1na0 Citations

Design of stable alpha-helical arrays from an idealized TPR motif.

Structure 11 497-508 (2003)
Cited: 178 times
EuropePMC logo PMID: 12737816

Abstract

The tetratricopeptide repeat (TPR) is a 34-amino acid alpha-helical motif that occurs in over 300 different proteins. In the different proteins, three to sixteen or more TPR motifs occur in tandem arrays and function to mediate protein-protein interactions. The binding specificity of each TPR protein is different, although the underlying structural motif is the same. Here we describe a statistical approach to the design of an idealized TPR motif. We present the high-resolution X-ray crystal structures (to 1.55 and 1.6 A) of designed TPR proteins and describe their solution properties and stability. A detailed analysis of these structures provides an understanding of the TPR motif, how it is repeated to give helical arrays with different superhelical twists, and how a very stable framework may be constructed for future functional designs.

Reviews - 1na0 mentioned but not cited (2)

  1. Ligand binding by repeat proteins: natural and designed. Grove TZ, Cortajarena AL, Regan L. Curr Opin Struct Biol 18 507-515 (2008)
  2. The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins. Izert MA, Szybowska PE, Górna MW, Merski M. Front Bioinform 1 696368 (2021)

Articles - 1na0 mentioned but not cited (30)

  1. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis ICh, Vajda S. Proteins 78 3124-3130 (2010)
  2. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Ueda G, Antanasijevic A, Fallas JA, Sheffler W, Copps J, Ellis D, Hutchinson GB, Moyer A, Yasmeen A, Tsybovsky Y, Park YJ, Bick MJ, Sankaran B, Gillespie RA, Brouwer PJ, Zwart PH, Veesler D, Kanekiyo M, Graham BS, Sanders RW, Moore JP, Klasse PJ, Ward AB, King NP, Baker D. Elife 9 e57659 (2020)
  3. Ligand binding by TPR domains. Cortajarena AL, Regan L. Protein Sci 15 1193-1198 (2006)
  4. An integrated suite of fast docking algorithms. Mashiach E, Schneidman-Duhovny D, Peri A, Shavit Y, Nussinov R, Wolfson HJ. Proteins 78 3197-3204 (2010)
  5. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z. Proteins 78 3104-3110 (2010)
  6. Stimuli-responsive smart gels realized via modular protein design. Grove TZ, Osuji CO, Forster JD, Dufresne ER, Regan L. J Am Chem Soc 132 14024-14026 (2010)
  7. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures. Ferreiro DU, Walczak AM, Komives EA, Wolynes PG. PLoS Comput Biol 4 e1000070 (2008)
  8. Protein structure prediction for the male-specific region of the human Y chromosome. Ginalski K, Rychlewski L, Baker D, Grishin NV. Proc Natl Acad Sci U S A 101 2305-2310 (2004)
  9. Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins. Javadi Y, Main ER. Proc Natl Acad Sci U S A 106 17383-17388 (2009)
  10. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Aksel T, Barrick D. Methods Enzymol 455 95-125 (2009)
  11. Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition. D'Arcy S, Davies OR, Blundell TL, Bolanos-Garcia VM. J Biol Chem 285 14764-14776 (2010)
  12. Mapping the energy landscape of repeat proteins using NMR-detected hydrogen exchange. Cortajarena AL, Mochrie SG, Regan L. J Mol Biol 379 617-626 (2008)
  13. Origin of a folded repeat protein from an intrinsically disordered ancestor. Zhu H, Sepulveda E, Hartmann MD, Kogenaru M, Ursinus A, Sulz E, Albrecht R, Coles M, Martin J, Lupas AN. Elife 5 e16761 (2016)
  14. Crystal structure of the N-terminal domain of anaphase-promoting complex subunit 7. Han D, Kim K, Kim Y, Kang Y, Lee JY, Kim Y. J Biol Chem 284 15137-15146 (2009)
  15. Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble. Cortajarena AL, Mochrie SG, Regan L. Protein Sci 20 1042-1047 (2011)
  16. Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors. Phillips JJ, Javadi Y, Millership C, Main ER. Protein Sci 21 327-338 (2012)
  17. A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins. Marold JD, Kavran JM, Bowman GD, Barrick D. Structure 23 2055-2065 (2015)
  18. SymmRef: a flexible refinement method for symmetric multimers. Mashiach-Farkash E, Nussinov R, Wolfson HJ. Proteins 79 2607-2623 (2011)
  19. Selection of near-native poses in CAPRI rounds 13-19. Qin S, Zhou HX. Proteins 78 3166-3173 (2010)
  20. The plant proteome folding project: structure and positive selection in plant protein families. Pentony MM, Winters P, Penfold-Brown D, Drew K, Narechania A, DeSalle R, Bonneau R, Purugganan MD. Genome Biol Evol 4 360-371 (2012)
  21. Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering. Taube M, Pieńkowska JR, Jarmołowski A, Kozak M. PLoS One 9 e93313 (2014)
  22. Ssn6-Tup1 global transcriptional co-repressor: Role of the N-terminal glutamine-rich region of Ssn6. Tartas A, Zarkadas C, Palaiomylitou M, Gounalaki N, Tzamarias D, Vlassi M. PLoS One 12 e0186363 (2017)
  23. Exploring new strategies for grafting binding peptides onto protein loops using a consensus-designed tetratricopeptide repeat scaffold. Madden SK, Perez-Riba A, Itzhaki LS. Protein Sci 28 738-745 (2019)
  24. Inferring repeat-protein energetics from evolutionary information. Espada R, Parra RG, Mora T, Walczak AM, Ferreiro DU. PLoS Comput Biol 13 e1005584 (2017)
  25. Removal of a consensus proline is not sufficient to allow tetratricopeptide repeat oligomerization. Bakkum AL, Hill RB. Protein Sci 26 1974-1983 (2017)
  26. Solution Structure of the Carboxy-Terminal Tandem Repeat Domain of Eukaryotic Elongation Factor 2 Kinase and Its Role in Substrate Recognition. Piserchio A, Will N, Giles DH, Hajredini F, Dalby KN, Ghose R. J Mol Biol 431 2700-2717 (2019)
  27. Engineered Protein-Driven Synthesis of Tunable Iron Oxide Nanoparticles as T1 and T2 Magnetic Resonance Imaging Contrast Agents. Aires A, Fernández-Afonso Y, Guedes G, Guisasola E, Gutiérrez L, Cortajarena AL. Chem Mater 34 10832-10841 (2022)
  28. A conserved, noncanonical insert in FIS1 mediates TBC1D15 and DRP1 recruitment for mitochondrial fission. Ihenacho UK, Toro R, Mansour RH, Hill RB. J Biol Chem 299 105303 (2023)
  29. Exploring the binding of rationally engineered tandem-repeat proteins to E3 ubiquitin ligase Keap1. Madden SK, Itzhaki LS. Protein Eng Des Sel 34 gzab027 (2021)
  30. StaRProtein, a web server for prediction of the stability of repeat proteins. Xu Y, Zhou X, Huang M. PLoS One 10 e0119417 (2015)


Reviews citing this publication (19)

  1. Engineering novel binding proteins from nonimmunoglobulin domains. Binz HK, Amstutz P, Plückthun A. Nat Biotechnol 23 1257-1268 (2005)
  2. DARPins and other repeat protein scaffolds: advances in engineering and applications. Boersma YL, Plückthun A. Curr Opin Biotechnol 22 849-857 (2011)
  3. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J. Infect Immun 81 629-635 (2013)
  4. The folding and design of repeat proteins: reaching a consensus. Main ER, Jackson SE, Regan L. Curr Opin Struct Biol 13 482-489 (2003)
  5. Consensus protein design. Porebski BT, Buckle AM. Protein Eng Des Sel 29 245-251 (2016)
  6. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Kloss E, Courtemanche N, Barrick D. Arch Biochem Biophys 469 83-99 (2008)
  7. Consensus design of repeat proteins. Forrer P, Binz HK, Stumpp MT, Plückthun A. Chembiochem 5 183-189 (2004)
  8. The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins. Barik S. Int J Mol Sci 21 E8776 (2020)
  9. Protein stability by number: high-throughput and statistical approaches to one of protein science's most difficult problems. Magliery TJ, Lavinder JJ, Sullivan BJ. Curr Opin Chem Biol 15 443-451 (2011)
  10. Tandem-repeat proteins: regularity plus modularity equals design-ability. Javadi Y, Itzhaki LS. Curr Opin Struct Biol 23 622-631 (2013)
  11. Protein-Engineered Functional Materials. Wang Y, Katyal P, Montclare JK. Adv Healthc Mater 8 e1801374 (2019)
  12. Designing repeat proteins: a modular approach to protein design. Parmeggiani F, Huang PS. Curr Opin Struct Biol 45 116-123 (2017)
  13. Evolutionary mechanism as a template for protein engineering. Eisenbeis S, Höcker B. J Pept Sci 16 538-544 (2010)
  14. Structural basis of the TAL effector-DNA interaction. Bochtler M. Biol Chem 393 1055-1066 (2012)
  15. NextGen protein design. Sawyer N, Speltz EB, Regan L. Biochem Soc Trans 41 1131-1136 (2013)
  16. Repeat protein engineering: creating functional nanostructures/biomaterials from modular building blocks. Main ER, Phillips JJ, Millership C. Biochem Soc Trans 41 1152-1158 (2013)
  17. Evolution of Protein Structure and Stability in Global Warming. Barik S. Int J Mol Sci 21 E9662 (2020)
  18. A designed repeat protein as an affinity capture reagent. Speltz EB, Brown RS, Hajare HS, Schlieker C, Regan L. Biochem Soc Trans 43 874-880 (2015)
  19. An Analytical Review of the Structural Features of Pentatricopeptide Repeats: Strategic Amino Acids, Repeat Arrangements and Superhelical Architecture. Barik S. Int J Mol Sci 22 5407 (2021)

Articles citing this publication (127)

  1. High-affinity binders selected from designed ankyrin repeat protein libraries. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A. Nat Biotechnol 22 575-582 (2004)
  2. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. J Mol Biol 332 489-503 (2003)
  3. Structural basis for endosomal targeting by the Bro1 domain. Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH. Dev Cell 8 937-947 (2005)
  4. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Abbas YM, Pichlmair A, Górna MW, Superti-Furga G, Nagar B. Nature 494 60-64 (2013)
  5. Exploring the repeat protein universe through computational protein design. Brunette TJ, Parmeggiani F, Huang PS, Bhabha G, Ekiert DC, Tsutakawa SE, Hura GL, Tainer JA, Baker D. Nature 528 580-584 (2015)
  6. PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. Koo J, Tammam S, Ku SY, Sampaleanu LM, Burrows LL, Howell PL. J Bacteriol 190 6961-6969 (2008)
  7. Convergent evolution of receptors for protein import into mitochondria. Perry AJ, Hulett JM, Likić VA, Lithgow T, Gooley PR. Curr Biol 16 221-229 (2006)
  8. Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Matyskiela ME, Morgan DO. Mol Cell 34 68-80 (2009)
  9. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Tiede C, Tang AA, Deacon SE, Mandal U, Nettleship JE, Owen RL, George SE, Harrison DJ, Owens RJ, Tomlinson DC, McPherson MJ. Protein Eng Des Sel 27 145-155 (2014)
  10. An artificial PPR scaffold for programmable RNA recognition. Coquille S, Filipovska A, Chia T, Rajappa L, Lingford JP, Razif MF, Thore S, Rackham O. Nat Commun 5 5729 (2014)
  11. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Lee SC, Park K, Han J, Lee JJ, Kim HJ, Hong S, Heu W, Kim YJ, Ha JS, Lee SG, Cheong HK, Jeon YH, Kim D, Kim HS. Proc Natl Acad Sci U S A 109 3299-3304 (2012)
  12. Computational design of self-assembling cyclic protein homo-oligomers. Fallas JA, Ueda G, Sheffler W, Nguyen V, McNamara DE, Sankaran B, Pereira JH, Parmeggiani F, Brunette TJ, Cascio D, Yeates TR, Zwart P, Baker D. Nat Chem 9 353-360 (2017)
  13. Designed armadillo repeat proteins as general peptide-binding scaffolds: consensus design and computational optimization of the hydrophobic core. Parmeggiani F, Pellarin R, Larsen AP, Varadamsetty G, Stumpp MT, Zerbe O, Caflisch A, Plückthun A. J Mol Biol 376 1282-1304 (2008)
  14. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. J Mol Biol 358 1010-1022 (2006)
  15. Structural basis of response regulator dephosphorylation by Rap phosphatases. Parashar V, Mirouze N, Dubnau DA, Neiditch MB. PLoS Biol 9 e1000589 (2011)
  16. Rational design of α-helical tandem repeat proteins with closed architectures. Doyle L, Hallinan J, Bolduc J, Parmeggiani F, Baker D, Stoddard BL, Bradley P. Nature 528 585-588 (2015)
  17. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Cliff MJ, Harris R, Barford D, Ladbury JE, Williams MA. Structure 14 415-426 (2006)
  18. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria. Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. J Mol Biol 409 348-357 (2011)
  19. Molecular recognition via coupled folding and binding in a TPR domain. Cliff MJ, Williams MA, Brooke-Smith J, Barford D, Ladbury JE. J Mol Biol 346 717-732 (2005)
  20. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M, Syu T, Magliery TJ. J Mol Biol 420 384-399 (2012)
  21. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Sternke M, Tripp KW, Barrick D. Proc Natl Acad Sci U S A 116 11275-11284 (2019)
  22. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding. Aksel T, Majumdar A, Barrick D. Structure 19 349-360 (2011)
  23. Co-operative versus independent transport of different cargoes by Kinesin-1. Hammond JW, Griffin K, Jih GT, Stuckey J, Verhey KJ. Traffic 9 725-741 (2008)
  24. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. Büttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann HH. J Mol Biol 375 997-1012 (2008)
  25. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. Parashar V, Jeffrey PD, Neiditch MB. PLoS Biol 11 e1001512 (2013)
  26. Control of repeat-protein curvature by computational protein design. Park K, Shen BW, Parmeggiani F, Huang PS, Stoddard BL, Baker D. Nat Struct Mol Biol 22 167-174 (2015)
  27. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. Magliery TJ, Regan L. J Mol Biol 343 731-745 (2004)
  28. Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. Tripp KW, Barrick D. J Mol Biol 365 1187-1200 (2007)
  29. Consensus protein design without phylogenetic bias. Jäckel C, Bloom JD, Kast P, Arnold FH, Hilvert D. J Mol Biol 399 541-546 (2010)
  30. MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Huang SY, Zou X. Proteins 78 3096-3103 (2010)
  31. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. J Mol Biol 425 1318-1329 (2013)
  32. Structural basis of response regulator inhibition by a bacterial anti-activator protein. Baker MD, Neiditch MB. PLoS Biol 9 e1001226 (2011)
  33. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence. Lahr RM, Mack SM, Héroux A, Blagden SP, Bousquet-Antonelli C, Deragon JM, Berman AJ. Nucleic Acids Res 43 8077-8088 (2015)
  34. A general computational approach for repeat protein design. Parmeggiani F, Huang PS, Vorobiev S, Xiao R, Park K, Caprari S, Su M, Seetharaman J, Mao L, Janjua H, Montelione GT, Hunt J, Baker D. J Mol Biol 427 563-575 (2015)
  35. A direct interaction between the Utp6 half-a-tetratricopeptide repeat domain and a specific peptide in Utp21 is essential for efficient pre-rRNA processing. Champion EA, Lane BH, Jackrel ME, Regan L, Baserga SJ. Mol Cell Biol 28 6547-6556 (2008)
  36. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19. Sircar A, Chaudhury S, Kilambi KP, Berrondo M, Gray JJ. Proteins 78 3115-3123 (2010)
  37. Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer. Krachler AM, Sharma A, Kleanthous C. Proteins 78 2131-2143 (2010)
  38. The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores. Bolanos-Garcia VM, Kiyomitsu T, D'Arcy S, Chirgadze DY, Grossmann JG, Matak-Vinkovic D, Venkitaraman AR, Yanagida M, Robinson CV, Blundell TL. Structure 17 105-116 (2009)
  39. Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT. Fiorucci S, Zacharias M. Proteins 78 3131-3139 (2010)
  40. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen. Lakhssassi N, Liu S, Bekal S, Zhou Z, Colantonio V, Lambert K, Barakat A, Meksem K. Sci Rep 7 45226 (2017)
  41. Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms. Faudry E, Job V, Dessen A, Attree I, Forge V. FEBS J 274 3601-3610 (2007)
  42. Computational design of a leucine-rich repeat protein with a predefined geometry. Rämisch S, Weininger U, Martinsson J, Akke M, André I. Proc Natl Acad Sci U S A 111 17875-17880 (2014)
  43. Shifting transition states in the unfolding of a large ankyrin repeat protein. Werbeck ND, Rowling PJ, Chellamuthu VR, Itzhaki LS. Proc Natl Acad Sci U S A 105 9982-9987 (2008)
  44. TPR Proteins in Plant Hormone Signaling. Schapire AL, Valpuesta V, Botella MA. Plant Signal Behav 1 229-230 (2006)
  45. Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand. Cortajarena AL, Wang J, Regan L. FEBS J 277 1058-1066 (2010)
  46. Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. Zhang Z, Roe SM, Diogon M, Kong E, El Alaoui H, Barford D. J Mol Biol 397 1316-1328 (2010)
  47. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. Wilson CG, Kajander T, Regan L. FEBS J 272 166-179 (2005)
  48. The design and structural characterization of a synthetic pentatricopeptide repeat protein. Gully BS, Shah KR, Shah KR, Lee M, Shearston K, Smith NM, Sadowska A, Blythe AJ, Bernath-Levin K, Stanley WA, Small ID, Bond CS. Acta Crystallogr D Biol Crystallogr 71 196-208 (2015)
  49. Letter Designed proteins to modulate cellular networks. Cortajarena AL, Liu TY, Hochstrasser M, Regan L. ACS Chem Biol 5 545-552 (2010)
  50. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-Kammoun Z, Desmadril M, van Tilbeurgh H, Minard P. PLoS One 8 e71512 (2013)
  51. Crystal structure of a consensus-designed ankyrin repeat protein: implications for stability. Binz HK, Kohl A, Plückthun A, Grütter MG. Proteins 65 280-284 (2006)
  52. Crystal structure of the N-terminal domain of Nup358/RanBP2. Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. J Mol Biol 423 752-765 (2012)
  53. Non-random-coil behavior as a consequence of extensive PPII structure in the denatured state. Cortajarena AL, Lois G, Sherman E, O'Hern CS, Regan L, Haran G. J Mol Biol 382 203-212 (2008)
  54. The peptide-substrate-binding domain of collagen prolyl 4-hydroxylases is a tetratricopeptide repeat domain with functional aromatic residues. Pekkala M, Hieta R, Bergmann U, Kivirikko KI, Wierenga RK, Myllyharju J. J Biol Chem 279 52255-52261 (2004)
  55. A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Aires A, Llarena I, Moller M, Castro-Smirnov J, Cabanillas-Gonzalez J, Cortajarena AL. Angew Chem Int Ed Engl 58 6214-6219 (2019)
  56. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly. Dong C, Hou HF, Yang X, Shen YQ, Dong YH. Acta Crystallogr D Biol Crystallogr 68 95-101 (2012)
  57. Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. de Vries SJ, Melquiond AS, Kastritis PL, Karaca E, Bordogna A, van Dijk M, Rodrigues JP, Bonvin AM. Proteins 78 3242-3249 (2010)
  58. The highly repetitive region of the Helicobacter pylori CagY protein comprises tandem arrays of an alpha-helical repeat module. Delahay RM, Balkwill GD, Bunting KA, Edwards W, Atherton JC, Searle MS. J Mol Biol 377 956-971 (2008)
  59. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Bowman A, Lercher L, Singh HR, Zinne D, Timinszky G, Carlomagno T, Ladurner AG. Nucleic Acids Res 44 3105-3117 (2016)
  60. Calorimetric study of a series of designed repeat proteins: modular structure and modular folding. Cortajarena AL, Regan L. Protein Sci 20 336-340 (2011)
  61. Distribution of activator of G-protein signaling 3 within the aggresomal pathway: role of specific residues in the tetratricopeptide repeat domain and differential regulation by the AGS3 binding partners Gi(alpha) and mammalian inscuteable. Vural A, Oner S, An N, Simon V, Ma D, Blumer JB, Lanier SM. Mol Cell Biol 30 1528-1540 (2010)
  62. Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. Nikkhah M, Jawad-Alami Z, Demydchuk M, Ribbons D, Paoli M. Biomol Eng 23 185-194 (2006)
  63. Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. Mirus O, Bionda T, von Haeseler A, Schleiff E. J Mol Model 15 971-982 (2009)
  64. Evolutionary protein stabilization in comparison with computational design. Wunderlich M, Martin A, Staab CA, Schmid FX. J Mol Biol 351 1160-1168 (2005)
  65. The conserved N-terminal region of the mitotic checkpoint protein BUBR1: a putative TPR motif of high surface activity. Bolanos-Garcia VM, Beaufils S, Renault A, Grossmann JG, Brewerton S, Lee M, Venkitaraman A, Blundell TL. Biophys J 89 2640-2649 (2005)
  66. All repeats are not equal: a module-based approach to guide repeat protein design. Sawyer N, Chen J, Regan L. J Mol Biol 425 1826-1838 (2013)
  67. The targets of CAPRI Rounds 13-19. Janin J. Proteins 78 3067-3072 (2010)
  68. A modular approach to the design of protein-based smart gels. Grove TZ, Forster J, Pimienta G, Dufresne E, Regan L. Biopolymers 97 508-517 (2012)
  69. Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis. Dieppedale J, Gesbert G, Ramond E, Chhuon C, Dubail I, Dupuis M, Guerrera IC, Charbit A. Mol Cell Proteomics 12 2278-2292 (2013)
  70. The roles and mechanism of IFIT5 in bladder cancer epithelial-mesenchymal transition and progression. Huang J, Lo UG, Wu S, Wang B, Pong RC, Lai CH, Lin H, He D, Hsieh JT, Wu K. Cell Death Dis 10 437 (2019)
  71. The tetratricopeptide repeat domains of rapsyn bind directly to cytoplasmic sequences of the muscle-specific kinase. Antolik C, Catino DH, Resneck WG, Bloch RJ. Neuroscience 141 87-100 (2006)
  72. TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7. Han D, Kim K, Oh J, Park J, Kim Y. Proteins 70 900-914 (2008)
  73. Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Vangone A, Cavallo L, Oliva R. Proteins 81 2210-2220 (2013)
  74. Consensus engineering of sucrose phosphorylase: the outcome reflects the sequence input. Aerts D, Verhaeghe T, Joosten HJ, Vriend G, Soetaert W, Desmet T. Biotechnol Bioeng 110 2563-2572 (2013)
  75. A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Royan S, Gutmann B, Colas des Francs-Small C, Honkanen S, Schmidberger J, Soet A, Sun YK, Vincis Pereira Sanglard L, Bond CS, Small I. Commun Biol 4 545 (2021)
  76. Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family. Gasparini A, Tosatto SCE, Murgia A, Leonardi E. Sci Rep 7 6829 (2017)
  77. Fibrous nanostructures from the self-assembly of designed repeat protein modules. Phillips JJ, Millership C, Main ER. Angew Chem Int Ed Engl 51 13132-13135 (2012)
  78. Modular ssDNA binding and inhibition of telomerase activity by designer PPR proteins. Spåhr H, Chia T, Lingford JP, Siira SJ, Cohen SB, Filipovska A, Rackham O. Nat Commun 9 2212 (2018)
  79. The use of consensus sequence information to engineer stability and activity in proteins. Sternke M, Tripp KW, Barrick D. Methods Enzymol 643 149-179 (2020)
  80. Site-specific protein double labeling by expressed protein ligation: applications to repeat proteins. De Rosa L, Cortajarena AL, Romanelli A, Regan L, D'Andrea LD. Org Biomol Chem 10 273-280 (2012)
  81. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Proteins 70 72-82 (2008)
  82. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway. Millership C, Phillips JJ, Main ER. J Mol Biol 428 1804-1817 (2016)
  83. Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. Lin J, Wilson MA. J Biol Chem 286 19459-19469 (2011)
  84. Examination of the dimerization states of the single-stranded RNA recognition protein pentatricopeptide repeat 10 (PPR10). Li Q, Yan C, Xu H, Wang Z, Long J, Li W, Wu J, Yin P, Yan N. J Biol Chem 289 31503-31512 (2014)
  85. Modulation of folding kinetics of repeat proteins: interplay between intra- and interdomain interactions. Hagai T, Azia A, Trizac E, Levy Y. Biophys J 103 1555-1565 (2012)
  86. The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor. Danot O. Mol Microbiol 77 628-641 (2010)
  87. A structural model for the HAT domain of Utp6 incorporating bioinformatics and genetics. Champion EA, Kundrat L, Regan L, Baserga SJ. Protein Eng Des Sel 22 431-439 (2009)
  88. Controlled nanometric fibers of self-assembled designed protein scaffolds. Mejías SH, Sot B, Guantes R, Cortajarena AL. Nanoscale 6 10982-10988 (2014)
  89. Creating a Homeodomain with High Stability and DNA Binding Affinity by Sequence Averaging. Tripp KW, Sternke M, Majumdar A, Barrick D. J Am Chem Soc 139 5051-5060 (2017)
  90. Identification of a novel HSP70-binding cochaperone critical to HSP90-mediated activation of small serine/threonine kinase. Jha KN, Wong L, Zerfas PM, De Silva RS, Fan YX, Spiridonov NA, Johnson GR. J Biol Chem 285 35180-35187 (2010)
  91. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. PLoS Pathog 17 e1009920 (2021)
  92. A designed, phase changing RTX-based peptide for efficient bioseparations. Shur O, Dooley K, Blenner M, Baltimore M, Banta S. Biotechniques 54 197-8, 200, 202, 204, 206 (2013)
  93. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins. Perez-Riba A, Lowe AR, Main ERG, Itzhaki LS. Biophys J 114 2552-2562 (2018)
  94. Comment Folding by consensus. Tripp KW, Barrick D. Structure 11 486-487 (2003)
  95. Tracking the unfolding pathway of a multirepeat protein via tryptophan scanning: evidence of localized instability in the mitochondrial import receptor Tom70. Bushell SR, Bottomley SP, Rossjohn J, Beddoe T. J Biol Chem 281 24345-24350 (2006)
  96. Dynamic combinatorial libraries of artificial repeat proteins. Eisenberg M, Shumacher I, Cohen-Luria R, Ashkenasy G. Bioorg Med Chem 21 3450-3457 (2013)
  97. Repeat protein scaffolds: ordering photo- and electroactive molecules in solution and solid state. Mejías SH, López-Andarias J, Sakurai T, Yoneda S, Erazo KP, Seki S, Atienza C, Martín N, Cortajarena AL. Chem Sci 7 4842-4847 (2016)
  98. CAPRI targets T29-T42: proving ground for new docking procedures. Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. Proteins 78 3174-3181 (2010)
  99. Double autoinhibition mechanism of signal transduction ATPases with numerous domains (STAND) with a tetratricopeptide repeat sensor. Lisa MN, Cvirkaite-Krupovic V, Richet E, André-Leroux G, Alzari PM, Haouz A, Danot O. Nucleic Acids Res 47 3795-3810 (2019)
  100. Engineering mono- and multi-valent inhibitors on a modular scaffold. Diamante A, Chaturbedy PK, Rowling PJE, Kumita JR, Eapen RS, McLaughlin SH, de la Roche M, Perez-Riba A, Itzhaki LS. Chem Sci 12 880-895 (2021)
  101. Artificial leucine rich repeats as new scaffolds for protein design. Baabur-Cohen H, Dayalan S, Shumacher I, Cohen-Luria R, Ashkenasy G. Bioorg Med Chem Lett 21 2372-2375 (2011)
  102. Comparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain. Jarymowycz VA, Cortajarena AL, Regan L, Stone MJ. J Biomol NMR 41 169-178 (2008)
  103. Engineered Repeat Protein Hybrids: The New Horizon for Biologic Medicines and Diagnostic Tools. Uribe KB, Guisasola E, Aires A, López-Martínez E, Guedes G, Sasselli IR, Cortajarena AL. Acc Chem Res (2021)
  104. Fast and global detection of periodic sequence repeats in large genomic resources. Mori H, Evans-Yamamoto D, Ishiguro S, Tomita M, Yachie N. Nucleic Acids Res 47 e8 (2019)
  105. Repeat protein architectures predicted by a continuum representation of fold space. Hausrath AC, Goriely A. Protein Sci 15 753-760 (2006)
  106. Structure of the C-Terminal Helical Repeat Domain of Eukaryotic Elongation Factor 2 Kinase. Will N, Piserchio A, Snyder I, Ferguson SB, Giles DH, Dalby KN, Ghose R. Biochemistry 55 5377-5386 (2016)
  107. Continuous representations of proteins: construction of coordinate models from curvature profiles. Hausrath AC, Goriely A. J Struct Biol 158 267-281 (2007)
  108. Diffuse transition state structure for the unfolding of a leucine-rich repeat protein. Kelly SE, Meisl G, Rowling PJ, McLaughlin SH, Knowles T, Itzhaki LS. Phys Chem Chem Phys 16 6448-6459 (2014)
  109. Intrinsic Disorder in Tetratricopeptide Repeat Proteins. Van Bibber NW, Haerle C, Khalife R, Xue B, Uversky VN. Int J Mol Sci 21 E3709 (2020)
  110. KDM6A mutations promote acute cytoplasmic DNA release, DNA damage response and mitosis defects. Koch J, Lang A, Whongsiri P, Schulz WA, Hoffmann MJ, Greife A. BMC Mol Cell Biol 22 54 (2021)
  111. Protein Tetratricopeptide Repeat and the Companion Non-tetratricopeptide Repeat Helices: Bioinformatic Analysis of Interhelical Interactions. Barik S. Bioinform Biol Insights 13 1177932219863363 (2019)
  112. Protein knotting through concatenation significantly reduces folding stability. Hsu SD. Sci Rep 6 39357 (2016)
  113. Sequence analyses reveal that a TPR-DP module, surrounded by recombinable flanking introns, could be at the origin of eukaryotic Hop and Hip TPR-DP domains and prokaryotic GerD proteins. Hernández Torres J, Papandreou N, Chomilier J. Cell Stress Chaperones 14 281-289 (2009)
  114. Testing the length limit of loop grafting in a helical repeat protein. Ripka JF, Perez-Riba A, Chaturbedy PK, Itzhaki LS. Curr Res Struct Biol 3 30-40 (2021)
  115. The Nature and Arrangement of Pentatricopeptide Domains and the Linker Sequences Between Them. Barik S. Bioinform Biol Insights 14 1177932220906434 (2020)
  116. Two-dimensional surface display of functional groups on a beta-helical antifreeze protein scaffold. Bar M, Scherf T, Fass D. Protein Eng Des Sel 21 107-114 (2008)
  117. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. ACS Nano 16 3895-3905 (2022)
  118. A molecular dynamics study of the binary complexes of APP, JIP1, and the cargo binding domain of KLC. Taylor CA, Miller BR, Shah SS, Parish CA. Proteins 85 221-234 (2017)
  119. Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold. Perez-Riba A, Komives E, Main ERG, Itzhaki LS. Sci Rep 9 15439 (2019)
  120. Using physical features of protein core packing to distinguish real proteins from decoys. Grigas AT, Mei Z, Treado JD, Levine ZA, Regan L, O'Hern CS. Protein Sci 29 1931-1944 (2020)
  121. High-resolution NMR characterization of a spider-silk mimetic composed of 15 tandem repeats and a CRGD motif. McLachlan GD, Slocik J, Mantz R, Kaplan D, Cahill S, Girvin M, Greenbaum S. Protein Sci 18 206-216 (2009)
  122. Structure of the hypothetical protein Ton1535 from Thermococcus onnurineus NA1 reveals unique structural properties by a left-handed helical turn in normal α-solenoid protein. Jeong JH, Kim YS, Rojvirija C, Cha HJ, Kim YG, Ha SC. Proteins 82 1072-1078 (2014)
  123. Evidence of a novel silencing effect on transgenes in the Arabidopsis thaliana sperm cell. Ohnishi Y, Kawashima T. Plant Cell 35 3926-3936 (2023)
  124. Fibroblast-derived extracellular vesicles as trackable efficient transporters of an experimental nanodrug with fibrotic heart and lung targeting. RuizdelRio J, Guedes G, Novillo D, Lecue E, Palanca A, Cortajarena AL, Villar AV. Theranostics 14 176-202 (2024)
  125. Intensification: A Resource for Amplifying Population-Genetic Signals with Protein Repeats. Chen J, Wang B, Regan L, Gerstein M. J Mol Biol 429 435-445 (2017)
  126. Intermediates in the folding equilibrium of repeat proteins from the TPR family. González-Charro V, Rey A. Eur Biophys J 43 433-443 (2014)
  127. Library of binding protein scaffolds (LibBP): a computational platform for selection of binding protein scaffolds. Hong S, Kim D. Bioinformatics 32 1709-1715 (2016)