1u62 Citations

Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide.

J Biol Chem 280 16955-61 (2005)
Related entries: 1xv4, 1xv7

Cited: 44 times
EuropePMC logo PMID: 15687491

Abstract

Treatment of Gram-negative bacterial infections with antimicrobial agents can cause release of the endotoxin lipopolysaccharide (LPS), the potent initiator of sepsis, which is the major cause of mortality in intensive care units worldwide. Structural information on peptides bound to LPS can lead to the development of more effective endotoxin neutralizers. Short linear antimicrobial and endotoxin-neutralizing peptide LF11, based on the human lactoferrin, binds to LPS, inducing a peptide fold with a "T-shaped" arrangement of a hydrophobic core and two clusters of basic residues that match the distance between the two phosphate groups of LPS. Side chain arrangement of LF11 bound to LPS extends the previously proposed LPS binding pattern, emphasizing the importance of both electrostatic and hydrophobic interactions in a defined geometric arrangement. In anionic micelles, the LF11 forms amphipathic conformation with a smaller hydrophobic core than in LPS, whereas in zwitterionic micelles, the structure is even less defined. Protection of tryptophan fluorescence quenching in the order SDS>LPS>DPC and hydrogen exchange protection indicates the decreasing extent of insertion of the N terminus and potential role of peptide plasticity in differentiation between bacterial and eukaryotic membranes.

Reviews citing this publication (9)

  1. Antimicrobial peptides for therapeutic applications: a review. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Molecules 17 12276-12286 (2012)
  2. Chemistry of lipid A: at the heart of innate immunity. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S. Chemistry 21 500-519 (2015)
  3. Interactions of lactoferrin with cells involved in immune function. Legrand D, Elass E, Carpentier M, Mazurier J. Biochem. Cell Biol. 84 282-290 (2006)
  4. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. Bhattacharjya S, Ramamoorthy A. FEBS J. 276 6465-6473 (2009)
  5. Mechanisms of endotoxin neutralization by synthetic cationic compounds. Andrä J, Gutsmann T, Garidel P, Brandenburg K. J. Endotoxin Res. 12 261-277 (2006)
  6. Synthetic lipopeptides: a novel class of anti-infectives. Jerala R. Expert Opin Investig Drugs 16 1159-1169 (2007)
  7. Sepsis strategies in development. LaRosa SP, Opal SM. Clin. Chest Med. 29 735-47, x-xi (2008)
  8. Suppression of TLR signaling by targeting TIR domain-containing proteins. Fekonja O, Avbelj M, Jerala R. Curr. Protein Pept. Sci. 13 776-788 (2012)
  9. Peptide-based treatment of sepsis. Brandenburg K, Andrä J, Garidel P, Gutsmann T. Appl. Microbiol. Biotechnol. 90 799-808 (2011)

Articles citing this publication (35)

  1. MD-2 as the target of curcumin in the inhibition of response to LPS. Gradisar H, Keber MM, Pristovsek P, Jerala R. J. Leukoc. Biol. 82 968-974 (2007)
  2. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S. J. Biol. Chem. 285 3883-3895 (2010)
  3. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. Bhunia A, Mohanram H, Domadia PN, Torres J, Bhattacharjya S. J. Biol. Chem. 284 21991-22004 (2009)
  4. Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Bhunia A, Ramamoorthy A, Bhattacharjya S. Chemistry 15 2036-2040 (2009)
  5. Identification of lipopolysaccharide-binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. Youn JH, Kwak MS, Wu J, Kim ES, Ji Y, Min HJ, Yoo JH, Choi JE, Cho HS, Shin JS. Eur. J. Immunol. 41 2753-2762 (2011)
  6. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S. J. Biol. Chem. 286 24394-24406 (2011)
  7. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides. Zweytick D, Deutsch G, Andrä J, Blondelle SE, Vollmer E, Jerala R, Lohner K. J. Biol. Chem. 286 21266-21276 (2011)
  8. Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo. Sánchez-Gómez S, Japelj B, Jerala R, Moriyón I, Fernández Alonso M, Leiva J, Blondelle SE, Andrä J, Brandenburg K, Lohner K, Martínez de Tejada G. Antimicrob. Agents Chemother. 55 218-228 (2011)
  9. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP. Int J Pept 2013 390230 (2013)
  10. Membrane curvature stress and antibacterial activity of lactoferricin derivatives. Zweytick D, Tumer S, Blondelle SE, Lohner K. Biochem. Biophys. Res. Commun. 369 395-400 (2008)
  11. Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Bhunia A, Mohanram H, Bhattacharjya S. Biopolymers 92 9-22 (2009)
  12. Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Håversen L, Kondori N, Baltzer L, Hanson LA, Dolphin GT, Dunér K, Mattsby-Baltzer I. Antimicrob. Agents Chemother. 54 418-425 (2010)
  13. Topomimetics of amphipathic beta-sheet and helix-forming bactericidal peptides neutralize lipopolysaccharide endotoxins. Chen X, Dings RP, Nesmelova I, Debbert S, Haseman JR, Maxwell J, Hoye TR, Mayo KH. J. Med. Chem. 49 7754-7765 (2006)
  14. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. Srivastava RM, Srivastava S, Singh M, Bajpai VK, Ghosh JK. J. Biol. Chem. 287 1980-1995 (2012)
  15. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. van Dijk A, van Eldik M, Veldhuizen EJ, Tjeerdsma-van Bokhoven HL, de Zoete MR, Bikker FJ, Haagsman HP. PLoS ONE 11 e0147919 (2016)
  16. Interactions of a designed peptide with lipopolysaccharide: Bound conformation and anti-endotoxic activity. Bhunia A, Chua GL, Domadia PN, Warshakoon H, Cromer JR, David SA, Bhattacharjya S. Biochem. Biophys. Res. Commun. 369 853-857 (2008)
  17. Molecular basis for endotoxin neutralization by amphipathic peptides derived from the alpha-helical cationic core-region of NK-lysin. Brandenburg K, Garidel P, Fukuoka S, Howe J, Koch MH, Gutsmann T, Andrä J. Biophys. Chem. 150 80-87 (2010)
  18. Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity. Mohanram H, Bhattacharjya S. Biochim. Biophys. Acta 1840 3006-3016 (2014)
  19. MARCKS as a negative regulator of lipopolysaccharide signaling. Mancek-Keber M, Bencina M, Japelj B, Panter G, Andrä J, Brandenburg K, Triantafilou M, Triantafilou K, Jerala R. J Immunol 188 3893-3902 (2012)
  20. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S. PLoS ONE 8 e72718 (2013)
  21. Procalcitonin neutralizes bacterial LPS and reduces LPS-induced cytokine release in human peripheral blood mononuclear cells. Matera G, Quirino A, Giancotti A, Pulicari MC, Rametti L, Rodríguez ML, Liberto MC, Focà A. BMC Microbiol. 12 68 (2012)
  22. Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Martínez de Tejada G, Sánchez-Gómez S, Rázquin-Olazaran I, Kowalski I, Kaconis Y, Heinbockel L, Andrä J, Schürholz T, Hornef M, Dupont A, Garidel P, Lohner K, Gutsmann T, David SA, Brandenburg K. Curr Drug Targets 13 1121-1130 (2012)
  23. Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides. Singh S, Papareddy P, Kalle M, Schmidtchen A, Malmsten M. Biochim. Biophys. Acta 1828 2709-2719 (2013)
  24. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data. Pristovsek P, Franzoni L. J Comput Chem 27 791-797 (2006)
  25. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. Datta A, Kundu P, Bhunia A. J Colloid Interface Sci 461 335-345 (2016)
  26. Elevated Serum PCT in Septic Shock With Endotoxemia Is Associated With a Higher Mortality Rate. Adamik B, Smiechowicz J, Jakubczyk D, Kübler A. Medicine (Baltimore) 94 e1085 (2015)
  27. Interaction of the HIV-1 gp120 viral protein V3 loop with bacterial lipopolysaccharide: a pattern recognition inhibition. Majerle A, Pristovsek P, Mancek-Keber M, Jerala R. J. Biol. Chem. 286 26228-26237 (2011)
  28. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, Kumaki Y, Kikukawa T, Demura M, Kawano K, Aizawa T. J. Pept. Sci. 22 214-221 (2016)
  29. Structural basis for endotoxin neutralization by the eosinophil cationic protein. Pulido D, Garcia-Mayoral MF, Moussaoui M, Velázquez D, Torrent M, Bruix M, Boix E. FEBS J. 283 4176-4191 (2016)
  30. Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sinha S, Zheng L, Mu Y, Ng WJ, Bhattacharjya S. Sci Rep 7 17795 (2017)
  31. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Meram C, Wu J. Food Res. Int. 100 449-459 (2017)
  32. Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. Facchini FA, Coelho H, Sestito SE, Delgado S, Minotti A, Andreu D, Jiménez-Barbero J, Peri F. ChemMedChem 13 280-287 (2018)
  33. Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides. Saravanan R, Holdbrook DA, Petrlova J, Singh S, Berglund NA, Choong YK, Kjellström S, Bond PJ, Malmsten M, Schmidtchen A. Nat Commun 9 2762 (2018)
  34. Effects of Escherichia coli LPS Structure on Antibacterial and Anti-Endotoxin Activities of Host Defense Peptides. Javed A, Balhuizen MD, Pannekoek A, Bikker FJ, Heesterbeek DAC, Haagsman HP, Broere F, Weingarth M, Veldhuizen EJA. Pharmaceuticals (Basel) 16 1485 (2023)
  35. KDEON WK-11: A short antipseudomonal peptide with promising potential. Casciaro B, Loffredo MR, Cappiello F, O'Sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. Front Chem 10 1000765 (2022)