1tgh Citations

How proteins recognize the TATA box.

J Mol Biol 261 239-54 (1996)
Cited: 191 times
EuropePMC logo PMID: 8757291

Abstract

The crystal structure of a complex of human TATA-binding protein with TATA-sequence DNA has been solved, complementing earlier TBP/DNA analyses from Saccharomyces cerevisiae and Arabidopsis thaliana. Special insight into TATA box specificity is provided by considering the TBP/DNA complex, not as a protein molecule with bound DNA, but as a DNA duplex with a particularly large minor groove ligand. This point of view provides explanations for: (1) why T.A base-pairs are required rather than C.G; (2) why an alternation of T and A bases is needed; (3) how TBP recognizes the upstream and downstream ends of the TATA box in order to bind properly; and (4) why the second half of the TATA box can be more variable than the first.

Reviews - 1tgh mentioned but not cited (2)

  1. Inhibition of transcription by platinum antitumor compounds. Todd RC, Lippard SJ. Metallomics 1 280-291 (2009)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1tgh mentioned but not cited (12)

  1. Finding nuclear localization signals. Cokol M, Nair R, Rost B. EMBO Rep 1 411-415 (2000)
  2. Molecular Mechanism of V(D)J Recombination from Synaptic RAG1-RAG2 Complex Structures. Ru H, Chambers MG, Fu TM, Tong AB, Liao M, Wu H. Cell 163 1138-1152 (2015)
  3. Insights into protein-DNA interactions through structure network analysis. Sathyapriya R, Vijayabaskar MS, Vishveshwara S. PLoS Comput Biol 4 e1000170 (2008)
  4. Trinucleotide repeats: a structural perspective. Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Front Neurol 4 76 (2013)
  5. FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids. Preus S, Kilså K, Miannay FA, Albinsson B, Wilhelmsson LM. Nucleic Acids Res 41 e18 (2013)
  6. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry. Goswami D, Callaway C, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structure 22 961-973 (2014)
  7. Nearest-neighbor non-additivity versus long-range non-additivity in TATA-box structure and its implications for TBP-binding mechanism. Faiger H, Ivanchenko M, Haran TE. Nucleic Acids Res 35 4409-4419 (2007)
  8. Salt-mediated electrostatics in the association of TATA binding proteins to DNA: a combined molecular mechanics/Poisson-Boltzmann study. Bredenberg JH, Russo C, Fenley MO. Biophys J 94 4634-4645 (2008)
  9. Biocrystallography: past, present, future. Giegé R, Sauter C. HFSP J 4 109-121 (2010)
  10. Synthesis, antimicrobial, anti-proliferative activities, molecular docking and DFT studies of novel pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide derivatives. Fahim AM, Ismael EHI, Elsayed GH, Farag AM. J Biomol Struct Dyn 40 9177-9193 (2022)
  11. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  12. Synthesis, antimicrobial activities, docking studies and computational calculations of new bis-1,4-phenylene -1H-1,2,3-triazole derivatives utilized ultrasonic energy. Soror S, Fahim AM, Elabbady S, Nassar E, Aboelnaga A. J Biomol Struct Dyn 40 5409-5426 (2022)


Reviews citing this publication (28)

  1. The RNA polymerase II core promoter. Smale ST, Kadonaga JT. Annu Rev Biochem 72 449-479 (2003)
  2. The general transcription machinery and general cofactors. Thomas MC, Chiang CM. Crit Rev Biochem Mol Biol 41 105-178 (2006)
  3. Structural symmetry and protein function. Goodsell DS, Olson AJ. Annu Rev Biophys Biomol Struct 29 105-153 (2000)
  4. The RNA polymerase III transcription apparatus. Geiduschek EP, Kassavetis GA. J Mol Biol 310 1-26 (2001)
  5. Nucleosome structure and function. McGinty RK, Tan S. Chem Rev 115 2255-2273 (2015)
  6. Structural basis of transcription initiation by RNA polymerase II. Sainsbury S, Bernecky C, Cramer P. Nat Rev Mol Cell Biol 16 129-143 (2015)
  7. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Bewley CA, Gronenborn AM, Clore GM. Annu Rev Biophys Biomol Struct 27 105-131 (1998)
  8. Eukaryotic promoter recognition. Fickett JW, Hatzigeorgiou AG. Genome Res 7 861-878 (1997)
  9. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Bell SD, Jackson SP. Trends Microbiol 6 222-228 (1998)
  10. Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Rombauts S, Florquin K, Lescot M, Marchal K, Rouzé P, van de Peer Y. Plant Physiol 132 1162-1176 (2003)
  11. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Gurova K. Future Oncol 5 1685-1704 (2009)
  12. Recognition of distorted DNA structures by HMG domains. Travers A. Curr Opin Struct Biol 10 102-109 (2000)
  13. The TBP-like factor: an alternative transcription factor in metazoa? Dantonel JC, Wurtz JM, Poch O, Moras D, Tora L. Trends Biochem Sci 24 335-339 (1999)
  14. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Farrell NP. Chem Soc Rev 44 8773-8785 (2015)
  15. A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. Capranico G, Binaschi M, Borgnetto ME, Zunino F, Palumbo M. Trends Pharmacol Sci 18 323-329 (1997)
  16. DNA recognition and bending. Allemann RK, Egli M. Chem Biol 4 643-650 (1997)
  17. Functional Proteins from Short Peptides: Dayhoff's Hypothesis Turns 50. Romero Romero ML, Rabin A, Tawfik DS. Angew Chem Int Ed Engl 55 15966-15971 (2016)
  18. Molecular and biological constraints on ligand-binding affinity and specificity. Szwajkajzer D, Carey J. Biopolymers 44 181-198 (1997)
  19. Eukaryotic transcription factors. Tan S, Richmond TJ. Curr Opin Struct Biol 8 41-48 (1998)
  20. Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes. Parkhurst LJ, Parkhurst KM, Powell R, Wu J, Williams S. Biopolymers 61 180-200 (2001)
  21. DNA recognition by beta-sheets. Tateno M, Yamasaki K, Amano N, Kakinuma J, Koike H, Allen MD, Suzuki M. Biopolymers 44 335-359 (1997)
  22. Internal symmetry in protein structures: prevalence, functional relevance and evolution. Balaji S. Curr Opin Struct Biol 32 156-166 (2015)
  23. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Muskhelishvili G, Travers A. Biophys Rev 8 5-22 (2016)
  24. Progress in the design of DNA sequence-specific lexitropsins. Walker WL, Kopka ML, Goodsell DS. Biopolymers 44 323-334 (1997)
  25. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers. Duan B, Ding P, Navarre WW, Liu J, Liu J, Xia B. Mol Biol Evol 38 4135-4148 (2021)
  26. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Hantsche M, Cramer P. Angew Chem Int Ed Engl 55 15972-15981 (2016)
  27. Preinitation complex assembly: potentially a bumpy path. Cox JM, Kays AR, Sanchez JF, Schepartz A. Curr Opin Chem Biol 2 11-17 (1998)
  28. Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics. Cook TW, Wilstermann AM, Mitchell JT, Arnold NE, Rajasekaran S, Bupp CP, Prokop JW. Biomolecules 13 257 (2023)

Articles citing this publication (149)

  1. DNA bending: the prevalence of kinkiness and the virtues of normality. Dickerson RE. Nucleic Acids Res 26 1906-1926 (1998)
  2. A-form conformational motifs in ligand-bound DNA structures. Lu XJ, Shakked Z, Olson WK. J Mol Biol 300 819-840 (2000)
  3. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK. Genes Dev 13 3217-3230 (1999)
  4. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Lavery R, Zakrzewska K, Beveridge D, Bishop TC, Case DA, Cheatham T, Dixit S, Jayaram B, Lankas F, Laughton C, Maddocks JH, Michon A, Osman R, Orozco M, Perez A, Singh T, Spackova N, Sponer J. Nucleic Acids Res 38 299-313 (2010)
  5. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R. Cell 152 132-143 (2013)
  6. The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. Kosa PF, Ghosh G, DeDecker BS, Sigler PB. Proc Natl Acad Sci U S A 94 6042-6047 (1997)
  7. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. Chiu TK, Dickerson RE. J Mol Biol 301 915-945 (2000)
  8. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. Vichi P, Coin F, Renaud JP, Vermeulen W, Hoeijmakers JH, Moras D, Egly JM. EMBO J 16 7444-7456 (1997)
  9. Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M. Proc Natl Acad Sci U S A 97 14257-14262 (2000)
  10. Orientation of the transcription preinitiation complex in archaea. Bell SD, Kosa PL, Sigler PB, Jackson SP. Proc Natl Acad Sci U S A 96 13662-13667 (1999)
  11. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Leger JF, Robert J, Bourdieu L, Chatenay D, Marko JF. Proc Natl Acad Sci U S A 95 12295-12299 (1998)
  12. Target-site preferences of Sleeping Beauty transposons. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB. J Mol Biol 346 161-173 (2005)
  13. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Kamada K, Shu F, Chen H, Malik S, Stelzer G, Roeder RG, Meisterernst M, Burley SK. Cell 106 71-81 (2001)
  14. μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Pasi M, Maddocks JH, Beveridge D, Bishop TC, Case DA, Cheatham T, Dans PD, Jayaram B, Lankas F, Laughton C, Mitchell J, Osman R, Orozco M, Pérez A, Petkevičiūtė D, Spackova N, Sponer J, Zakrzewska K, Lavery R. Nucleic Acids Res 42 12272-12283 (2014)
  15. DNA stretching and compression: large-scale simulations of double helical structures. Kosikov KM, Gorin AA, Zhurkin VB, Olson WK. J Mol Biol 289 1301-1326 (1999)
  16. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  17. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. Pastor N, Weinstein H, Jamison E, Brenowitz M. J Mol Biol 304 55-68 (2000)
  18. Functional diversity of melanopsins and their global expression in the teleost retina. Davies WI, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW. Cell Mol Life Sci 68 4115-4132 (2011)
  19. Resolving the discrepancies among nucleic acid conformational analyses. Lu XJ, Olson WK. J Mol Biol 285 1563-1575 (1999)
  20. The structure of a stable intermediate in the A <--> B DNA helix transition. Ng HL, Kopka ML, Dickerson RE. Proc Natl Acad Sci U S A 97 2035-2039 (2000)
  21. Crystal structure of a transcription factor IIIB core interface ternary complex. Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. Nature 422 534-539 (2003)
  22. Large-scale structural analysis of the core promoter in mammalian and plant genomes. Florquin K, Saeys Y, Degroeve S, Rouzé P, Van de Peer Y. Nucleic Acids Res 33 4255-4264 (2005)
  23. Intrinsic bending and deformability at the T-A step of CCTTTAAAGG: a comparative analysis of T-A and A-T steps within A-tracts. Mack DR, Chiu TK, Dickerson RE. J Mol Biol 312 1037-1049 (2001)
  24. Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. Kopka ML, Goodsell DS, Han GW, Chiu TK, Lown JW, Dickerson RE. Structure 5 1033-1046 (1997)
  25. Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Yamamoto YY, Ichida H, Abe T, Suzuki Y, Sugano S, Obokata J. Nucleic Acids Res 35 6219-6226 (2007)
  26. Contributions of the TATA box sequence to rate-limiting steps in transcription initiation by RNA polymerase II. Hoopes BC, LeBlanc JF, Hawley DK. J Mol Biol 277 1015-1031 (1998)
  27. Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Abrescia NG, Thompson A, Huynh-Dinh T, Subirana JA. Proc Natl Acad Sci U S A 99 2806-2811 (2002)
  28. Bidirectional binding of the TATA box binding protein to the TATA box. Cox JM, Hayward MM, Sanchez JF, Gegnas LD, van der Zee S, Dennis JH, Sigler PB, Schepartz A. Proc Natl Acad Sci U S A 94 13475-13480 (1997)
  29. Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex. Kassavetis GA, Kumar A, Ramirez E, Geiduschek EP. Mol Cell Biol 18 5587-5599 (1998)
  30. A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Zhao X, Herr W. Cell 108 615-627 (2002)
  31. cis elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. Eagle PA, Hanley-Bowdoin L. J Virol 71 6947-6955 (1997)
  32. A single 8,5'-cyclo-2'-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo. Marietta C, Gulam H, Brooks PJ. DNA Repair (Amst) 1 967-975 (2002)
  33. On the discovery, biological effects, and use of Cisplatin and metallocenes in anticancer chemotherapy. Gómez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Bioinorg Chem Appl 2012 140284 (2012)
  34. Sequence-dependent dynamics of TATA-Box binding sites. Flatters D, Lavery R. Biophys J 75 372-381 (1998)
  35. A post-recruitment function for the RNA polymerase III transcription-initiation factor IIIB. Kassavetis GA, Kumar A, Letts GA, Geiduschek EP. Proc Natl Acad Sci U S A 95 9196-9201 (1998)
  36. Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. Suzuki M, Amano N, Kakinuma J, Tateno M. J Mol Biol 274 421-435 (1997)
  37. Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex. Parkhurst KM, Richards RM, Brenowitz M, Parkhurst LJ. J Mol Biol 289 1327-1341 (1999)
  38. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Ding K, Celma CC, Zhang X, Chang T, Shen W, Atanasov I, Roy P, Zhou ZH. Nat Commun 10 2216 (2019)
  39. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  40. Polymerase (Pol) III TATA box-binding protein (TBP)-associated factor Brf binds to a surface on TBP also required for activated Pol II transcription. Shen Y, Kassavetis GA, Bryant GO, Berk AJ. Mol Cell Biol 18 1692-1700 (1998)
  41. Signals for TBP/TATA box recognition. Bareket-Samish A, Cohen I, Haran TE. J Mol Biol 299 965-977 (2000)
  42. Slow dimer dissociation of the TATA binding protein dictates the kinetics of DNA binding. Coleman RA, Pugh BF. Proc Natl Acad Sci U S A 94 7221-7226 (1997)
  43. TBP-related factors: a paradigm of diversity in transcription initiation. Akhtar W, Veenstra GJ. Cell Biosci 1 23 (2011)
  44. Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA Box. Grove A, Galeone A, Yu E, Mayol L, Geiduschek EP. J Mol Biol 282 731-739 (1998)
  45. Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Kuznetsov SV, Sugimura S, Vivas P, Crothers DM, Ansari A. Proc Natl Acad Sci U S A 103 18515-18520 (2006)
  46. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. J Mol Biol 372 619-632 (2007)
  47. A functionally distinct TATA box required for late progression through the Epstein-Barr virus life cycle. Serio TR, Cahill N, Prout ME, Miller G. J Virol 72 8338-8343 (1998)
  48. On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. Luisi B, Orozco M, Sponer J, Luque FJ, Shakked Z. J Mol Biol 279 1123-1136 (1998)
  49. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Zhan H, Swint-Kruse L, Matthews KS. Biochemistry 45 5896-5906 (2006)
  50. Sequence-dependence of the energetics of opening of at basepairs in DNA. Chen C, Russu IM. Biophys J 87 2545-2551 (2004)
  51. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein. Savinkova L, Drachkova I, Arshinova T, Ponomarenko P, Ponomarenko M, Kolchanov N. PLoS One 8 e54626 (2013)
  52. Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. Sharp JA, Lefèvre C, Nicholas KR. BMC Biol 6 48 (2008)
  53. Structure of a DNA analog of the primer for HIV-1 RT second strand synthesis. Han GW, Kopka ML, Cascio D, Grzeskowiak K, Dickerson RE. J Mol Biol 269 811-826 (1997)
  54. Core promoter elements of eukaryotic genes have a highly distinctive mechanical property. Fukue Y, Sumida N, Nishikawa J, Ohyama T. Nucleic Acids Res 32 5834-5840 (2004)
  55. Does TATA matter? A structural exploration of the selectivity determinants in its complexes with TATA box-binding protein. Pastor N, Pardo L, Weinstein H. Biophys J 73 640-652 (1997)
  56. Systematic detection of internal symmetry in proteins using CE-Symm. Myers-Turnbull D, Bliven SE, Rose PW, Aziz ZK, Youkharibache P, Bourne PE, Prlić A. J Mol Biol 426 2255-2268 (2014)
  57. TBP flanking sequences: asymmetry of binding, long-range effects and consensus sequences. Faiger H, Ivanchenko M, Cohen I, Haran TE. Nucleic Acids Res 34 104-119 (2006)
  58. Influence of sequence on the conformation of the B-DNA helix. Subirana JA, Faria T. Biophys J 73 333-338 (1997)
  59. N and C-terminal sub-regions in the c-Myc transactivation region and their joint role in creating versatility in folding and binding. Fladvad M, Zhou K, Moshref A, Pursglove S, Säfsten P, Sunnerhagen M. J Mol Biol 346 175-189 (2005)
  60. Transfer RNA genes experience exceptionally elevated mutation rates. Thornlow BP, Hough J, Roger JM, Gong H, Lowe TM, Corbett-Detig RB. Proc Natl Acad Sci U S A 115 8996-9001 (2018)
  61. Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP. Proc Natl Acad Sci U S A 102 15406-15411 (2005)
  62. Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. Kumar R, Moure CM, Khan SH, Callaway C, Grimm SL, Goswami D, Griffin PR, Edwards DP. J Biol Chem 288 30285-30299 (2013)
  63. Stepwise bending of DNA by a single TATA-box binding protein. Tolić-Nørrelykke SF, Rasmussen MB, Pavone FS, Berg-Sørensen K, Oddershede LB. Biophys J 90 3694-3703 (2006)
  64. Structural analysis of the genetic switch that regulates the expression of restriction-modification genes. McGeehan JE, Streeter SD, Thresh SJ, Ball N, Ravelli RB, Kneale GG. Nucleic Acids Res 36 4778-4787 (2008)
  65. Translational fusions with the engrailed repressor domain efficiently convert plant transcription factors into dominant-negative functions. Markel H, Chandler J, Werr W. Nucleic Acids Res 30 4709-4719 (2002)
  66. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters. Gagniuc P, Ionescu-Tirgoviste C. BMC Genomics 13 512 (2012)
  67. TATA-Binding protein-TATA interaction is a key determinant of differential transcription of silkworm constitutive and silk gland-specific tRNA(Ala) genes. Ouyang C, Martinez MJ, Young LS, Sprague KU. Mol Cell Biol 20 1329-1343 (2000)
  68. A flexible integrative approach based on random forest improves prediction of transcription factor binding sites. Hooghe B, Broos S, van Roy F, De Bleser P. Nucleic Acids Res 40 e106 (2012)
  69. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. Muterko A, Kalendar R, Salina E. BMC Plant Biol 16 Suppl 1 9 (2016)
  70. Promoter scanning for transcription inhibition with DNA-binding polyamides. Ehley JA, Melander C, Herman D, Baird EE, Ferguson HA, Goodrich JA, Dervan PB, Gottesfeld JM. Mol Cell Biol 22 1723-1733 (2002)
  71. The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site. Grove A, Kassavetis GA, Johnson TE, Geiduschek EP. J Mol Biol 285 1429-1440 (1999)
  72. 3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy. Amzallag A, Vaillant C, Jacob M, Unser M, Bednar J, Kahn JD, Dubochet J, Stasiak A, Maddocks JH. Nucleic Acids Res 34 e125 (2006)
  73. Comparison of TATA-binding protein recognition of a variant and consensus DNA promoters. Powell RM, Parkhurst KM, Parkhurst LJ. J Biol Chem 277 7776-7784 (2002)
  74. Conformational properties of the TATA-box binding sequence of DNA. Flatters D, Young M, Beveridge DL, Lavery R. J Biomol Struct Dyn 14 757-765 (1997)
  75. Smubp-2 represses the Epstein-Barr virus lytic switch promoter. Zhang Q, Wang YC, Montalvo EA. Virology 255 160-170 (1999)
  76. DNA binding provides a molecular strap activating the adenovirus proteinase. Gupta S, Mangel WF, McGrath WJ, Perek JL, Lee DW, Takamoto K, Chance MR. Mol Cell Proteomics 3 950-959 (2004)
  77. Dynamic simulations of 13 TATA variants refine kinetic hypotheses of sequence/activity relationships. Qian X, Strahs D, Schlick T. J Mol Biol 308 681-703 (2001)
  78. A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members. Zhao X, Schramm L, Hernandez N, Herr W. Mol Cell 11 151-161 (2003)
  79. Marked stepwise differences within a common kinetic mechanism characterize TATA-binding protein interactions with two consensus promoters. Powell RM, Parkhurst KM, Brenowitz M, Parkhurst LJ. J Biol Chem 276 29782-29791 (2001)
  80. Inherent DNA curvature and flexibility correlate with TATA box functionality. de Souza ON, Ornstein RL. Biopolymers 46 403-415 (1998)
  81. The small planarization barriers for the amino group in the nucleic acid bases. Wang S, Schaefer HF. J Chem Phys 124 044303 (2006)
  82. The structure of PurR mutant L54M shows an alternative route to DNA kinking. Arvidson DN, Lu F, Faber C, Zalkin H, Brennan RG. Nat Struct Biol 5 436-441 (1998)
  83. A region within the RAP74 subunit of human transcription factor IIF is critical for initiation but dispensable for complex assembly. Ren D, Lei L, Burton ZF. Mol Cell Biol 19 7377-7387 (1999)
  84. AT-specific DNA binding of binuclear ruthenium complexes at the border of threading intercalation. Andersson J, Li M, Lincoln P. Chemistry 16 11037-11046 (2010)
  85. Implication of 5'-flanking sequence elements in expression of a plant tRNA(Leu) gene. Choisne N, Carneiro VT, Pelletier G, Small I. Plant Mol Biol 36 113-123 (1998)
  86. TBP binding-induced folding of the glucocorticoid receptor AF1 domain facilitates its interaction with steroid receptor coactivator-1. Khan SH, Ling J, Kumar R. PLoS One 6 e21939 (2011)
  87. Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays. Bonham AJ, Neumann T, Tirrell M, Reich NO. Nucleic Acids Res 37 e94 (2009)
  88. Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer. Williams SL, Parkhurst LK, Parkhurst LJ. Nucleic Acids Res 34 1028-1035 (2006)
  89. Characterization of the bisintercalative DNA binding mode of a bifunctional platinum-acridine agent. Choudhury JR, Bierbach U. Nucleic Acids Res 33 5622-5632 (2005)
  90. Evidence that TAF-TATA box-binding protein interactions are required for activated transcription in mammalian cells. Martel LS, Brown HJ, Berk AJ. Mol Cell Biol 22 2788-2798 (2002)
  91. Frequency distribution of TATA Box and extension sequences on human promoters. Shi W, Zhou W. BMC Bioinformatics 7 Suppl 4 S2 (2006)
  92. Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei. Ibrahim BS, Kanneganti N, Rieckhof GE, Das A, Laurents DV, Palenchar JB, Bellofatto V, Wah DA. Proc Natl Acad Sci U S A 106 13242-13247 (2009)
  93. ADAPT: a molecular mechanics approach for studying the structural properties of long DNA sequences. Lafontaine I, Lavery R. Biopolymers 56 292-310 (2000)
  94. Circular dichroism study of the irreversibility of conformational changes induced by polyamine-linked dinuclear platinum compounds. McGregor TD, Bousfield W, Qu Y, Farrell N. J Inorg Biochem 91 212-219 (2002)
  95. High affinity binding of MEF-2C correlates with DNA bending. Meierhans D, Sieber M, Allemann RK. Nucleic Acids Res 25 4537-4544 (1997)
  96. Interaction of human SRY protein with DNA: a molecular dynamics study. Tang Y, Nilsson L. Proteins 31 417-433 (1998)
  97. TIT for TAT: the properties of inosine and adenosine in TATA box DNA. Pastor N, MacKerell AD, Weinstein H. J Biomol Struct Dyn 16 787-810 (1999)
  98. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Garcia-Gimenez G, Russell J, Aubert MK, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Sci Rep 9 17250 (2019)
  99. Curvature and sequence analysis of eukaryotic promoters. Schätz T, Langowski J. J Biomol Struct Dyn 15 265-275 (1997)
  100. Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. Hartley KA, Alexander KA. J Virol 76 5014-5023 (2002)
  101. Identification of preferred hTBP DNA binding sites by the combinatorial method REPSA. Hardenbol P, Wang JC, Van Dyke MW. Nucleic Acids Res 25 3339-3344 (1997)
  102. The mechanics of minor groove width variation in DNA, and its implications for the accommodation of ligands. Laughton C, Luisi B. J Mol Biol 288 953-963 (1999)
  103. Virtually unidirectional binding of TBP to the AdMLP TATA box within the quaternary complex with TFIIA and TFIIB. Kays AR, Schepartz A. Chem Biol 7 601-610 (2000)
  104. Antiangiogenic platinum through glycan targeting. Peterson EJ, Daniel AG, Katner SJ, Bohlmann L, Chang CW, Bezos A, Parish CR, von Itzstein M, Berners-Price SJ, Farrell NP. Chem Sci 8 241-252 (2017)
  105. Contribution of phenylalanine side chain intercalation to the TATA-box binding protein-DNA interaction: molecular dynamics and dispersion-corrected density functional theory studies. Mondal M, Mukherjee S, Bhattacharyya D. J Mol Model 20 2499 (2014)
  106. Modeling DNA deformations induced by minor groove binding proteins. Lebrun A, Lavery R. Biopolymers 49 341-353 (1999)
  107. SNPs in the HIV-1 TATA box and the AIDS pandemic. Suslov VV, Ponomarenko PM, Efimov VM, Savinkova LK, Ponomarenko MP, Kolchanov NA. J Bioinform Comput Biol 8 607-625 (2010)
  108. In silico structural and functional prediction of African swine fever virus protein-B263R reveals features of a TATA-binding protein. Kinyanyi D, Obiero G, Obiero GFO, Amwayi P, Mwaniki S, Wamalwa M. PeerJ 6 e4396 (2018)
  109. Binding mechanisms of TATA box-binding proteins: DNA kinking is stabilized by specific hydrogen bonds. Pardo L, Campillo M, Bosch D, Pastor N, Weinstein H. Biophys J 78 1988-1996 (2000)
  110. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Sjaarda CP, Abubaker KS, Castle AJ. Microb Biotechnol 8 918-929 (2015)
  111. Interdependent interactions between TFIIB, TATA binding protein, and DNA. Buratowski RM, Downs J, Buratowski S. Mol Cell Biol 22 8735-8743 (2002)
  112. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo. Spencer JV, Arndt KM. Mol Cell Biol 22 8744-8755 (2002)
  113. Environmental control of the deformability of the DNA double helix. Georghiou S, Kubala SM, Large CC. Photochem Photobiol 67 526-531 (1998)
  114. Origins of protein stability revealed by comparing crystal structures of TATA binding proteins. Koike H, Kawashima-Ohya Y, Yamasaki T, Clowney L, Katsuya Y, Suzuki M. Structure 12 157-168 (2004)
  115. A single-stranded promoter for RNA polymerase III. Schroder O, Geiduschek EP, Kassavetis GA. Proc Natl Acad Sci U S A 100 934-939 (2003)
  116. Flexibility of flanking DNA is a key determinant of transcription factor affinity for the core motif. Ghoshdastidar D, Bansal M. Biophys J 121 3987-4000 (2022)
  117. Progressive DNA bending is made possible by gradual changes in the torsion angle of the glycosyl bond. Pardo L, Pastor N, Weinstein H. Biophys J 74 2191-2198 (1998)
  118. Selective binding of the TATA box-binding protein to the TATA box-containing promoter: analysis of structural and energetic factors. Pardo L, Pastor N, Weinstein H. Biophys J 75 2411-2421 (1998)
  119. Sequence-specific recognition of cancer drug-DNA adducts by HMGB1a repair protein. Elder RM, Jayaraman A. Biophys J 102 2331-2338 (2012)
  120. Structural features of DNA that determine RNA polymerase II core promoter. Il'icheva IA, Khodikov MV, Poptsova MS, Nechipurenko DY, Nechipurenko YD, Grokhovsky SL. BMC Genomics 17 973 (2016)
  121. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter. Su M, Lee D, Ganss B, Sodek J. J Biol Chem 281 9882-9890 (2006)
  122. The reach of linear protein-DNA dimerizers. Stafford RL, Dervan PB. J Am Chem Soc 129 14026-14033 (2007)
  123. Two progesterone-dependent endometrial nuclear factors bind to an E-box in the rabbit uteroglobin gene promoter: involvement in tissue-specific transcription. García C, Nieto A. Arch Biochem Biophys 362 301-308 (1999)
  124. TBP binding capacity of the TATA box is associated with specific structural properties: AFM study of the IL-2R alpha gene promoter. Milani P, Marilley M, Rocca-Serra J. Biochimie 89 528-533 (2007)
  125. The consequence of nucleotide substitutions in the triosephosphate isomerase (TPI) gene promoter. Humphries A, Ationu A, Wild B, Layton DM. Blood Cells Mol Dis 25 210-217 (1999)
  126. The theoretical limits of DNA sequence discrimination by linked polyamides. Walker WL, Landaw EM, Dickerson RE, Goodsell DS. Proc Natl Acad Sci U S A 95 4315-4320 (1998)
  127. An in vitro characterisation of the Trichomonas vaginalis TATA box-binding proteins (TBPs). Parra-Marín O, Rosas-Hernández L, López-Pacheco K, Franco B, Ibáñez-Escribano A, Hernández R, López-Villaseñor I. Parasitol Res 118 3019-3031 (2019)
  128. Spacing requirements for simultaneous recognition of the adenovirus major late promoter TATAAAAG box and initiator element. Ren D, Nedialkov YA, Li F, Xu D, Reimers S, Finkelstein A, Burton ZF. Arch Biochem Biophys 435 347-362 (2005)
  129. Using FRET to measure the angle at which a protein bends DNA: TBP binding a TATA box as a model system. Kugel JF. Biochem Mol Biol Educ 36 341-346 (2008)
  130. A novel stable RNA pentaloop that interacts specifically with a motif peptide of lambda-N protein. Kawakami J, Sugimoto N, Tokitoh H, Tanabe Y. Nucleosides Nucleotides Nucleic Acids 25 397-416 (2006)
  131. Applying Thymine Isostere 2,4-Difluoro-5-Methylbenzene as a NMR Assignment Tool and Probe of Homopyrimidine/Homopurine Tract Structural Dynamics. Brinson RG, Miller JT, Kahn JD, Le Grice SF, Marino JP. Methods Enzymol 566 89-110 (2016)
  132. Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening. Kassavetis GA, Grove A, Geiduschek EP. EMBO J 21 5508-5515 (2002)
  133. On the consequences of placing amino groups at the TBP-DNA interface. Does TATA really matter? Millán-Pacheco C, Capistrán VM, Pastor N. J Mol Recognit 22 453-464 (2009)
  134. Recognition in action: DNA mimicry. Goodsell DS. J Mol Recognit 18 427-430 (2005)
  135. Role of the inhibitory DNA-binding surface of human TATA-binding protein in recruitment of human TFIIB family members. Zhao X, Herr W. Mol Cell Biol 23 8152-8160 (2003)
  136. The Saccharomyces cerevisiae RNA polymerase III recruitment factor subunits Brf1 and Bdp1 impose a strict sequence preference for the downstream half of the TATA box. Tsihlis ND, Grove A. Nucleic Acids Res 34 5585-5593 (2006)
  137. Uncovering ancient transcription systems with a novel evolutionary indicator. Adachi N, Senda T, Horikoshi M. Sci Rep 6 27922 (2016)
  138. One-step affinity purification of recombinant TATA binding proteins utilizing a modular protein interaction partner. Shooltz DD, Alberts GL, Triezenberg SJ. Protein Expr Purif 59 297-301 (2008)
  139. Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3'- and 5'-phosphodiester-DNA bond cleavage. Kiselev E, Dexheimer TS, Marchand C, Huang SN, Pommier Y. DNA Repair (Amst) 66-67 64-71 (2018)
  140. Synthesis and properties of DNA containing cyclonucleosides. Yueh H, Yu H, Theile CS, Pal A, Horhota A, Greco N, Christianson CV, McLaughlin LW. Nucleosides Nucleotides Nucleic Acids 31 661-679 (2012)
  141. The structures of life: proteins and nucleic acids a symposium honoring the career of professor Richard E. Dickerson. Kopka ML. J Biomol Struct Dyn 20 1-3 (2002)
  142. Conserved features of complexes of TATA-box binding proteins with DNA. Zanegina O, Aksianov E, Alexeevski AV, Karyagina A, Spirin S. J Bioinform Comput Biol 14 1641007 (2016)
  143. DNA Sequence Recognition of a Cross-Linked Polyamide: CD Studies, Footprinting and Effects on the Activity of DNA Gyrase. Burckhardt G, Förtsch I, Simon H, Birch-Hirschfeld E, Kittler L, Schütz H, Sharma SK, Lown JW, Zimmer C. J Biomol Struct Dyn 17 Suppl 1 355-363 (2000)
  144. DNA sequence recognition of thiazole-containing cross-linked polyamides can be favored. Burckhardt G, Simon H, Birch-Hirschfeld E, Kittler L, Sharma SK, Lown JW, Zimmer C. J Biomol Struct Dyn 19 1101-1109 (2002)
  145. Effect of DNA structural flexibility on promoter strength--molecular dynamics studies of E. coli promoter sequences. Thiyagarajan S, Rajan SS, Gautham N. Biochem Biophys Res Commun 341 557-566 (2006)
  146. Efficient production of recombinant human transcription factor IIE. Moon WJ, Apostol JA, McBride AJ, Shukla LI, Dvir A, Burton ZF. Protein Expr Purif 34 317-323 (2004)
  147. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes. Rodríguez-Lima O, García-Gutierrez P, Jiménez L, Zarain-Herzberg Á, Lazzarini R, Landa A. PLoS One 10 e0141818 (2015)
  148. Presence of the anti-leukemic nucleotide analog, 2-chloro-2'-deoxyadenosine-5'-monophosphate, in a promoter sequence alters DNA binding of TATA-binding protein (TBP). Hartman WR, Walters DE, Hentosh P. Arch Biochem Biophys 459 223-232 (2007)
  149. Temperature and salt concentration alter base-sequence selectivity of a duplex DNA-binding protein. Nagatoishi S, Tanaka Y, Kudou M, Tsumoto K. Mol Biosyst 6 98-101 (2010)


Related citations provided by authors (2)

  1. 1.9 A Resolution Refined Structure of TBP Recognizing the Minor Groove of TATAAAAG. Kim JL, Burley SK Nat. Struct. Biol. 1 638- (1994)
  2. Co-Crystal Structure of TBP Recognizing the Minor Groove of a TATA Element. Kim JL, Nikolov DB, Burley SK Nature 365 520- (1993)