114-130 (2006)
  56. Hormones in synergy: regulation of the pituitary gonadotropin genes. Thackray VG, Mellon PL, Coss D. Mol Cell Endocrinol 314 192-203 (2010)
  57. TGF-β signaling in health and disease. Massagué J, Sheppard D. Cell 186 4007-4037 (2023)
  58. The role of TGF-β1 during skeletal muscle regeneration. Delaney K, Kasprzycka P, Ciemerych MA, Ciemerych MA, Zimowska M. Cell Biol Int 41 706-715 (2017)
  59. Mechanisms of FSH synthesis: what we know, what we don't, and why you should care. Bernard DJ, Fortin J, Wang Y, Lamba P. Fertil Steril 93 2465-2485 (2010)
  60. Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Danielpour D. Eur J Cancer 41 846-857 (2005)
  61. TGF-beta signaling in chondrocytes. Li TF, O'Keefe RJ, Chen D. Front Biosci 10 681-688 (2005)
  62. The Smads. Attisano L, Lee-Hoeflich ST. Genome Biol 2 REVIEWS3010 (2001)
  63. Genome-wide mechanisms of Smad binding. Morikawa M, Koinuma D, Miyazono K, Heldin CH. Oncogene 32 1609-1615 (2013)
  64. TGF-beta in neural stem cells and in tumors of the central nervous system. Aigner L, Bogdahn U. Cell Tissue Res 331 225-241 (2008)
  65. Regulation of transforming growth factor-beta signaling. Zhu HJ, Burgess AW. Mol Cell Biol Res Commun 4 321-330 (2001)
  66. Roles of Smad3 in TGF-beta signaling during carcinogenesis. Millet C, Zhang YE. Crit Rev Eukaryot Gene Expr 17 281-293 (2007)
  67. Schistosoma mansoni: TGF-beta signaling pathways. Loverde PT, Osman A, Hinck A. Exp Parasitol 117 304-317 (2007)
  68. Salt intake, endothelial cell signaling, and progression of kidney disease. Sanders PW. Hypertension 43 142-146 (2004)
  69. Structural insights on Smad function in TGFbeta signaling. Shi Y. Bioessays 23 223-232 (2001)
  70. Transforming growth factor-beta signal transduction and progressive renal disease. Cheng J, Grande JP. Exp Biol Med (Maywood) 227 943-956 (2002)
  71. SMAD regulatory networks construct a balanced immune system. Malhotra N, Kang J. Immunology 139 1-10 (2013)
  72. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Attisano L, Silvestri C, Izzi L, Labbé E. Mol Cell Endocrinol 180 3-11 (2001)
  73. TGF-beta signaling in human skeletal and patterning disorders. Serra R, Chang C. Birth Defects Res C Embryo Today 69 333-351 (2003)
  74. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. Das N, Kumar TR. J Mol Endocrinol 60 R131-R155 (2018)
  75. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Ali IH, Brazil DP. Br J Pharmacol 171 3620-3632 (2014)
  76. TGFβ, smooth muscle cells and coronary artery disease: a review. Low EL, Baker AH, Bradshaw AC. Cell Signal 53 90-101 (2019)
  77. CTCF function is modulated by neighboring DNA binding factors. Weth O, Renkawitz R. Biochem Cell Biol 89 459-468 (2011)
  78. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Jann J, Gascon S, Roux S, Faucheux N. Int J Mol Sci 21 E7597 (2020)
  79. The TGF-β Family in Caenorhabditis elegans. Savage-Dunn C, Padgett RW. Cold Spring Harb Perspect Biol 9 a022178 (2017)
  80. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Mazerbourg S, Hsueh AJ. Hum Reprod Update 12 373-383 (2006)
  81. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 a022111 (2016)
  82. Alpha E beta 7. Kilshaw PJ. Mol Pathol 52 203-207 (1999)
  83. Transforming growth factor β signaling in uterine development and function. Li Q. J Anim Sci Biotechnol 5 52 (2014)
  84. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. Lamb CA, O'Byrne S, Keir ME, Butcher EC. J Crohns Colitis 12 S653-S668 (2018)
  85. Smads as intracellular mediators of airway inflammation. Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J. Exp Lung Res 30 223-250 (2004)
  86. TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Prime SS, Pring M, Davies M, Paterson IC. Crit Rev Oral Biol Med 15 324-336 (2004)
  87. TGF-beta-dependent cell growth arrest and apoptosis. Lee KY, Bae SC. J Biochem Mol Biol 35 47-53 (2002)
  88. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? Abdullahi W, Davis TP, Ronaldson PT. AAPS J 19 931-939 (2017)
  89. Crossing Smads. Wrana JL. Sci STKE 2000 re1 (2000)
  90. Combinatorial gene regulation by eukaryotic transcription factors. Chen L. Curr Opin Struct Biol 9 48-55 (1999)
  91. Finding partners: how BMPs select their targets. Blitz IL, Cho KW. Dev Dyn 238 1321-1331 (2009)
  92. TGF-β: friend or foe? The role of TGF-β/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy. Chou JL, Chen LY, Lai HC, Chan MW, Chan MW. Expert Opin Ther Targets 14 1213-1223 (2010)
  93. The Interplay Between TGF-β Signaling and Cell Metabolism. Liu H, Chen YG. Front Cell Dev Biol 10 846723 (2022)
  94. Structural perspective of BMP ligands and signaling. Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Bone 140 115549 (2020)
  95. TGFβ signaling networks in ovarian cancer progression and plasticity. Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. Clin Exp Metastasis 38 139-161 (2021)
  96. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ. Clin Exp Pharmacol Physiol 39 661-667 (2012)
  97. Inhibitory SMADs: potential regulators of ovarian function. Li Q. Biol Reprod 92 50 (2015)
  98. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Abdel Mouti M, Pauklin S. Mol Ther 29 920-936 (2021)
  99. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Bilezikjian LM, Justice NJ, Blackler AN, Wiater E, Vale WW. Mol Cell Endocrinol 359 43-52 (2012)
  100. Effect of salt intake on progression of chronic kidney disease. Sanders PW. Curr Opin Nephrol Hypertens 15 54-60 (2006)
  101. Minireview: Activin Signaling in Gonadotropes: What Does the FOX say… to the SMAD? Fortin J, Ongaro L, Li Y, Tran S, Lamba P, Wang Y, Zhou X, Bernard DJ. Mol Endocrinol 29 963-977 (2015)
  102. TGF-β signaling in health, disease, and therapeutics. Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. Signal Transduct Target Ther 9 61 (2024)
  103. The Smads. Hill CS. Int J Biochem Cell Biol 31 1249-1254 (1999)
  104. Signal-induced repression: the exception or the rule in developmental signaling? Affolter M, Pyrowolakis G, Weiss A, Basler K. Dev Cell 15 11-22 (2008)
  105. Transforming growth factor-β in tumour development. Trelford CB, Dagnino L, Di Guglielmo GM. Front Mol Biosci 9 991612 (2022)
  106. The smad proteins and TGFbeta signalling: uncovering a pathway critical in cancer. Rooke HM, Crosier KE. Pathology 33 73-84 (2001)
  107. Angiotensin Inhibition, TGF-β and EMT in Cancer. Pallasch FB, Schumacher U. Cancers (Basel) 12 E2785 (2020)
  108. Crosstalk between TGF-β signaling and epigenome. Bai J, Xi Q. Acta Biochim Biophys Sin (Shanghai) 50 60-67 (2018)
  109. Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells. Verschueren K, Huylebroeck D. Cytokine Growth Factor Rev 10 187-199 (1999)
  110. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  111. Transforming growth factor-β in liver cancer stem cells and regeneration. Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Hepatol Commun 1 477-493 (2017)
  112. Alternative splicing of SMADs in differentiation and tissue homeostasis. Tao S, Sampath K. Dev Growth Differ 52 335-342 (2010)
  113. Mechanisms of activin-stimulated FSH synthesis: the story of a pig and a FOX. Bernard DJ, Tran S. Biol Reprod 88 78 (2013)
  114. Smad-mediated miRNA processing: a critical role for a conserved RNA sequence. Davis-Dusenbery BN, Hata A. RNA Biol 8 71-76 (2011)
  115. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Kulikauskas MR, X S, Bautch VL. Cell Mol Life Sci 79 77 (2022)
  116. Informatics approaches to understanding TGFbeta pathway regulation. Kahlem P, Newfeld SJ. Development 136 3729-3740 (2009)
  117. Systemic Activation of Activin A Signaling Causes Chronic Kidney Disease-Mineral Bone Disorder. Sugatani T. Int J Mol Sci 19 E2490 (2018)
  118. The TGF-beta--Smad network: introducing bioinformatic tools. Kloos DU, Choi C, Wingender E. Trends Genet 18 96-103 (2002)
  119. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. Front Immunol 6 442 (2015)
  120. TGF-β/BMPs: crucial crossroad in neural autoimmune disorders. Voumvourakis KI, Antonelou RCh, Kitsos DK, Stamboulis E, Tsiodras S. Neurochem Int 59 542-550 (2011)
  121. BMP/Smad signaling and embryonic cerebellum development: stem cell specification and heterogeneity of anterior rhombic lip. Tong KK, Ma TC, Kwan KM. Dev Growth Differ 57 121-134 (2015)
  122. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. Zakrzewski PK. J Clin Med 10 3900 (2021)
  123. Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mitra S, Werner C, Dietz DM. Mol Psychiatry 27 296-306 (2022)
  124. Alcohol, stem cells and cancer. Gu S, Nguyen BN, Rao S, Li S, Shetty K, Rashid A, Shukla V, Deng CX, Mishra L, Mishra B. Genes Cancer 8 695-700 (2017)
  125. Recent advances in understanding transforming growth factor beta regulation of orofacial development. Greene RM, Pisano MM. Hum Exp Toxicol 24 1-12 (2005)
  126. TGF-β Superfamily Regulation of Follicle-Stimulating Hormone Synthesis by Gonadotrope Cells: Is There a Role for Bone Morphogenetic Proteins? Ongaro L, Schang G, Ho CC, Zhou X, Bernard DJ. Endocrinology 160 675-683 (2019)
  127. The structures that underlie normal reproductive function. Lerch TF, Xu M, Jardetzky TS, Mayo KE, Radhakrishnan I, Kazer R, Shea LD, Woodruff TK. Mol Cell Endocrinol 267 1-5 (2007)
  128. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Ampuja M, Kallioniemi A. Genes Chromosomes Cancer 57 3-11 (2018)
  129. Bone morphogenetic proteins and inner ear development. Ma JY, You D, Li WY, Lu XL, Sun S, Li HW. J Zhejiang Univ Sci B 20 131-145 (2019)
  130. Molecular pathogenesis of pancreatic cancer. Hilgers W, Rosty C, Hahn SA. Hematol Oncol Clin North Am 16 17-35, v (2002)
  131. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Cate RL. Front Endocrinol (Lausanne) 13 905324 (2022)
  132. Smads "freeze" when they ski. Frederick JP, Wang XF. Structure 10 1607-1611 (2002)
  133. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Miyazawa K, Itoh Y, Fu H, Miyazono K. J Biol Chem 300 107256 (2024)
  134. Substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) reprograms mucosal adaptations to chronic airway injury. Pan L, Vlahopoulos S, Tanner L, Bergwik J, Bacsi A, Radak Z, Egesten A, Ba X, Brasier AR, Boldogh I. Front Immunol 14 1186369 (2023)
  135. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Pharmaceuticals (Basel) 17 326 (2024)
  136. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. Ge R, Huang GM. J Bone Oncol 43 100513 (2023)

Articles citing this publication (280)