1v26 Citations

Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.

J Biol Chem 279 31717-26 (2004)
Related entries: 1ult, 1v25

Cited: 124 times
EuropePMC logo PMID: 15145952

Abstract

Long chain fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of long chain fatty acyl-CoA esters. We report the first crystal structures of long chain fatty acyl-CoA synthetase homodimer (LC-FACS) from Thermus thermophilus HB8 (ttLC-FACS), including complexes with the ATP analogue adenosine 5'-(beta,gamma-imido) triphosphate (AMP-PNP) and myristoyl-AMP. ttLC-FACS is a member of the adenylate forming enzyme superfamily that catalyzes the ATP-dependent acylation of fatty acid in a two-step reaction. The first reaction step was shown to propagate in AMP-PNP complex crystals soaked with myristate solution. Myristoyl-AMP was identified as the intermediate. The AMP-PNP and the myristoyl-AMP complex structures show an identical closed conformation of the small C-terminal domains, whereas the uncomplexed form shows a variety of open conformations. Upon ATP binding, the fatty acid-binding tunnel gated by an aromatic residue opens to the ATP-binding site. The gated fatty acid-binding tunnel appears only to allow one-way movement of the fatty acid during overall catalysis. The protein incorporates a hydrophobic branch from the fatty acid-binding tunnel that is responsible for substrate specificity. Based on these high resolution crystal structures, we propose a unidirectional Bi Uni Uni Bi Ping-Pong mechanism for the two-step acylation by ttLC-FACS.

Reviews - 1v26 mentioned but not cited (1)

Articles - 1v26 mentioned but not cited (8)

  1. Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL. J Biol Chem 285 2415-2427 (2010)
  2. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Chembiochem 13 129-136 (2012)
  3. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  4. Structural and functional studies of fatty acyl adenylate ligases from E. coli and L. pneumophila. Zhang Z, Zhou R, Sauder JM, Tonge PJ, Burley SK, Swaminathan S. J Mol Biol 406 313-324 (2011)
  5. Bioinformatic Analysis of Leishmania donovani Long-Chain Fatty Acid-CoA Ligase as a Novel Drug Target. Kaur J, Tiwari R, Kumar A, Singh N. Mol Biol Int 2011 278051 (2011)
  6. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. Khurana P, Gokhale RS, Mohanty D. BMC Bioinformatics 11 57 (2010)
  7. The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Shah MB, Ingram-Smith C, Cooper LL, Qu J, Meng Y, Smith KS, Gulick AM. Proteins 77 685-698 (2009)
  8. Solution and Membrane Interaction Dynamics of Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase FadD13. Lundgren CAK, Lerche M, Norling C, Högbom M. Biochemistry 60 1520-1532 (2021)


Reviews citing this publication (22)

  1. Carnitine transport and fatty acid oxidation. Longo N, Frigeni M, Pasquali M. Biochim Biophys Acta 1863 2422-2435 (2016)
  2. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Ferrer JL, Austin MB, Stewart C, Noel JP. Plant Physiol Biochem 46 356-370 (2008)
  3. The origin and evolution of lignin biosynthesis. Weng JK, Chapple C. New Phytol 187 273-285 (2010)
  4. Mammalian long-chain acyl-CoA synthetases. Soupene E, Kuypers FA. Exp Biol Med (Maywood) 233 507-521 (2008)
  5. Acyl-CoA metabolism and partitioning. Grevengoed TJ, Klett EL, Coleman RA. Annu Rev Nutr 34 1-30 (2014)
  6. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Li LO, Klett EL, Coleman RA. Biochim Biophys Acta 1801 246-251 (2010)
  7. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Black PN, DiRusso CC. Biochim Biophys Acta 1771 286-298 (2007)
  8. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T. Prog Lipid Res 53 18-81 (2014)
  9. The dimycocerosate ester polyketide virulence factors of mycobacteria. Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LE. Prog Lipid Res 44 259-302 (2005)
  10. The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain phospholipids. Green JT, Orr SK, Bazinet RP. J Lipid Res 49 939-944 (2008)
  11. Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. Dirusso CC, Black PN. J Biol Chem 279 49563-49566 (2004)
  12. Exogenous fatty acid metabolism in bacteria. Yao J, Rock CO. Biochimie 141 30-39 (2017)
  13. Enzymes without borders: mobilizing substrates, delivering products. Forneris F, Mattevi A. Science 321 213-216 (2008)
  14. Fatty acid transport proteins and insulin resistance. Fisher RM, Gertow K. Curr Opin Lipidol 16 173-178 (2005)
  15. Small molecule inhibition of microbial natural product biosynthesis-an emerging antibiotic strategy. Cisar JS, Tan DS. Chem Soc Rev 37 1320-1329 (2008)
  16. O-GlcNAcylation: a bridge between glucose and cell differentiation. Sun C, Shang J, Yao Y, Yin X, Liu M, Liu H, Zhou Y. J Cell Mol Med 20 769-781 (2016)
  17. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)
  18. Membrane lipid alterations in hemoglobinopathies. Kuypers FA. Hematology Am Soc Hematol Educ Program 68-73 (2007)
  19. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Fernandez RF, Ellis JM. Prostaglandins Leukot Essent Fatty Acids 161 102175 (2020)
  20. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Kretzschmar T, Wu JMF, Schulze PC. Int J Mol Sci 22 1498 (2021)
  21. Access and utilization of long chain fatty acyl-CoA by zDHHC protein acyltransferases. Puthenveetil R, Gómez-Navarro N, Banerjee A. Curr Opin Struct Biol 77 102463 (2022)
  22. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. World J Hepatol 13 1512-1533 (2021)

Articles citing this publication (93)

  1. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. Watkins PA, Maiguel D, Jia Z, Pevsner J. J Lipid Res 48 2736-2750 (2007)
  2. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. Xu N, Zhang SO, Cole RA, McKinney SA, Guo F, Haas JT, Bobba S, Farese RV, Mak HY. J Cell Biol 198 895-911 (2012)
  3. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Reger AS, Wu R, Dunaway-Mariano D, Gulick AM. Biochemistry 47 8016-8025 (2008)
  4. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible HP. J Biol Chem 280 13962-13972 (2005)
  5. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Reger AS, Carney JM, Gulick AM. Biochemistry 46 6536-6546 (2007)
  6. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS. Nat Chem Biol 5 166-173 (2009)
  7. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Drake EJ, Nicolai DA, Gulick AM. Chem Biol 13 409-419 (2006)
  8. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Küch EM, Vellaramkalayil R, Zhang I, Lehnen D, Brügger B, Sreemmel W, Ehehalt R, Poppelreuther M, Füllekrug J. Biochim Biophys Acta 1841 227-239 (2014)
  9. Metabolic and tissue-specific regulation of acyl-CoA metabolism. Ellis JM, Bowman CE, Wolfgang MJ. PLoS One 10 e0116587 (2015)
  10. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW. J Mol Biol 388 997-1008 (2009)
  11. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD, Tan DS. J Am Chem Soc 132 1748-1749 (2010)
  12. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Lu X, Zhang H, Tonge PJ, Tan DS. Bioorg Med Chem Lett 18 5963-5966 (2008)
  13. Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. Drake EJ, Gulick AM. ACS Chem Biol 6 1277-1286 (2011)
  14. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Léger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, Mourey L, Quémard A, Daffé M, Marrakchi H. Chem Biol 16 510-519 (2009)
  15. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. Young PA, Senkal CE, Suchanek AL, Grevengoed TJ, Lin DD, Zhao L, Crunk AE, Klett EL, Füllekrug J, Obeid LM, Coleman RA. J Biol Chem 293 16724-16740 (2018)
  16. Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Wu R, Cao J, Lu X, Reger AS, Gulick AM, Dunaway-Mariano D. Biochemistry 47 8026-8039 (2008)
  17. Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase. Bi H, Yu Y, Dong H, Wang H, Cronan JE. Mol Microbiol 93 262-275 (2014)
  18. Role of DptE and DptF in the lipidation reaction of daptomycin. Wittmann M, Linne U, Pohlmann V, Marahiel MA. FEBS J 275 5343-5354 (2008)
  19. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemistry 49 9292-9305 (2010)
  20. Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol. Melton EM, Cerny RL, Watkins PA, DiRusso CC, Black PN. J Biol Chem 286 30670-30679 (2011)
  21. Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Bethke LL, Zilversmit M, Nielsen K, Daily J, Volkman SK, Ndiaye D, Lozovsky ER, Hartl DL, Wirth DF. Mol Biochem Parasitol 150 10-24 (2006)
  22. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D. Biochemistry 48 4115-4125 (2009)
  23. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. Finnigan W, Thomas A, Cromar H, Gough B, Snajdrova R, Adams JP, Littlechild JA, Harmer NJ. ChemCatChem 9 1005-1017 (2017)
  24. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. Osman KT, Du L, He Y, Luo Y. J Mol Biol 388 345-355 (2009)
  25. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. J Mol Biol 416 221-238 (2012)
  26. Residues Coevolution Guides the Systematic Identification of Alternative Functional Conformations in Proteins. Sfriso P, Duran-Frigola M, Mosca R, Emperador A, Aloy P, Orozco M. Structure 24 116-126 (2016)
  27. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains. Soupene E, Dinh NP, Siliakus M, Kuypers FA. BMC Biochem 11 18 (2010)
  28. Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains. Soupene E, Kuypers FA. BMC Mol Biol 7 21 (2006)
  29. TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation. Agari Y, Agari K, Sakamoto K, Kuramitsu S, Shinkai A. Microbiology (Reading) 157 1589-1601 (2011)
  30. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S. Front Microbiol 10 893 (2019)
  31. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. Liu Z, Ioerger TR, Wang F, Sacchettini JC. J Biol Chem 288 18473-18483 (2013)
  32. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. J Biol Chem 285 9971-9980 (2010)
  33. Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. Cisar JS, Ferreras JA, Soni RK, Quadri LE, Tan DS. J Am Chem Soc 129 7752-7753 (2007)
  34. Versatility of acyl-acyl carrier protein synthetases. Beld J, Finzel K, Burkart MD. Chem Biol 21 1293-1299 (2014)
  35. Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis. Khare G, Gupta V, Gupta RK, Gupta R, Bhat R, Tyagi AK. PLoS One 4 e8387 (2009)
  36. Aminoacyl-coenzyme A synthesis catalyzed by adenylation domains. Linne U, Schäfer A, Stubbs MT, Marahiel MA. FEBS Lett 581 905-910 (2007)
  37. New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis. Castillo AF, Orlando UD, Maloberti PM, Prada JG, Dattilo MA, Solano AR, Bigi MM, Ríos Medrano MA, Torres MT, Indo S, Caroca G, Contreras HR, Marelli BE, Salinas FJ, Salvetti NR, Ortega HH, Lorenzano Menna P, Szajnman S, Gomez DE, Rodríguez JB, Podesta EJ. Cell Mol Life Sci 78 2893-2910 (2021)
  38. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I. Frahm JL, Li LO, Grevengoed TJ, Coleman RA. J Proteomics Bioinform 4 129-137 (2011)
  39. Subdivision of the MDR superfamily of medium-chain dehydrogenases/reductases through iterative hidden Markov model refinement. Hedlund J, Jörnvall H, Persson B. BMC Bioinformatics 11 534 (2010)
  40. Valproate uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: relevance to valproate's efficacy against bipolar disorder. Shimshoni JA, Basselin M, Li LO, Coleman RA, Rapoport SI, Modi HR. Biochim Biophys Acta 1811 163-169 (2011)
  41. Bile acid-CoA ligase deficiency--a new inborn error of bile acid metabolism. Chong CP, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely AS, Clayton PT. J Inherit Metab Dis 35 521-530 (2012)
  42. Cloning and characterization of the homologous genes of firefly luciferase in the mealworm beetle, Tenebrio molitor. Oba Y, Sato M, Inouye S. Insect Mol Biol 15 293-299 (2006)
  43. Topology of the yeast fatty acid transport protein Fat1p: mechanistic implications for functional domains on the cytosolic surface of the plasma membrane. Obermeyer T, Fraisl P, DiRusso CC, Black PN. J Lipid Res 48 2354-2364 (2007)
  44. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. Zhou Y, Wang Y, Zhang X, Bhar S, Jones Lipinski RA, Han J, Feng L, Butcher RA. Elife 7 e33286 (2018)
  45. Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315. Law A, Boulanger MJ. J Biol Chem 286 15577-15585 (2011)
  46. Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbon-degrading bacterium Alcanivorax borkumensis SK2T. Gregson BH, Metodieva G, Metodiev MV, McKew BA. Environ Microbiol 21 2347-2359 (2019)
  47. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. Guillet V, Galandrin S, Maveyraud L, Ladevèze S, Mariaule V, Bon C, Eynard N, Daffé M, Marrakchi H, Mourey L. J Biol Chem 291 7973-7989 (2016)
  48. Syntaxin 17 promotes lipid droplet formation by regulating the distribution of acyl-CoA synthetase 3. Kimura H, Arasaki K, Ohsaki Y, Fujimoto T, Ohtomo T, Yamada J, Tagaya M. J Lipid Res 59 805-819 (2018)
  49. Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study. Irwin C, van Reenen M, Mason S, Mienie LJ, Westerhuis JA, Reinecke CJ. PLoS One 11 e0167309 (2016)
  50. Outlook: membrane junctions enable the metabolic trapping of fatty acids by intracellular acyl-CoA synthetases. Füllekrug J, Ehehalt R, Poppelreuther M. Front Physiol 3 401 (2012)
  51. Rational redesign of the 4-chlorobenzoate binding site of 4-chlorobenzoate: coenzyme a ligase for expanded substrate range. Wu R, Reger AS, Cao J, Gulick AM, Dunaway-Mariano D. Biochemistry 46 14487-14499 (2007)
  52. Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif. Bränström R, Leibiger IB, Leibiger B, Klement G, Nilsson J, Arhem P, Aspinwall CA, Corkey BE, Larsson O, Berggren PO. Diabetologia 50 1670-1677 (2007)
  53. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry: A Potent Supplementary Fruit. Mandave P, Khadke S, Karandikar M, Pandit V, Ranjekar P, Kuvalekar A, Mantri N. Int J Mol Sci 18 E124 (2017)
  54. Improved production of propionic acid using genome shuffling. Luna-Flores CH, Palfreyman RW, Krömer JO, Nielsen LK, Marcellin E. Biotechnol J 12 (2017)
  55. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Li H, Melton EM, Quackenbush S, DiRusso CC, Black PN. Biochim Biophys Acta 1771 1246-1253 (2007)
  56. Physiological role of Acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa. Roche CM, Blanch HW, Clark DS, Glass NL. Eukaryot Cell 12 1244-1257 (2013)
  57. A peroxisomal long-chain acyl-CoA synthetase from Glycine max involved in lipid degradation. Yu L, Tan X, Jiang B, Sun X, Gu S, Han T, Hou W. PLoS One 9 e100144 (2014)
  58. Alkylresorcinol metabolism in Swedish adults is affected by factors other than intake of whole-grain wheat and rye. Marklund M, Landberg R, Andersson R, Aman P, Kamal-Eldin A. J Nutr 142 1479-1486 (2012)
  59. Long-chain acyl-CoA synthetase 4 is regulated by phosphorylation. Smith ME, Saraceno GE, Capani F, Castilla R. Biochem Biophys Res Commun 430 272-277 (2013)
  60. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase. Gimenez G, Metcalf P, Paterson NG, Sharpe ML. Sci Rep 6 27638 (2016)
  61. Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis--a potential target for the development of antitubercular drugs. Jatana N, Jangid S, Khare G, Tyagi AK, Latha N. J Mol Model 17 301-313 (2011)
  62. Orthologous gene of beetle luciferase in non-luminous click beetle, Agrypnus binodulus (Elateridae), encodes a fatty acyl-CoA synthetase. Oba Y, Iida K, Ojika M, Inouye S. Gene 407 169-175 (2008)
  63. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Hu Y, Zhu Z, Gradischnig D, Winkler M, Nielsen J, Siewers V. Proc Natl Acad Sci U S A 117 22974-22983 (2020)
  64. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mol Microbiol 111 1057-1073 (2019)
  65. Probing the structure of Mycobacterium tuberculosis MbtA: model validation using molecular dynamics simulations and docking studies. Maganti L, Open Source Drug Discovery Consortium, Ghoshal N. J Biomol Struct Dyn 32 273-288 (2014)
  66. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. Chen Y, Sun Y, Song H, Guo Z. J Biol Chem 290 23971-23983 (2015)
  67. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids. Ford TJ, Way JC. PeerJ 3 e1040 (2015)
  68. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus. Alves-Bezerra M, Klett EL, De Paula IF, Ramos IB, Coleman RA, Gondim KC. Biochim Biophys Acta 1861 650-662 (2016)
  69. Mutagenesis of rat acyl-CoA synthetase 4 indicates amino acids that contribute to fatty acid binding. Stinnett L, Lewin TM, Coleman RA. Biochim Biophys Acta 1771 119-125 (2007)
  70. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence. Koksharov MI, Ugarova NN. Photochem Photobiol Sci 12 2016-2027 (2013)
  71. Acyl-CoA synthetase long-chain family member 6 is associated with premature ovarian failure. Kang H, Lee SK, Kim MH, Choi H, Lee SH, Kwack K. Fertil Steril 91 1339-1343 (2009)
  72. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity. Scaglione A, Fullone MR, Montemiglio LC, Parisi G, Zamparelli C, Vallone B, Savino C, Grgurina I. FEBS J 284 2981-2999 (2017)
  73. Alanylated lipoteichoic acid primer in Bacillus subtilis. Luo Y. F1000Res 5 155 (2016)
  74. Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Maoz D, Lee HJ, Deutsch J, Rapoport SI, Bazinet RP. Lipids 40 1149-1154 (2005)
  75. 3D-QSAR studies and shape based virtual screening for identification of novel hits to inhibit MbtA in Mycobacterium tuberculosis. Maganti L, OSDD Consortium, Ghoshal N. J Biomol Struct Dyn 33 344-364 (2015)
  76. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis. Hemmerling F, Lebe KE, Wunderlich J, Hahn F. Chembiochem 19 1006-1011 (2018)
  77. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes. Davis TD, Mohandas P, Chiriac MI, Bythrow GV, Quadri LE, Tan DS. Bioorg Med Chem Lett 26 5340-5345 (2016)
  78. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mol Microbiol 105 674-688 (2017)
  79. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder. Modi HR, Basselin M, Taha AY, Li LO, Coleman RA, Bialer M, Rapoport SI. Biochim Biophys Acta 1831 880-886 (2013)
  80. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Billey E, Magneschi L, Leterme S, Bedhomme M, Andres-Robin A, Poulet L, Michaud M, Finazzi G, Dumas R, Crouzy S, Laueffer F, Fourage L, Rébeillé F, Amato A, Collin S, Jouhet J, Maréchal E. Plant Physiol 185 815-835 (2021)
  81. Characterization of two long-chain fatty acid CoA ligases in the Gram-positive bacterium Geobacillus thermodenitrificans NG80-2. Dong Y, Du H, Gao C, Ma T, Feng L. Microbiol Res 167 602-607 (2012)
  82. Different Enzymatic Processing of γ-Phosphoramidate and γ-Phosphoester-Modified ATP Analogues. Ermert S, Hacker SM, Buntru A, Scheffner M, Hauck CR, Marx A. Chembiochem 18 378-381 (2017)
  83. In silico analysis of class I adenylate-forming enzymes reveals family and group-specific conservations. Clark L, Leatherby D, Krilich E, Ropelewski AJ, Perozich J. PLoS One 13 e0203218 (2018)
  84. Molecular cloning and nutrient regulation analysis of long chain acyl-CoA synthetase 1 gene in grass carp, Ctenopharyngodon idella L. Cheng HL, Chen S, Xu JH, Yi LF, Peng YX, Pan Q, Shen X, Dong ZG, Zhang XQ, Wang WX. Comp Biochem Physiol B Biochem Mol Biol 204 61-68 (2017)
  85. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Nat Commun 14 1455 (2023)
  86. Polyethylene glycol (PEG)-carboxylate-CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103. Tani A, Somyoonsap P, Minami T, Kimbara K, Kawai F. Arch Microbiol 189 407-410 (2008)
  87. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Biochemistry 58 1918-1930 (2019)
  88. A novel aromatic carboxylic acid inactivates luciferase by acylation of an enzymatically active regulatory lysine residue. Nakagomi M, Fujimaki N, Ito A, Toda T, Fukasawa H, Shudo K, Tomita R. PLoS One 8 e75445 (2013)
  89. Identification and Characterization of Genes Involved in Ecdysteroid Esterification Pathway Contributing to the High 20-Hydroxyecdysone Resistance of Helicoverpa armigera. Duan H, Yang X, Bu Z, Li X, Zhang Z, Sun W. Front Physiol 11 508 (2020)
  90. Molecular Cloning, Characterization, and Expression Regulation of Acyl-CoA Synthetase 6 Gene and Promoter in Common Carp Cyprinus carpio. Xie D, He Z, Dong Y, Gong Z, Nie G, Li Y. Int J Mol Sci 21 E4736 (2020)
  91. Comparative genomic analysis reveals differential genomic characteristics and featured genes between rapid- and slow-growing non-tuberculous mycobacteria. Zhang M, Wang P, Li C, Segev O, Wang J, Wang X, Yue L, Jiang X, Sheng Y, Levy A, Jiang C, Chen F. Front Microbiol 14 1243371 (2023)
  92. Identification and characterization of levulinyl-CoA synthetase from Pseudomonas citronellolis, which differs phylogenetically from LvaE of Pseudomonas putida. Habe H, Koike H, Sato Y, Iimura Y, Hori T, Kanno M, Kimura N, Kirimura K. AMB Express 9 127 (2019)
  93. In ovo delivery of oregano essential oil activated xenobiotic detoxification and lipid metabolism at hatch in broiler chickens. Niknafs S, Meijer MMY, Khaskheli AA, Roura E. Poult Sci 103 103321 (2023)