1oqm Citations

Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity.

J Biol Chem 277 20833-9 (2002)
Cited: 127 times
EuropePMC logo PMID: 11916963

Abstract

beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.

Reviews - 1oqm mentioned but not cited (2)

Articles - 1oqm mentioned but not cited (6)

  1. Role of a single amino acid in the evolution of glycans of invertebrates and vertebrates. Ramakrishnan B, Qasba PK. J Mol Biol 365 570-576 (2007)
  2. Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. Gonçalves S, Borges N, Esteves AM, Victor BL, Soares CM, Santos H, Matias PM. J Biol Chem 285 17857-17868 (2010)
  3. Use of novel mutant galactosyltransferase for the bioconjugation of terminal N-acetylglucosamine (GlcNAc) residues on live cell surface. Mercer N, Ramakrishnan B, Boeggeman E, Verdi L, Qasba PK. Bioconjug Chem 24 144-152 (2013)
  4. Bioconjugation and detection of lactosamine moiety using alpha1,3-galactosyltransferase mutants that transfer C2-modified galactose with a chemical handle. Pasek M, Ramakrishnan B, Boeggeman E, Manzoni M, Waybright TJ, Qasba PK. Bioconjug Chem 20 608-618 (2009)
  5. The N-acetyl-binding pocket of N-acetylglucosaminyltransferases also accommodates a sugar analog with a chemical handle at C2. Pasek M, Ramakrishnan B, Boeggeman E, Mercer N, Dulcey AE, Griffiths GL, Qasba PK. Glycobiology 22 379-388 (2012)
  6. An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. Silva PA, Souza AA, de Oliveira GM, Ramada MHS, Hernández NV, Mora-Montes HM, Bueno RV, Martins-de-Sa D, de Freitas SM, Felipe MSS, Barbosa JARG. Fungal Biol Biotechnol 11 5 (2024)


Reviews citing this publication (42)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  2. Site-specific antibody drug conjugates for cancer therapy. Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. MAbs 6 34-45 (2014)
  3. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Agarwal P, Bertozzi CR. Bioconjug Chem 26 176-192 (2015)
  4. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Osmani SA, Bak S, Møller BL. Phytochemistry 70 325-347 (2009)
  5. Substrate-induced conformational changes in glycosyltransferases. Qasba PK, Ramakrishnan B, Boeggeman E. Trends Biochem Sci 30 53-62 (2005)
  6. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. Hu P, Shimoji S, Hart GW. FEBS Lett 584 2526-2538 (2010)
  7. Remarkable structural similarities between diverse glycosyltransferases. Hu Y, Walker S. Chem Biol 9 1287-1296 (2002)
  8. Chemical Glycoproteomics. Palaniappan KK, Bertozzi CR. Chem Rev 116 14277-14306 (2016)
  9. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Rexach JE, Clark PM, Hsieh-Wilson LC. Nat Chem Biol 4 97-106 (2008)
  10. Click Chemistry and Radiochemistry: The First 10 Years. Meyer JP, Adumeau P, Lewis JS, Zeglis BM. Bioconjug Chem 27 2791-2807 (2016)
  11. Structure and function of beta -1,4-galactosyltransferase. Qasba PK, Ramakrishnan B, Boeggeman E. Curr Drug Targets 9 292-309 (2008)
  12. The chemical neurobiology of carbohydrates. Murrey HE, Hsieh-Wilson LC. Chem Rev 108 1708-1731 (2008)
  13. Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics. Kim EG, Kim KM. Biomol Ther (Seoul) 23 493-509 (2015)
  14. Glycoengineering of Antibodies for Modulating Functions. Wang LX, Tong X, Li C, Giddens JP, Li T. Annu Rev Biochem 88 433-459 (2019)
  15. Current methods for the synthesis of homogeneous antibody-drug conjugates. Sochaj AM, Świderska KW, Otlewski J. Biotechnol Adv 33 775-784 (2015)
  16. Current Status: Site-Specific Antibody Drug Conjugates. Schumacher D, Hackenberger CP, Leonhardt H, Helma J. J Clin Immunol 36 Suppl 1 100-107 (2016)
  17. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 1: Cysteine Residues and Glycans. Adumeau P, Sharma SK, Brent C, Zeglis BM. Mol Imaging Biol 18 1-17 (2016)
  18. Structure and catalytic cycle of beta-1,4-galactosyltransferase. Ramakrishnan B, Boeggeman E, Ramasamy V, Qasba PK. Curr Opin Struct Biol 14 593-600 (2004)
  19. Glycosylation of the nuclear pore. Li B, Kohler JJ. Traffic 15 347-361 (2014)
  20. Site-Specific Antibody Conjugation for ADC and Beyond. Zhou Q. Biomedicines 5 E64 (2017)
  21. The next generation of antibody drug conjugates. Mack F, Ritchie M, Sapra P. Semin Oncol 41 637-652 (2014)
  22. Glycosyltransferase engineering for carbohydrate synthesis. McArthur JB, Chen X. Biochem Soc Trans 44 129-142 (2016)
  23. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Saha A, Bello D, Fernández-Tejada A. Chem Soc Rev 50 10451-10485 (2021)
  24. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). Zachara NE. FEBS Lett 592 3950-3975 (2018)
  25. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Sjögren J, Lood R, Nägeli A. Glycobiology 30 254-267 (2020)
  26. Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC. Biochem Biophys Res Commun 303 393-398 (2003)
  27. Detection and identification of O-GlcNAcylated proteins by proteomic approaches. Vercoutter-Edouart AS, El Yazidi-Belkoura I, Guinez C, Baldini S, Leturcq M, Mortuaire M, Mir AM, Steenackers A, Dehennaut V, Pierce A, Lefebvre T. Proteomics 15 1039-1050 (2015)
  28. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Cancers (Basel) 12 E1868 (2020)
  29. Chemical arsenal for the study of O-GlcNAc. Kim EJ. Molecules 16 1987-2022 (2011)
  30. α-Lactalbumin, Amazing Calcium-Binding Protein. Permyakov EA. Biomolecules 10 E1210 (2020)
  31. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Shivatare SS, Shivatare VS, Wong CH. Chem Rev 122 15603-15671 (2022)
  32. Promiscuity and specificity of eukaryotic glycosyltransferases. Biswas A, Thattai M. Biochem Soc Trans 48 891-900 (2020)
  33. Molecular Interrogation to Crack the Case of O-GlcNAc. Estevez A, Zhu D, Blankenship C, Jiang J. Chemistry 26 12086-12100 (2020)
  34. Site-specific linking of biomolecules via glycan residues using glycosyltransferases. Qasba PK, Boeggeman E, Ramakrishnan B. Biotechnol Prog 24 520-526 (2008)
  35. Defining the heart and cardiovascular O-GlcNAcome: a review of approaches and methods. Paruchuri VD, Zachara NE. Circ Cardiovasc Genet 4 710 (2011)
  36. Applications of glycosyltransferases in the site-specific conjugation of biomolecules and the development of a targeted drug delivery system and contrast agents for MRI. Ramakrishnan B, Boeggeman E, Qasba PK. Expert Opin Drug Deliv 5 149-153 (2008)
  37. Mutant glycosyltransferases assist in the development of a targeted drug delivery system and contrast agents for MRI. Qasba PK, Ramakrishnan B, Boeggeman E. AAPS J 8 E190-5 (2006)
  38. The Utilities of Chemical Reactions and Molecular Tools for O-GlcNAc Proteomic Studies. Kim EJ. Chembiochem 16 1397-1409 (2015)
  39. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Antibodies (Basel) 12 72 (2023)
  40. Modulating antibody effector functions by Fc glycoengineering. García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Biotechnol Adv 67 108201 (2023)
  41. Chemical reporters to study mammalian O-glycosylation. Huxley KE, Willems LI. Biochem Soc Trans 49 903-913 (2021)
  42. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. RSC Adv 13 264-280 (2022)

Articles citing this publication (77)

  1. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Sakabe K, Wang Z, Hart GW. Proc Natl Acad Sci U S A 107 19915-19920 (2010)
  2. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC. Proc Natl Acad Sci U S A 101 13132-13137 (2004)
  3. O-GlcNAc profiling: from proteins to proteomes. Ma J, Hart GW. Clin Proteomics 11 8 (2014)
  4. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Rexach JE, Rogers CJ, Yu SH, Tao J, Sun YE, Hsieh-Wilson LC. Nat Chem Biol 6 645-651 (2010)
  5. Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. Wang Z, Park K, Comer F, Hsieh-Wilson LC, Saudek CD, Hart GW. Diabetes 58 309-317 (2009)
  6. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Kubo A, Arai Y, Nagashima S, Yoshikawa T. Arch Biochem Biophys 429 198-203 (2004)
  7. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). Kubota T, Shiba T, Sugioka S, Furukawa S, Sawaki H, Kato R, Wakatsuki S, Narimatsu H. J Mol Biol 359 708-727 (2006)
  8. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A, Agnew BJ, Lewis JS. Bioconjug Chem 24 1057-1067 (2013)
  9. Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte. Dehennaut V, Slomianny MC, Page A, Vercoutter-Edouart AS, Jessus C, Michalski JC, Vilain JP, Bodart JF, Lefebvre T. Mol Cell Proteomics 7 2229-2245 (2008)
  10. Highly efficient chemoenzymatic synthesis of beta1-4-linked galactosides with promiscuous bacterial beta1-4-galactosyltransferases. Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana MM, Wong D, Huang R, Chen X. Chem Commun (Camb) 46 6066-6068 (2010)
  11. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y, Prabakaran P, Colantonio S, Dyba MA, Qasba PK, Dimitrov DS. MAbs 6 1190-1200 (2014)
  12. Discovery of Streptococcus pneumoniae serotype 6 variants with glycosyltransferases synthesizing two differing repeating units. Oliver MB, van der Linden MPG, Küntzel SA, Saad JS, Nahm MH. J Biol Chem 288 25976-25985 (2013)
  13. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Qin W, Lv P, Fan X, Quan B, Zhu Y, Qin K, Chen Y, Wang C, Chen X. Proc Natl Acad Sci U S A 114 E6749-E6758 (2017)
  14. Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway. Ramakrishnan B, Ramasamy V, Qasba PK. J Mol Biol 357 1619-1633 (2006)
  15. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate. Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, Agnew BJ, Lewis JS, Zeglis BM. Bioconjug Chem 27 1789-1795 (2016)
  16. Functional analysis of Drosophila beta1,4-N-acetlygalactosaminyltransferases. Haines N, Irvine KD. Glycobiology 15 335-346 (2005)
  17. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, Waybright TJ, Qasba PK. Bioconjug Chem 20 1228-1236 (2009)
  18. Chemoenzymatic strategy for the synthesis of site-specifically labeled immunoconjugates for multimodal PET and optical imaging. Zeglis BM, Davis CB, Abdel-Atti D, Carlin SD, Chen A, Aggeler R, Agnew BJ, Lewis JS. Bioconjug Chem 25 2123-2128 (2014)
  19. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. Taujale R, Venkat A, Huang LC, Zhou Z, Yeung W, Rasheed KM, Li S, Edison AS, Moremen KW, Kannan N. Elife 9 e54532 (2020)
  20. Genetic, biochemical, and serological characterization of a new pneumococcal serotype, 6H, and generation of a pneumococcal strain producing three different capsular repeat units. Park IH, Geno KA, Yu J, Oliver MB, Kim KH, Nahm MH. Clin Vaccine Immunol 22 313-318 (2015)
  21. Targeted delivery of nitric oxide via a 'bump-and-hole'-based enzyme-prodrug pair. Hou J, Pan Y, Zhu D, Fan Y, Feng G, Wei Y, Wang H, Qin K, Zhao T, Yang Q, Zhu Y, Che Y, Liu Y, Cheng J, Kong D, Wang PG, Shen J, Zhao Q. Nat Chem Biol 15 151-160 (2019)
  22. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension. Lima VV, Rigsby CS, Hardy DM, Webb RC, Tostes RC. J Am Soc Hypertens 3 374-387 (2009)
  23. A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Adumeau P, Carnazza KE, Brand C, Carlin SD, Reiner T, Agnew BJ, Lewis JS, Zeglis BM. Theranostics 6 2267-2277 (2016)
  24. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Gorelik A, Bartual SG, Borodkin VS, Varghese J, Ferenbach AT, van Aalten DMF. Nat Struct Mol Biol 26 1071-1077 (2019)
  25. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. Thompson JW, Griffin ME, Hsieh-Wilson LC. Methods Enzymol 598 101-135 (2018)
  26. Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Boeggeman E, Ramakrishnan B, Kilgore C, Khidekel N, Hsieh-Wilson LC, Simpson JT, Qasba PK. Bioconjug Chem 18 806-814 (2007)
  27. Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases. Sheikh MO, Halmo SM, Patel S, Middleton D, Takeuchi H, Schafer CM, West CM, Haltiwanger RS, Avci FY, Moremen KW, Wells L. Glycobiology 27 206-212 (2017)
  28. Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting. Darabedian N, Thompson JW, Chuh KN, Hsieh-Wilson LC, Pratt MR. Biochemistry 57 5769-5774 (2018)
  29. Tuning the moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis inhibitors. Gampe CM, Tsukamoto H, Doud EH, Walker S, Kahne D. J Am Chem Soc 135 3776-3779 (2013)
  30. Engineering Orthogonal Polypeptide GalNAc-Transferase and UDP-Sugar Pairs. Choi J, Wagner LJS, Timmermans SBPE, Malaker SA, Schumann B, Gray MA, Debets MF, Takashima M, Gehring J, Bertozzi CR. J Am Chem Soc 141 13442-13453 (2019)
  31. Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag. Griffin ME, Jensen EH, Mason DE, Jenkins CL, Stone SE, Peters EC, Hsieh-Wilson LC. Mol Biosyst 12 1756-1759 (2016)
  32. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development. Mariappa D, Selvan N, Borodkin V, Alonso J, Ferenbach AT, Shepherd C, Navratilova IH, vanAalten DMF. Biochem J 470 255-262 (2015)
  33. Streptococcus pneumoniae serotype 11D has a bispecific glycosyltransferase and expresses two different capsular polysaccharide repeating units. Oliver MB, Jones C, Larson TR, Calix JJ, Zartler ER, Yother J, Nahm MH. J Biol Chem 288 21945-21954 (2013)
  34. A One-Step Chemoenzymatic Labeling Strategy for Probing Sialylated Thomsen-Friedenreich Antigen. Wen L, Liu D, Zheng Y, Huang K, Cao X, Song J, Wang PG. ACS Cent Sci 4 451-457 (2018)
  35. A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. Suchanowska A, Kaczmarek R, Duk M, Lukasiewicz J, Smolarek D, Majorczyk E, Jaskiewicz E, Laskowska A, Wasniowska K, Grodecka M, Lisowska E, Czerwinski M. J Biol Chem 287 38220-38230 (2012)
  36. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. Kämpf M, Absmanner B, Schwarz M, Lehle L. J Biol Chem 284 11900-11912 (2009)
  37. A beta-1,4-galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Namdjou DJ, Chen HM, Vinogradov E, Brochu D, Withers SG, Wakarchuk WW. Chembiochem 9 1632-1640 (2008)
  38. Synthesis of precision antibody conjugates using proximity-induced chemistry. Cao YJ, Yu C, Wu KL, Wang X, Liu D, Tian Z, Zhao L, Qi X, Loredo A, Chung A, Xiao H. Theranostics 11 9107-9117 (2021)
  39. Direction of Chain Growth and Substrate Preferences of Shape, Elongation, Division, and Sporulation-Family Peptidoglycan Glycosyltransferases. Welsh MA, Schaefer K, Taguchi A, Kahne D, Walker S. J Am Chem Soc 141 12994-12997 (2019)
  40. Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics. Thompson JW, Sorum AW, Hsieh-Wilson LC. Biochemistry 57 4010-4018 (2018)
  41. Synthesis of LacdiNAc-terminated glycoconjugates by mutant galactosyltransferase--a way to new glycodrugs and materials. Bojarová P, Krenek K, Wetjen K, Adamiak K, Pelantová H, Bezouska K, Elling L, Kren V. Glycobiology 19 509-517 (2009)
  42. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Wang S, Chen C, Gadi MR, Saikam V, Liu D, Zhu H, Bollag R, Liu K, Chen X, Wang F, Wang PG, Ling P, Guan W, Li L. Nat Commun 12 3573 (2021)
  43. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity. Gulberti S, Jacquinet JC, Chabel M, Ramalanjaona N, Magdalou J, Netter P, Coughtrie MW, Ouzzine M, Fournel-Gigleux S. Glycobiology 22 561-571 (2012)
  44. Comparison of the closed conformation of the beta 1,4-galactosyltransferase-1 (beta 4Gal-T1) in the presence and absence of alpha-lactalbumin (LA). Ramakrishnan B, Qasba PK. J Biomol Struct Dyn 21 1-8 (2003)
  45. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Drozdová A, Bojarová P, Křenek K, Weignerová L, Henssen B, Elling L, Christensen H, Jensen HH, Pelantová H, Kuzma M, Bezouška K, Krupová M, Adámek D, Slámová K, Křen V. Carbohydr Res 346 1599-1609 (2011)
  46. Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Sasaki N, Yoshida H, Fuwa TJ, Kinoshita-Toyoda A, Toyoda H, Hirabayashi Y, Ishida H, Ueda R, Nishihara S. Biochem Biophys Res Commun 354 522-527 (2007)
  47. Photoactivatable Fluorophore for Stimulated Emission Depletion (STED) Microscopy and Bioconjugation Technique for Hydrophobic Labels. Weber M, Khan TA, Patalag LJ, Bossi M, Leutenegger M, Belov VN, Hell SW. Chemistry 27 451-458 (2021)
  48. Congress Antibody-drug conjugates: Design and development for therapy and imaging in and beyond cancer, LabEx MAbImprove industrial workshop, July 27-28, 2017, Tours, France. Martin C, Kizlik-Masson C, Pèlegrin A, Watier H, Viaud-Massuard MC, Joubert N. MAbs 10 210-221 (2018)
  49. Recombinant fungal lectin as a new tool to investigate O-GlcNAcylation processes. Machon O, Baldini SF, Ribeiro JP, Steenackers A, Varrot A, Lefebvre T, Imberty A. Glycobiology 27 123-128 (2017)
  50. The Early Metazoan Trichoplax adhaerens Possesses a Functional O-GlcNAc System. Selvan N, Mariappa D, van den Toorn HW, Heck AJ, Ferenbach AT, van Aalten DM. J Biol Chem 290 11969-11982 (2015)
  51. Enzymatic glycan remodeling-metal free click (GlycoConnect™) provides homogenous antibody-drug conjugates with improved stability and therapeutic index without sequence engineering. Wijdeven MA, van Geel R, Hoogenboom JH, Verkade JMM, Janssen BMG, Hurkmans I, de Bever L, van Berkel SS, van Delft FL. MAbs 14 2078466 (2022)
  52. Imaging specific cellular glycan structures using glycosyltransferases via click chemistry. Wu ZL, Person AD, Anderson M, Burroughs B, Tatge T, Khatri K, Zou Y, Wang L, Geders T, Zaia J, Sackstein R. Glycobiology 28 69-79 (2018)
  53. Multiple site-specific in vitro labeling of single-chain antibody. Ramakrishnan B, Boeggeman E, Manzoni M, Zhu Z, Loomis K, Puri A, Dimitrov DS, Qasba PK. Bioconjug Chem 20 1383-1389 (2009)
  54. Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues. Nishikaze T, Kawabata S, Iwamoto S, Tanaka K. Analyst 138 7224-7232 (2013)
  55. Redox-Controlled Site-Specific α2-6-Sialylation. Lu N, Ye J, Cheng J, Sasmal A, Liu CC, Yao W, Yan J, Khan N, Yi W, Varki A, Cao H. J Am Chem Soc 141 4547-4552 (2019)
  56. The ADP-glucose binding site of the Escherichia coli glycogen synthase. Yep A, Ballicora MA, Preiss J. Arch Biochem Biophys 453 188-196 (2006)
  57. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Xu S, Sun F, Wu R. Anal Chem 92 9807-9814 (2020)
  58. Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase. Kaczmarek R, Mikolajewicz K, Szymczak K, Duk M, Majorczyk E, Krop-Watorek A, Buczkowska A, Czerwinski M. Glycoconj J 33 963-973 (2016)
  59. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Darabedian N, Pratt MR. Methods Enzymol 622 293-307 (2019)
  60. A Novel Glycoproteomics Workflow Reveals Dynamic O-GlcNAcylation of COPγ1 as a Candidate Regulator of Protein Trafficking. Cox NJ, Luo PM, Smith TJ, Bisnett BJ, Soderblom EJ, Boyce M. Front Endocrinol (Lausanne) 9 606 (2018)
  61. Visualization of O-GlcNAc glycosylation stoichiometry and dynamics using resolvable poly(ethylene glycol) mass tags. Clark PM, Rexach JE, Hsieh-Wilson LC. Curr Protoc Chem Biol 5 281-302 (2013)
  62. Differential expression and enzymatic properties of GalNAc-4-sulfotransferase-1 and GalNAc-4-sulfotransferase-2. Boregowda RK, Mi Y, Bu H, Baenziger JU. Glycobiology 15 1349-1358 (2005)
  63. Efficient Labeling of Native Human IgG by Proximity-Based Sortase-Mediated Isopeptide Ligation. Yu W, Gillespie KP, Chhay B, Svensson AS, Nygren PÅ, Blair IA, Yu F, Tsourkas A. Bioconjug Chem 32 1058-1066 (2021)
  64. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M, Goddard-Borger ED, Pearson JS, Hartland EL. PLoS Pathog 17 e1009658 (2021)
  65. A Novel Her2/VEGFR2/CD3 trispecific antibody with an optimal structural design showed improved T-cell-redirecting antitumor efficacy. Liu D, Qi X, Wei X, Zhao L, Wang X, Li S, Wang Z, Shi L, Xu J, Hong M, Liu Z, Zhao L, Wang X, Zhang B, Zhang Y, Wang F, Cao YJ. Theranostics 12 7788-7803 (2022)
  66. Detecting O-GlcNAc using in vitro sulfation. Wu ZL, Robey MT, Tatge T, Lin C, Leymarie N, Zou Y, Zaia J. Glycobiology 24 740-747 (2014)
  67. Enzyme mediated incorporation of zirconium-89 or copper-64 into a fragment antibody for same day imaging of epidermal growth factor receptor. Rudd SE, Van Zuylekom JK, Raicevic A, Pearce LA, Cullinane C, Williams CC, Adams TE, Hicks RJ, Donnelly PS. Chem Sci 12 9004-9016 (2021)
  68. Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase. Wagner GK, Pesnot T, Palcic MM, Jørgensen R. J Biol Chem 290 31162-31172 (2015)
  69. Unexpected regioselectivity of Humicola insolens Cel7B glycosynthase mutants. Blanchard S, Armand S, Couthino P, Patkar S, Vind J, Samain E, Driguez H, Cottaz S. Carbohydr Res 342 710-716 (2007)
  70. Genetic Interactions Between Drosophila sialyltransferase and β1,4-N-acetylgalactosaminyltransferase-A Genes Indicate Their Involvement in the Same Pathway. Nakamura M, Pandey D, Panin VM. G3 (Bethesda) 2 653-656 (2012)
  71. Improved synthesis of UDP-2-(2-ketopropyl)galactose and a first synthesis of UDP-2-(2-ketopropyl)glucose for the site-specific linking of biomolecules via modified glycan residues using glycosyltransferases. Dulcey AE, Qasba PK, Lamb J, Griffiths GL. Tetrahedron 67 2013-2017 (2011)
  72. A glyco-engineering approach for site-specific conjugation to Fab glycans. Jaramillo ML, Sulea T, Durocher Y, Acchione M, Schur MJ, Robotham A, Kelly JF, Goneau MF, Robert A, Cepero-Donates Y, Gilbert M. MAbs 15 2149057 (2023)
  73. Fold-recognition and comparative modeling of human beta3GalT I, II, IV, V and VI and beta3GalNAcT I: prediction of residues conferring acceptor substrate specificity. Patel RY, Balaji PV. J Mol Graph Model 26 255-268 (2007)
  74. A Time-Resolved FRET Assay Identifies a Small Molecule that Inhibits the Essential Bacterial Cell Wall Polymerase FtsW. Park Y, Taguchi A, Baidin V, Kahne D, Walker S. Angew Chem Int Ed Engl 62 e202301522 (2023)
  75. Towards Computationally Guided Design and Engineering of a Neisseria meningitidis Serogroup W Capsule Polymerase with Altered Substrate Specificity. Paudel S, Wachira J, McCarthy PC. Processes (Basel) 9 2192 (2021)
  76. General Tolerance of Galactosyltransferases toward UDP-galactosamine Expands Their Synthetic Capability. Fu X, Gadi MR, Wang S, Han J, Liu D, Chen X, Yin J, Li L. Angew Chem Int Ed Engl 60 26555-26560 (2021)
  77. Glycoengineering-based anti-PD-1-iRGD peptide conjugate boosts antitumor efficacy through T cell engagement. Pan Y, Xue Q, Yang Y, Shi T, Wang H, Song X, Luo Y, Liu W, Ren S, Cai Y, Nie Y, Song Z, Liu B, Li JP, Wei J. Cell Rep Med 5 101590 (2024)