1nt0 Citations

Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2.

EMBO J 22 2348-59 (2003)
Cited: 68 times
EuropePMC logo PMID: 12743029

Abstract

Serum mannose-binding proteins (MBPs) are C-type lectins that recognize cell surface carbohydrate structures on pathogens, and trigger killing of these targets by activating the complement pathway. MBPs circulate as a complex with MBP-associated serine proteases (MASPs), which become activated upon engagement of a target cell surface. The minimal functional unit for complement activation is a MASP homodimer bound to two MBP trimeric subunits. MASPs have a modular structure consisting of an N-terminal CUB domain, a Ca(2+)-binding EGF-like domain, a second CUB domain, two complement control protein modules and a C-terminal serine protease domain. The CUB1-EGF-CUB2 region mediates homodimerization and binding to MBP. The crystal structure of the MASP-2 CUB1-EGF-CUB2 dimer reveals an elongated structure with a prominent concave surface that is proposed to be the MBP-binding site. A model of the full six-domain structure and its interaction with MBPs suggests mechanisms by which binding to a target cell transmits conformational changes from MBP to MASP that allow activation of its protease activity.

Articles - 1nt0 mentioned but not cited (8)

  1. Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. Appleton BA, Wu P, Maloney J, Yin J, Liang WC, Stawicki S, Mortara K, Bowman KK, Elliott JM, Desmarais W, Bazan JF, Bagri A, Tessier-Lavigne M, Koch AW, Wu Y, Watts RJ, Wiesmann C. EMBO J. 26 4902-4912 (2007)
  2. Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2. Feinberg H, Uitdehaag JC, Davies JM, Wallis R, Drickamer K, Weis WI. EMBO J. 22 2348-2359 (2003)
  3. Analogous interactions in initiating complexes of the classical and lectin pathways of complement. Phillips AE, Toth J, Dodds AW, Girija UV, Furze CM, Pala E, Sim RB, Reid KB, Schwaeble WJ, Schmid R, Keeble AH, Wallis R. J. Immunol. 182 7708-7717 (2009)
  4. Structure of a signaling-competent reelin fragment revealed by X-ray crystallography and electron tomography. Nogi T, Yasui N, Hattori M, Iwasaki K, Takagi J. EMBO J. 25 3675-3683 (2006)
  5. Near-planar solution structures of mannose-binding lectin oligomers provide insight on activation of lectin pathway of complement. Miller A, Phillips A, Gor J, Wallis R, Perkins SJ. J. Biol. Chem. 287 3930-3945 (2012)
  6. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines. Gellért A, Salánki K, Tombácz K, Tuboly T, Balázs E. PLoS ONE 7 e52688 (2012)
  7. Bridging Themes: Short Protein Segments Found in Different Architectures. Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. Mol Biol Evol 38 2191-2208 (2021)
  8. Flexibility in Mannan-Binding Lectin-Associated Serine Proteases-1 and -2 Provides Insight on Lectin Pathway Activation. Nan R, Furze CM, Wright DW, Gor J, Wallis R, Perkins SJ. Structure 25 364-375 (2017)


Reviews citing this publication (23)

  1. The lectin-complement pathway--its role in innate immunity and evolution. Fujita T, Matsushita M, Endo Y. Immunol. Rev. 198 185-202 (2004)
  2. Mannose-binding lectin in innate immunity: past, present and future. Dommett RM, Klein N, Turner MW. Tissue Antigens 68 193-209 (2006)
  3. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. Reigstad LJ, Varhaug JE, Lillehaug JR. FEBS J. 272 5723-5741 (2005)
  4. Structure and activation of the C1 complex of complement: unraveling the puzzle. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Trends Immunol. 25 368-373 (2004)
  5. The mannose-binding lectin: a prototypic pattern recognition molecule. Takahashi K, Ip WE, Michelow IC, Ezekowitz RA. Curr. Opin. Immunol. 18 16-23 (2006)
  6. Paths reunited: Initiation of the classical and lectin pathways of complement activation. Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH. Immunobiology 215 1-11 (2010)
  7. Mannan-binding-lectin-associated serine proteases, characteristics and disease associations. Sørensen R, Thiel S, Jensenius JC. Springer Semin. Immunopathol. 27 299-319 (2005)
  8. Role of ficolin in innate immunity and its molecular basis. Endo Y, Matsushita M, Fujita T. Immunobiology 212 371-379 (2007)
  9. The role of ficolins in the lectin pathway of innate immunity. Endo Y, Matsushita M, Fujita T. Int. J. Biochem. Cell Biol. 43 705-712 (2011)
  10. Interactions between mannose-binding lectin and MASPs during complement activation by the lectin pathway. Wallis R. Immunobiology 212 289-299 (2007)
  11. Toward a structure-based comprehension of the lectin pathway of complement. Kjaer TR, Thiel S, Andersen GR. Mol. Immunol. 56 413-422 (2013)
  12. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Gál P, Dobó J, Závodszky P, Sim RB. Mol. Immunol. 46 2745-2752 (2009)
  13. Multiple roles of complement MASP-1 at the interface of innate immune response and coagulation. Dobó J, Schroeder V, Jenny L, Cervenak L, Závodszky P, Gál P. Mol. Immunol. 61 69-78 (2014)
  14. Serine proteases of the classical and lectin pathways: similarities and differences. Gál P, Barna L, Kocsis A, Závodszky P. Immunobiology 212 267-277 (2007)
  15. C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Beinrohr L, Dobó J, Závodszky P, Gál P. Trends Mol Med 14 511-521 (2008)
  16. The initiating proteases of the complement system: controlling the cleavage. Duncan RC, Wijeyewickrema LC, Pike RN. Biochimie 90 387-395 (2008)
  17. Structure and properties of the Ca(2+)-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions. Gaboriaud C, Gregory-Pauron L, Teillet F, Thielens NM, Bally I, Arlaud GJ. Biochem. J. 439 185-193 (2011)
  18. Human lectins and their roles in viral infections. Mason CP, Tarr AW. Molecules 20 2229-2271 (2015)
  19. MBL-associated serine proteases (MASPs) and infectious diseases. Beltrame MH, Boldt AB, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. Mol. Immunol. 67 85-100 (2015)
  20. Assembly of C1 and the MBL- and ficolin-MASP complexes: structural insights. Gaboriaud C, Teillet F, Gregory LA, Thielens NM, Arlaud GJ. Immunobiology 212 279-288 (2007)
  21. Toward a structure-based comprehension of the lectin pathway of complement. Kjaer TR, Thiel S, Andersen GR. Mol. Immunol. 56 222-231 (2013)
  22. The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. Evans-Osses I, de Messias-Reason I, Ramirez MI. ScientificWorldJournal 2013 675898 (2013)
  23. SALSA-A dance on a slippery floor with changing partners. Reichhardt MP, Holmskov U, Meri S. Mol. Immunol. 89 100-110 (2017)

Articles citing this publication (37)

  1. Levels of mannan-binding lectin-associated serine protease-2 in healthy individuals. Møller-Kristensen M, Jensenius JC, Jensen L, Thielens N, Rossi V, Arlaud G, Thiel S. J. Immunol. Methods 282 159-167 (2003)
  2. MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. Dobó J, Harmat V, Beinrohr L, Sebestyén E, Závodszky P, Gál P. J Immunol 183 1207-1214 (2009)
  3. Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. Chen CB, Wallis R. J. Biol. Chem. 279 26058-26065 (2004)
  4. Characterization of recombinant mannan-binding lectin-associated serine protease (MASP)-3 suggests an activation mechanism different from that of MASP-1 and MASP-2. Zundel S, Cseh S, Lacroix M, Dahl MR, Matsushita M, Andrieu JP, Schwaeble WJ, Jensenius JC, Fujita T, Arlaud GJ, Thielens NM. J Immunol 172 4342-4350 (2004)
  5. Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway. Iwaki D, Kanno K, Takahashi M, Endo Y, Lynch NJ, Schwaeble WJ, Matsushita M, Okabe M, Fujita T. J Immunol 177 8626-8632 (2006)
  6. CDCP1 identifies a broad spectrum of normal and malignant stem/progenitor cell subsets of hematopoietic and nonhematopoietic origin. Bühring HJ, Kuçi S, Conze T, Rathke G, Bartolović K, Grünebach F, Scherl-Mostageer M, Brümmendorf TH, Schweifer N, Lammers R. Stem Cells 22 334-343 (2004)
  7. Residue Lys57 in the collagen-like region of human L-ficolin and its counterpart Lys47 in H-ficolin play a key role in the interaction with the mannan-binding lectin-associated serine proteases and the collectin receptor calreticulin. Lacroix M, Dumestre-Pérard C, Schoehn G, Houen G, Cesbron JY, Arlaud GJ, Thielens NM. J Immunol 182 456-465 (2009)
  8. The structure of complement C3b provides insights into complement activation and regulation. Abdul Ajees A, Gunasekaran K, Volanakis JE, Narayana SV, Kotwal GJ, Murthy HM. Nature 444 221-225 (2006)
  9. Identification of the C1q-binding Sites of Human C1r and C1s: a refined three-dimensional model of the C1 complex of complement. Bally I, Rossi V, Lunardi T, Thielens NM, Gaboriaud C, Arlaud GJ. J. Biol. Chem. 284 19340-19348 (2009)
  10. Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation. Venkatraman Girija U, Gingras AR, Marshall JE, Panchal R, Sheikh MA, Harper JA, Gál P, Schwaeble WJ, Mitchell DA, Moody PC, Wallis R. Proc. Natl. Acad. Sci. U.S.A. 110 13916-13920 (2013)
  11. The structure of MBL-associated serine protease-2 reveals that identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interactions. Harmat V, Gál P, Kardos J, Szilágyi K, Ambrus G, Végh B, Náray-Szabó G, Závodszky P. J. Mol. Biol. 342 1533-1546 (2004)
  12. Insights into how CUB domains can exert specific functions while sharing a common fold: conserved and specific features of the CUB1 domain contribute to the molecular basis of procollagen C-proteinase enhancer-1 activity. Blanc G, Font B, Eichenberger D, Moreau C, Ricard-Blum S, Hulmes DJ, Moali C. J Biol Chem 282 16924-16933 (2007)
  13. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. Thiel S, Kolev M, Degn S, Steffensen R, Hansen AG, Ruseva M, Jensenius JC. J Immunol 182 2939-2947 (2009)
  14. Crystal structure of human intrinsic factor: cobalamin complex at 2.6-A resolution. Mathews FS, Gordon MM, Chen Z, Rajashankar KR, Ealick SE, Alpers DH, Sukumar N. Proc. Natl. Acad. Sci. U.S.A. 104 17311-17316 (2007)
  15. Structural basis of mannan-binding lectin recognition by its associated serine protease MASP-1: implications for complement activation. Gingras AR, Girija UV, Keeble AH, Panchal R, Mitchell DA, Moody PC, Wallis R. Structure 19 1635-1643 (2011)
  16. Characterization of SEZ6L2 cell-surface protein as a novel prognostic marker for lung cancer. Ishikawa N, Daigo Y, Takano A, Taniwaki M, Kato T, Tanaka S, Yasui W, Takeshima Y, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y. Cancer Sci. 97 737-745 (2006)
  17. Mannan-binding lectin: structure, oligomerization, and flexibility studied by atomic force microscopy. Jensenius H, Klein DC, van Hecke M, Oosterkamp TH, Schmidt T, Jensenius JC. J. Mol. Biol. 391 246-259 (2009)
  18. Localization and characterization of the mannose-binding lectin (MBL)-associated-serine protease-2 binding site in rat ficolin-A: equivalent binding sites within the collagenous domains of MBLs and ficolins. Girija UV, Dodds AW, Roscher S, Reid KB, Wallis R. J. Immunol. 179 455-462 (2007)
  19. Structural insights into the initiating complex of the lectin pathway of complement activation. Kjaer TR, Le le TM, Pedersen JS, Sander B, Golas MM, Jensenius JC, Andersen GR, Thiel S. Structure 23 342-351 (2015)
  20. The role of nanometer-scaled ligand patterns in polyvalent binding by large mannan-binding lectin oligomers. Gjelstrup LC, Kaspersen JD, Behrens MA, Pedersen JS, Thiel S, Kingshott P, Oliveira CL, Thielens NM, Vorup-Jensen T. J Immunol 188 1292-1306 (2012)
  21. Multiple domains of MASP-2, an initiating complement protease, are required for interaction with its substrate C4. Duncan RC, Bergström F, Coetzer TH, Blom AM, Wijeyewickrema LC, Pike RN. Mol. Immunol. 49 593-600 (2012)
  22. Identification of the matriptase second CUB domain as the secondary site for interaction with hepatocyte growth factor activator inhibitor type-1. Inouye K, Tsuzuki S, Yasumoto M, Kojima K, Mochida S, Fushiki T. J. Biol. Chem. 285 33394-33403 (2010)
  23. Binding of the Golgi sorting receptor muclin to pancreatic zymogens through sulfated O-linked oligosaccharides. Boulatnikov I, De Lisle RC. J. Biol. Chem. 279 40918-40926 (2004)
  24. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Ugurlar D, Howes SC, de Kreuk BJ, Koning RI, de Jong RN, Beurskens FJ, Schuurman J, Koster AJ, Sharp TH, Parren PWHI, Gros P. Science 359 794-797 (2018)
  25. Decoupling of carbohydrate binding and MASP-2 autoactivation in variant mannose-binding lectins associated with immunodeficiency. Wallis R, Lynch NJ, Roscher S, Reid KB, Schwaeble WJ. J Immunol 175 6846-6851 (2005)
  26. Novel partners of SPAG11B isoform D in the human male reproductive tract. Radhakrishnan Y, Hamil KG, Tan JA, Grossman G, Petrusz P, Hall SH, French FS. Biol. Reprod. 81 647-656 (2009)
  27. Structure of the C1r-C1s interaction of the C1 complex of complement activation. Almitairi JOM, Venkatraman Girija U, Furze CM, Simpson-Gray X, Badakshi F, Marshall JE, Schwaeble WJ, Mitchell DA, Moody PCE, Wallis R. Proc. Natl. Acad. Sci. U.S.A. 115 768-773 (2018)
  28. The salivary scavenger and agglutinin binds MBL and regulates the lectin pathway of complement in solution and on surfaces. Reichhardt MP, Loimaranta V, Thiel S, Finne J, Meri S, Jarva H. Front Immunol 3 205 (2012)
  29. A diagnostic challenge: mild hemophilia B with normal activated partial thromboplastin time. Park CH, Seo JY, Kim HJ, Jang JH, Kim SH. Blood Coagul. Fibrinolysis 21 368-371 (2010)
  30. Cysteine residues in CUB-1 domain are critical for ADAMTS13 secretion and stability. Zhou Z, Yeh HC, Jing H, Wang C, Tao Z, Choi H, Aboulfatova K, Li R, Dong JF. Thromb. Haemost. 105 21-30 (2011)
  31. A novel mannose-binding lectin-associated serine protease 1/3 gene variant. Weiss G, Madsen HO, Garred P. Scand. J. Immunol. 65 430-434 (2007)
  32. Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney. Micanovic R, Khan S, Janosevic D, Lee ME, Hato T, Srour EF, Winfree S, Ghosh J, Tong Y, Rice SE, Dagher PC, Wu XR, El-Achkar TM. J. Am. Soc. Nephrol. 29 841-856 (2018)
  33. Engineering novel complement activity into a pulmonary surfactant protein. Venkatraman Girija U, Furze C, Toth J, Schwaeble WJ, Mitchell DA, Keeble AH, Wallis R. J. Biol. Chem. 285 10546-10552 (2010)
  34. Analysis of the stability of the spermadhesin PSP-I/PSP-II heterodimer. Effects of Zn2+ and acidic pH. Campanero-Rhodes MA, Menéndez M, Sáiz JL, Sanz L, Calvete JJ, Solís D. FEBS J. 272 5663-5670 (2005)
  35. Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. De Marco Verissimo C, Jewhurst HL, Dobó J, Gál P, Dalton JP, Cwiklinski K. PLoS Pathog 18 e1010226 (2022)
  36. The kidney releases a nonpolymerizing form of uromodulin in the urine and circulation that retains the external hydrophobic patch domain. Micanovic R, LaFavers KA, Patidar KR, Ghabril MS, Doud EH, Mosley AL, Sabo AR, Khan S, El-Achkar TM. Am J Physiol Renal Physiol 322 F403-F418 (2022)
  37. Undetectable mannose binding lectin is associated with HRCT proven bronchiectasis in rheumatoid arthritis (RA). Makin K, Easter T, Kemp M, Kendall P, Bulsara M, Coleman S, Carroll GJ. PLoS ONE 14 e0215051 (2019)