1pss Citations

Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides.

Biochemistry 33 4584-93 (1994)
Cited: 47 times
EuropePMC logo PMID: 8161514

Abstract

Seven site-directed mutants of the bacterial photosynthetic reaction center (RC) from the 2.4.1 and WS 231 wild-type strains of Rhodobacter sphaeroides have been crystallized and their X-ray diffraction analyzed to resolutions between 3.0 and 4.0 A. The mutations can be divided into four distinct categories: (1) mutations altering cofactor composition that affect electron transfer and quantum yield, His M202-->Leu (M202HL), His L173-->Leu (L173HL), and Leu M214-->His (M214LH); (2) a mutation in the proposed pathway of electron transfer altering electron-transfer kinetics, Tyr M210-->Phe (M210YF); (3) a mutation around the non-heme iron resulting in an iron-less reaction center, His M219-->Cys (M219HC); and (4) mutations around the secondary electron acceptor, a ubiquinone, affecting proton transfer and quinone turnover, Glu L212-->Gln (L212EQ) and Asp L213-->Asn (L213DN). Residues L173 and M202 are within bonding distance of the respective magnesiums of the two bacteriochlorophylls of the BChl special pair, while M214 is close to the bacteriopheophytin on the active A branch of the RC. The L173HL and M202HL crystal structures show that the respective bacteriochlorophylls are replaced with bacteriopheophytins (i.e., loss of magnesium) without significant structural perturbations to the surrounding main-chain or side-chain atoms. In the M214LH mutant, the bacteriopheophytin has been replaced by a bacteriochlorophyll, and the side chain of His M214 is within ligand distance of the magnesium. The M210YF, L212EQ, and L213DN mutants show no significant tertiary structure changes near the mutation sites. The M219HC diffraction data indicate that the overall tertiary structure of the reaction center is maintained in the absence of the non-heme iron.

Reviews - 1pss mentioned but not cited (2)

  1. A functional-phylogenetic classification system for transmembrane solute transporters. Saier MH. Microbiol Mol Biol Rev 64 354-411 (2000)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1pss mentioned but not cited (2)

  1. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem Rev 119 5607-5774 (2019)
  2. Discovering co-occurring patterns and their biological significance in protein families. Lee ES, Fung S, Sze-To HY, Wong AK. BMC Bioinformatics 15 Suppl 12 S2 (2014)


Reviews citing this publication (8)

  1. Overexpression of integral membrane proteins for structural studies. Grisshammer R, Tate CG. Q Rev Biophys 28 315-422 (1995)
  2. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Diner BA, Rappaport F. Annu Rev Plant Biol 53 551-580 (2002)
  3. Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. Allen JP, Williams JC. J Bioenerg Biomembr 27 275-283 (1995)
  4. Advanced EPR spectroscopy on electron transfer processes in photosynthesis and biomimetic model systems. Levanon H, Möbius K. Annu Rev Biophys Biomol Struct 26 495-540 (1997)
  5. Structure-function investigations of bacterial photosynthetic reaction centers. Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Biochemistry (Mosc) 76 1465-1483 (2011)
  6. High-field EPR on membrane proteins - crossing the gap to NMR. Möbius K, Lubitz W, Savitsky A. Prog Nucl Magn Reson Spectrosc 75 1-49 (2013)
  7. Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: the possible docking mechanisms during the electron transfer reaction. Nogi T, Hirano Y, Miki K. Photosynth Res 85 87-99 (2005)
  8. Artificial photoactive proteins. Razeghifard R. Photosynth Res 98 677-685 (2008)

Articles citing this publication (35)

  1. Structural details of an interaction between cardiolipin and an integral membrane protein. McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR. Proc Natl Acad Sci U S A 96 14706-14711 (1999)
  2. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Lancaster CR, Michel H. Structure 5 1339-1359 (1997)
  3. Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC. Proc Natl Acad Sci U S A 91 10265-10269 (1994)
  4. Modeling the quinone-B binding site of the photosystem-II reaction center using notions of complementarity and contact-surface between atoms. Sobolev V, Edelman M. Proteins 21 214-225 (1995)
  5. Electronic structure of Q-A in reaction centers from Rhodobacter sphaeroides. I. Electron paramagnetic resonance in single crystals. Isaacson RA, Lendzian F, Abresch EC, Lubitz W, Feher G. Biophys J 69 311-322 (1995)
  6. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Möbius K, Savitsky A, Schnegg A, Plato M, Fuchst M. Phys Chem Chem Phys 7 19-42 (2005)
  7. Protein regulation of carotenoid binding; gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H, Frank HA. Structure 12 765-773 (2004)
  8. Design, synthesis and properties of synthetic chlorophyll proteins. Rau HK, Snigula H, Struck A, Robert B, Scheer H, Haehnel W. Eur J Biochem 268 3284-3295 (2001)
  9. New EPR methods for investigating photoprocesses with paramagnetic intermediates. Stehlik D, Möbius K. Annu Rev Phys Chem 48 745-784 (1997)
  10. Which side of the pi-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Oba T, Tamiaki H. Photosynth Res 74 1-10 (2002)
  11. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Pawlowicz NP, van Grondelle R, van Stokkum IH, Breton J, Jones MR, Groot ML. Biophys J 95 1268-1284 (2008)
  12. High-field EPR. Savitsky A, Möbius K. Photosynth Res 102 311-333 (2009)
  13. X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR. FEBS Lett 467 285-290 (2000)
  14. The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 å resolution. Camara-Artigas A, Magee C, Goetsch A, Allen JP. Photosynth Res 74 87-93 (2002)
  15. B-branch electron transfer in reaction centers of Rhodobacter sphaeroides assessed with site-directed mutagenesis. de Boer AL, Neerken S, de Wijn R, Permentier HP, Gast P, Vijgenboom E, Hoff AJ. Photosynth Res 71 221-239 (2002)
  16. Crystallization and identification of an assembly defect of recombinant antenna complexes produced in transgenic tobacco plants. Flachmann R, Kühlbrandt W. Proc Natl Acad Sci U S A 93 14966-14971 (1996)
  17. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit. Cherepanov DA, Bibikov SI, Bibikova MV, Bloch DA, Drachev LA, Gopta OA, Oesterhelt D, Semenov AY, Mulkidjanian AY. Biochim Biophys Acta 1459 10-34 (2000)
  18. Crystallization of the reaction center from Rhodobacter sphaeroides in a new tetragonal form. Allen JP. Proteins 20 283-286 (1994)
  19. Modification of pigment composition in the isolated reaction center of photosystem II. Gall B, Zehetner A, Scherz A, Scheer H. FEBS Lett 434 88-92 (1998)
  20. Letter Progress away from 'no crystals, no grant'. Preusch PC, Norvell JC, Cassatt JC, Cassman M. Nat Struct Biol 5 12-14 (1998)
  21. Does different orientation of the methoxy groups of ubiquinone-10 in the reaction centre of Rhodobacter sphaeroides cause different binding at QA and QB? Remy A, Boers RB, Egorova-Zachernyuk T, Gast P, Lugtenburg J, Gerwert K. Eur J Biochem 270 3603-3609 (2003)
  22. Theoretical studies on the mechanism of primary electron transfer in the photosynthetic reaction center of Rhodobacter sphaeroides. Xu H, Zhang RB, Ma SH, Qu ZW, Zhang XK, Zhang QY. Photosynth Res 74 11-36 (2002)
  23. Three-dimensional structures of photosynthetic reaction centers. Lancaster CR, Michel H. Photosynth Res 48 65-74 (1996)
  24. Comparative analyses of three-dimensional models of bacterial reaction centers. Camara-Artigas A, Allen JP. Photosynth Res 81 227-237 (2004)
  25. Identification of the intermediate charge-separated state P+betaL- in a leucine M214 to histidine mutant of the Rhodobacter sphaeroides reaction center using femtosecond midinfrared spectroscopy. Pawlowicz NP, van Stokkum IH, Breton J, van Grondelle R, Jones MR. Biophys J 96 4956-4965 (2009)
  26. Historical Article My road to biophysics: picking flowers on the way to photosynthesis. Feher G. Annu Rev Biophys Biomol Struct 31 1-44 (2002)
  27. Properties of mutant reaction centers of Rhodobacter sphaeroides with substitutions of histidine L153, the axial Mg2+ ligand of bacteriochlorophyll B(A). Leonova MM, Vasilieva LG, Khatypov RA, Boichenko VA, Shuvalov VA. Biochemistry (Mosc) 74 452-460 (2009)
  28. Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation. Saggu M, Carter B, Zhou X, Faries K, Cegelski L, Holten D, Boxer SG, Kirmaier C. J Phys Chem B 118 6721-6732 (2014)
  29. An investigation of slow charge separation in a tyrosine M210 to tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Pawlowicz NP, van Stokkum IH, Breton J, van Grondelle R, Jones MR. Phys Chem Chem Phys 12 2693-2705 (2010)
  30. Incorporation of selenomethionine into induced intracytoplasmic membrane proteins of Rhodobacter species. Laible PD, Hata AN, Crawford AE, Hanson DK. J Struct Funct Genomics 6 95-102 (2005)
  31. Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A. Phys Chem Chem Phys 19 28388-28400 (2017)
  32. Mixed-Valence Porphyrin π-Cation Radical Derivatives: Electrochemical Investigations. Scheidt WR, Buentello KE, Ehlinger N, Cinquantini A, Fontani M, Laschi F. Inorganica Chim Acta 361 1722-1727 (2008)
  33. Reorientation of the acetyl group of the photoactive bacteriopheophytin in reaction centers of Rhodobacter sphaeroides: an ENDOR/TRIPLE resonance study. Müh F, Jones MR, Lubitz W. Biospectroscopy 5 35-46 (1999)
  34. Relationship between altered structure and photochemistry in mutant reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. Czarnecki K, Cua A, Kirmaier C, Holten D, Bocian DF. Biospectroscopy 5 346-357 (1999)
  35. Theoretical study of electron transfer in Rhodobacter sphaeroides reaction center. Hiyama M, Koga N. Photochem Photobiol 87 1297-1307 (2011)


Related citations provided by authors (9)

  1. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26 and 2.4.1:Protein-Cofactor (Bacteriochlorophyll,Bacteriopheophytin, and Carotenoid) Interactions. Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP, Feher G Proc. Natl. Acad. Sci. U.S.A. 85 7993- (1988)
  2. The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins. Rees DC, Komiya H, Yeates TO, Allen JP, Feher G Annu. Rev. Biochem. 58 607- (1989)
  3. Structure and Function of Bacterial Photosynthetic Reaction Centers. Feher G, Allen JP, Okamura MY, Rees DC Nature 339 111- (1989)
  4. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26 and 2.4.1: Symmetry Relations and Sequence Comparisons between Different Species. Komiya H, Yeates TO, Rees DC, Allen JP, Feher G Proc. Natl. Acad. Sci. U.S.A. 85 9012- (1988)
  5. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26: Protein-Cofactor (Quinones and Fe2+) Interactions. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC Proc. Natl. Acad. Sci. U.S.A. 85 8487- (1988)
  6. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26: Membrane-Protein Interactions. Yeates TO, Komiya H, Rees DC, Allen JP, Feher G Proc. Natl. Acad. Sci. U.S.A. 84 6438- (1987)
  7. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26: The Protein Subunits. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC Proc. Natl. Acad. Sci. U.S.A. 84 6162- (1987)
  8. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26: The Cofactors. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC Proc. Natl. Acad. Sci. U.S.A. 84 5730- (1987)
  9. Structure Homology of the Reaction Center from Rhodopseudomonas Sphaeroides and Rhodopseudomonas Viridis as Determined by X-Ray Diffraction. Allen JP, Feher G, Yeates TO, Rees DC, Desenhofer J, Michel H, Huber R Proc. Natl. Acad. Sci. U.S.A. 83 8589- (1986)