1vq5 Citations

Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.

Mol Cell 20 437-48 (2005)
Related entries: 1vq4, 1vq8, 1vq9, 1vqk, 1vql, 1vqm, 1vqo, 1vqp

Cited: 152 times
EuropePMC logo PMID: 16285925

Abstract

Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.

Articles - 1vq5 mentioned but not cited (1)

  1. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Chawla M, Oliva R, Bujnicki JM, Cavallo L. Nucleic Acids Res 43 6714-6729 (2015)


Reviews citing this publication (36)

  1. The noncoding RNA revolution-trashing old rules to forge new ones. Cech TR, Steitz JA. Cell 157 77-94 (2014)
  2. What recent ribosome structures have revealed about the mechanism of translation. Schmeing TM, Ramakrishnan V. Nature 461 1234-1242 (2009)
  3. A structural understanding of the dynamic ribosome machine. Steitz TA. Nat Rev Mol Cell Biol 9 242-253 (2008)
  4. The A-Z of bacterial translation inhibitors. Wilson DN. Crit Rev Biochem Mol Biol 44 393-433 (2009)
  5. Structural basis of the translational elongation cycle. Voorhees RM, Ramakrishnan V. Annu Rev Biochem 82 203-236 (2013)
  6. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  7. The ribosomal peptidyl transferase. Beringer M, Rodnina MV. Mol Cell 26 311-321 (2007)
  8. Recent mechanistic insights into eukaryotic ribosomes. Rodnina MV, Wintermeyer W. Curr Opin Cell Biol 21 435-443 (2009)
  9. Intramolecular isopeptide bonds: protein crosslinks built for stress? Kang HJ, Baker EN. Trends Biochem Sci 36 229-237 (2011)
  10. How ribosomes make peptide bonds. Rodnina MV, Beringer M, Wintermeyer W. Trends Biochem Sci 32 20-26 (2007)
  11. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Agirrezabala X, Frank J. Q Rev Biophys 42 159-200 (2009)
  12. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  13. Peptide release on the ribosome: mechanism and implications for translational control. Youngman EM, McDonald ME, Green R. Annu Rev Microbiol 62 353-373 (2008)
  14. RNA catalysis: ribozymes, ribosomes, and riboswitches. Strobel SA, Cochrane JC. Curr Opin Chem Biol 11 636-643 (2007)
  15. Structural aspects of translation termination on the ribosome. Korostelev AA. RNA 17 1409-1421 (2011)
  16. How should we think about the ribosome? Moore PB. Annu Rev Biophys 41 1-19 (2012)
  17. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Simonović M, Steitz TA. Biochim Biophys Acta 1789 612-623 (2009)
  18. The roles of RNA in the synthesis of protein. Moore PB, Steitz TA. Cold Spring Harb Perspect Biol 3 a003780 (2011)
  19. On the specificity of antibiotics targeting the large ribosomal subunit. Wilson DN. Ann N Y Acad Sci 1241 1-16 (2011)
  20. tRNA as an active chemical scaffold for diverse chemical transformations. Francklyn CS, Minajigi A. FEBS Lett 584 366-375 (2010)
  21. Ribozyme catalysis revisited: is water involved? Walter NG. Mol Cell 28 923-929 (2007)
  22. Emerging structural themes in large RNA molecules. Reiter NJ, Chan CW, Mondragón A. Curr Opin Struct Biol 21 319-326 (2011)
  23. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Rodnina MV. Curr Opin Struct Biol 23 595-602 (2013)
  24. Insights into protein biosynthesis from structures of bacterial ribosomes. Berk V, Cate JH. Curr Opin Struct Biol 17 302-309 (2007)
  25. The mechanism of peptidyl transfer catalysis by the ribosome. Leung EK, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. Annu Rev Biochem 80 527-555 (2011)
  26. New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures. Olson WK, Esguerra M, Xin Y, Lu XJ. Methods 47 177-186 (2009)
  27. Modulating the activity of the peptidyl transferase center of the ribosome. Beringer M. RNA 14 795-801 (2008)
  28. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Beringer M, Rodnina MV. Biol Chem 388 687-691 (2007)
  29. Biological implications of the ribosome's stunning stereochemistry. Zimmerman E, Yonath A. Chembiochem 10 63-72 (2009)
  30. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Yonath A. J R Soc Interface 6 Suppl 5 S575-85 (2009)
  31. Substrate-Induced Formation of Ribosomal Decoding Center for Accurate and Rapid Genetic Code Translation. Pavlov MY, Ehrenberg M. Annu Rev Biophys 47 525-548 (2018)
  32. IRE mRNA riboregulators use metabolic iron (Fe(2+)) to control mRNA activity and iron chemistry in animals. Theil EC. Metallomics 7 15-24 (2015)
  33. Exploring the mechanism of protein synthesis with modified substrates and novel intermediate mimics. Weinger JS, Strobel SA. Blood Cells Mol Dis 38 110-116 (2007)
  34. Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome. Poole ES, Young DJ, Askarian-Amiri ME, Scarlett DJ, Tate WP. Cell Res 17 591-607 (2007)
  35. Teaching argumentation and scientific discourse using the ribosomal peptidyl transferase reaction. Johnson RJ. Biochem Mol Biol Educ 39 185-190 (2011)
  36. Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications. Polikanov YS, Etheve-Quelquejeu M, Micura R. Acc Chem Res 56 2713-2725 (2023)

Articles citing this publication (115)

  1. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Cell 126 1065-1077 (2006)
  2. Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H. Nature 520 567-570 (2015)
  3. Structural basis for translation termination on the 70S ribosome. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. Nature 454 852-857 (2008)
  4. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. Nat Struct Mol Biol 16 528-533 (2009)
  5. Structural insight into nascent polypeptide chain-mediated translational stalling. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R. Science 326 1412-1415 (2009)
  6. High-resolution structure of the Escherichia coli ribosome. Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH. Nat Struct Mol Biol 22 336-341 (2015)
  7. alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Bhushan S, Gartmann M, Halic M, Armache JP, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann R. Nat Struct Mol Biol 17 313-317 (2010)
  8. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Polikanov YS, Steitz TA, Innis CA. Nat Struct Mol Biol 21 787-793 (2014)
  9. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. Gürel G, Blaha G, Moore PB, Steitz TA. J Mol Biol 389 146-156 (2009)
  10. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces. Tjong H, Zhou HX. Nucleic Acids Res 35 1465-1477 (2007)
  11. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R. PLoS Biol 9 e1000581 (2011)
  12. Structure of the bacterial ribosome at 2 Å resolution. Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Elife 9 e60482 (2020)
  13. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. Wohlgemuth I, Brenner S, Beringer M, Rodnina MV. J Biol Chem 283 32229-32235 (2008)
  14. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R. Mol Cell 40 138-146 (2010)
  15. The kinetics of ribosomal peptidyl transfer revisited. Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. Mol Cell 30 589-598 (2008)
  16. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Ramu H, Vázquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS. Mol Cell 41 321-330 (2011)
  17. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Velankar S, van Ginkel G, Alhroub Y, Battle GM, Berrisford JM, Conroy MJ, Dana JM, Gore SP, Gutmanas A, Haslam P, Hendrickx PM, Lagerstedt I, Mir S, Fernandez Montecelo MA, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Sanz-García E, Sen S, Slowley RA, Wainwright ME, Deshpande MS, Iudin A, Sahni G, Salavert Torres J, Hirshberg M, Mak L, Nadzirin N, Armstrong DR, Clark AR, Smart OS, Korir PK, Kleywegt GJ. Nucleic Acids Res 44 D385-95 (2016)
  18. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Johansson M, Ieong KW, Trobro S, Strazewski P, Åqvist J, Pavlov MY, Ehrenberg M. Proc Natl Acad Sci U S A 108 79-84 (2011)
  19. A case for "StopGo": reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). Atkins JF, Wills NM, Loughran G, Wu CY, Parsawar K, Ryan MD, Wang CH, Nelson CC. RNA 13 803-810 (2007)
  20. Drug sensing by the ribosome induces translational arrest via active site perturbation. Arenz S, Meydan S, Starosta AL, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN. Mol Cell 56 446-452 (2014)
  21. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Arenz S, Ramu H, Gupta P, Berninghausen O, Beckmann R, Vázquez-Laslop N, Mankin AS, Wilson DN. Nat Commun 5 3501 (2014)
  22. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O, Beckmann R, Ito K, Wilson DN. Nat Commun 6 6941 (2015)
  23. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Bieling P, Beringer M, Adio S, Rodnina MV. Nat Struct Mol Biol 13 423-428 (2006)
  24. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Jin H, Kelley AC, Loakes D, Ramakrishnan V. Proc Natl Acad Sci U S A 107 8593-8598 (2010)
  25. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, Wada T, Tomita K. Nature 449 867-871 (2007)
  26. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Arenz S, Bock LV, Graf M, Innis CA, Beckmann R, Grubmüller H, Vaiana AC, Wilson DN. Nat Commun 7 12026 (2016)
  27. Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE. Biochemistry 45 686-700 (2006)
  28. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Shaw JJ, Green R. Mol Cell 28 458-467 (2007)
  29. Molecular basis for the ribosome functioning as an L-tryptophan sensor. Bischoff L, Berninghausen O, Beckmann R. Cell Rep 9 469-475 (2014)
  30. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Lang K, Erlacher M, Wilson DN, Micura R, Polacek N. Chem Biol 15 485-492 (2008)
  31. A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Trobro S, Aqvist J. Mol Cell 27 758-766 (2007)
  32. Imprints of the genetic code in the ribosome. Johnson DB, Wang L. Proc Natl Acad Sci U S A 107 8298-8303 (2010)
  33. Mechanisms of ribosome stalling by SecM at multiple elongation steps. Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Elife 4 e09684 (2015)
  34. Different substrate-dependent transition states in the active site of the ribosome. Kuhlenkoetter S, Wintermeyer W, Rodnina MV. Nature 476 351-354 (2011)
  35. Molecular insights into protein synthesis with proline residues. Melnikov S, Mailliot J, Rigger L, Neuner S, Shin BS, Yusupova G, Dever TE, Micura R, Yusupov M. EMBO Rep 17 1776-1784 (2016)
  36. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. He L, Cheng Y, Kong L, Azadnia P, Giang E, Kim J, Wood MR, Wilson IA, Law M, Zhu J. Sci Rep 5 12501 (2015)
  37. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Naismith JH, Schwarz-Linek U. Angew Chem Int Ed Engl 49 8421-8425 (2010)
  38. Historical Article Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Yonath A. Angew Chem Int Ed Engl 49 4341-4354 (2010)
  39. A comparison of vanadate to a 2'-5' linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. Torelli AT, Krucinska J, Wedekind JE. RNA 13 1052-1070 (2007)
  40. 2.8-Å Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania. Shalev-Benami M, Zhang Y, Matzov D, Halfon Y, Zackay A, Rozenberg H, Zimmerman E, Bashan A, Jaffe CL, Yonath A, Skiniotis G. Cell Rep 16 288-294 (2016)
  41. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N. Nucleic Acids Res 35 5130-5140 (2007)
  42. A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Hiller DA, Singh V, Zhong M, Strobel SA. Nature 476 236-239 (2011)
  43. Participation of the tRNA A76 hydroxyl groups throughout translation. Weinger JS, Strobel SA. Biochemistry 45 5939-5948 (2006)
  44. Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Gürel G, Blaha G, Steitz TA, Moore PB. Antimicrob Agents Chemother 53 5010-5014 (2009)
  45. Rapid peptide bond formation on isolated 50S ribosomal subunits. Wohlgemuth I, Beringer M, Rodnina MV. EMBO Rep 7 699-703 (2006)
  46. The transition state for peptide bond formation reveals the ribosome as a water trap. Wallin G, Aqvist J. Proc Natl Acad Sci U S A 107 1888-1893 (2010)
  47. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. Brunelle JL, Shaw JJ, Youngman EM, Green R. RNA 14 1526-1531 (2008)
  48. Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics. Casalino L, Nierzwicki Ł, Jinek M, Palermo G. ACS Catal 10 13596-13605 (2020)
  49. Mechanisms of RNA catalysis. Lilley DM. Philos Trans R Soc Lond B Biol Sci 366 2910-2917 (2011)
  50. The meaning of a minuscule ribozyme. Yarus M. Philos Trans R Soc Lond B Biol Sci 366 2902-2909 (2011)
  51. RNA-assisted catalysis in a protein enzyme: The 2'-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase. Minajigi A, Francklyn CS. Proc Natl Acad Sci U S A 105 17748-17753 (2008)
  52. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. Pratte D, Singh U, Murat G, Kressler D. PLoS One 8 e82741 (2013)
  53. The 2'-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC. Zaher HS, Shaw JJ, Strobel SA, Green R. EMBO J 30 2445-2453 (2011)
  54. The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center. Chirkova A, Erlacher MD, Clementi N, Zywicki M, Aigner M, Polacek N. Nucleic Acids Res 38 4844-4855 (2010)
  55. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Kingery DA, Pfund E, Voorhees RM, Okuda K, Wohlgemuth I, Kitchen DE, Rodnina MV, Strobel SA. Chem Biol 15 493-500 (2008)
  56. Historical Article From the structure and function of the ribosome to new antibiotics (Nobel Lecture). Steitz TA. Angew Chem Int Ed Engl 49 4381-4398 (2010)
  57. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. Bashan A, Yonath A. J Mol Struct 890 289-294 (2008)
  58. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Beckert B, Leroy EC, Sothiselvam S, Bock LV, Svetlov MS, Graf M, Arenz S, Abdelshahid M, Seip B, Grubmüller H, Mankin AS, Innis CA, Vázquez-Laslop N, Wilson DN. Nat Commun 12 4466 (2021)
  59. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain. Koch M, Willi J, Pradère U, Hall J, Polacek N. Nucleic Acids Res 45 6717-6728 (2017)
  60. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. Dedkova LM, Hecht SM. J Am Chem Soc 141 6430-6447 (2019)
  61. Structure of novel enzyme in mannan biodegradation process 4-O-β-D-mannosyl-D-glucose phosphorylase MGP. Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, Shirai T. J Mol Biol 425 4468-4478 (2013)
  62. Ribosome rearrangements at the onset of translational bypassing. Agirrezabala X, Samatova E, Klimova M, Zamora M, Gil-Carton D, Rodnina MV, Valle M. Sci Adv 3 e1700147 (2017)
  63. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. Onoue N, Yamashita Y, Nagao N, Goto DB, Onouchi H, Naito S. J Biol Chem 286 14903-14912 (2011)
  64. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Song Z, Fu H, Wang J, Hui J, Xue T, Pacheco LA, Yan H, Baumgartner R, Wang Z, Xia Y, Wang X, Yin L, Chen C, Rodríguez-López J, Ferguson AL, Lin Y, Cheng J. Proc Natl Acad Sci U S A 116 10658-10663 (2019)
  65. Letter Nucleobase carbonyl groups are poor Mg2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. Leonarski F, D'Ascenzo L, Auffinger P. RNA 25 173-192 (2019)
  66. Structure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling. Guo X, Peisker K, Bäckbro K, Chen Y, Koripella RK, Mandava CS, Sanyal S, Selmer M. Open Biol 2 120016 (2012)
  67. Non-hydrolyzable RNA-peptide conjugates: a powerful advance in the synthesis of mimics for 3'-peptidyl tRNA termini. Moroder H, Steger J, Graber D, Fauster K, Trappl K, Marquez V, Polacek N, Wilson DN, Micura R. Angew Chem Int Ed Engl 48 4056-4060 (2009)
  68. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Nucleic Acids Res 47 2089-2100 (2019)
  69. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging. Oroguchi T, Nakasako M. Phys Rev E Stat Nonlin Soft Matter Phys 87 022712 (2013)
  70. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA. Simonović M, Steitz TA. RNA 14 2372-2378 (2008)
  71. Structural features of a 3' splice site in influenza a. Chen JL, Kennedy SD, Turner DH. Biochemistry 54 3269-3285 (2015)
  72. A Role for the 2' OH of peptidyl-tRNA substrate in peptide release on the ribosome revealed through RF-mediated rescue. Shaw JJ, Trobro S, He SL, Åqvist J, Green R. Chem Biol 19 983-993 (2012)
  73. Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit. Simonović M, Steitz TA. Proc Natl Acad Sci U S A 105 500-505 (2008)
  74. RNA structural motifs that entail hydrogen bonds involving sugar-phosphate backbone atoms of RNA. Ulyanov NB, James TL. New J Chem 34 910-917 (2010)
  75. The chemical versatility of RNA. Hiller DA, Strobel SA. Philos Trans R Soc Lond B Biol Sci 366 2929-2935 (2011)
  76. Peptide Bond Formation Mechanism Catalyzed by Ribosome. Świderek K, Marti S, Tuñón I, Moliner V, Bertran J. J Am Chem Soc 137 12024-12034 (2015)
  77. Incorporation of Phosphorylated Tyrosine into Proteins: In Vitro Translation and Study of Phosphorylated IκB-α and Its Interaction with NF-κB. Chen S, Maini R, Bai X, Nangreave RC, Dedkova LM, Hecht SM. J Am Chem Soc 139 14098-14108 (2017)
  78. Novel base triples in RNA structures revealed by graph theoretical searching methods. Firdaus-Raih M, Harrison AM, Willett P, Artymiuk PJ. BMC Bioinformatics 12 Suppl 13 S2 (2011)
  79. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X, Roux B. J Mol Recognit 23 128-141 (2010)
  80. Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Steger J, Micura R. Bioorg Med Chem 19 5167-5174 (2011)
  81. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome. Åqvist J, Kamerlin SC. Sci Rep 5 15817 (2015)
  82. Induced fit of the peptidyl-transferase center of the ribosome and conformational freedom of the esterified amino acids. Lehmann J. RNA 23 229-239 (2017)
  83. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction. Zhong M, Strobel SA. J Org Chem 73 603-611 (2008)
  84. The Peptidyl Transferase Center: a Window to the Past. Tirumalai MR, Rivas M, Tran Q, Fox GE. Microbiol Mol Biol Rev 85 e0010421 (2021)
  85. A unified dinucleotide alphabet describing both RNA and DNA structures. Černý J, Božíková P, Svoboda J, Schneider B. Nucleic Acids Res 48 6367-6381 (2020)
  86. Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone. Keedy HE, Thomas EN, Zaher HS. Proc Natl Acad Sci U S A 115 E6731-E6740 (2018)
  87. The synthesis of methylated, phosphorylated, and phosphonated 3'-aminoacyl-tRNA(Sec) mimics. Rigger L, Schmidt RL, Holman KM, Simonović M, Micura R. Chemistry 19 15872-15878 (2013)
  88. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Huang KS, Carrasco N, Pfund E, Strobel SA. Biochemistry 47 8822-8827 (2008)
  89. Transition states of uncatalyzed hydrolysis and aminolysis reactions of a ribosomal P-site substrate determined by kinetic isotope effects. Hiller DA, Zhong M, Singh V, Strobel SA. Biochemistry 49 3868-3878 (2010)
  90. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A. Kaminishi T, Schedlbauer A, Fabbretti A, Brandi L, Ochoa-Lizarralde B, He CG, Milón P, Connell SR, Gualerzi CO, Fucini P. Nucleic Acids Res 43 10015-10025 (2015)
  91. Flexizyme-catalyzed synthesis of 3'-aminoacyl-NH-tRNAs. Katoh T, Suga H. Nucleic Acids Res 47 e54 (2019)
  92. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Scaiola A, Leibundgut M, Boehringer D, Caspers P, Bur D, Locher HH, Rueedi G, Ritz D. Sci Rep 9 5634 (2019)
  93. Dynamic 23S rRNA modification ho5C2501 benefits Escherichia coli under oxidative stress. Fasnacht M, Gallo S, Sharma P, Himmelstoß M, Limbach PA, Willi J, Polacek N. Nucleic Acids Res 50 473-489 (2022)
  94. Selective desulfurization significantly expands sequence variety of 3'-peptidyl-tRNA mimics obtained by native chemical ligation. Geiermann AS, Micura R. Chembiochem 13 1742-1745 (2012)
  95. Chemical models of peptide formation in translation. Watts RE, Forster AC. Biochemistry 49 2177-2185 (2010)
  96. Mechanistic alternatives for peptide bond formation on the ribosome. Kazemi M, Socan J, Himo F, Åqvist J. Nucleic Acids Res 46 5345-5354 (2018)
  97. Lecture Structural insights into the functions of the large ribosomal subunit, a major antibiotic target. Steitz TA. Keio J Med 57 1-14 (2008)
  98. Synthesis of aminoacylated N(6),N(6)-dimethyladenosine solid support for efficient access to hydrolysis-resistant 3'-charged tRNA mimics. Neuner S, Micura R. Bioorg Med Chem 22 6989-6995 (2014)
  99. A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome. Byun BJ, Kang YK. Phys Chem Chem Phys 15 14931-14935 (2013)
  100. NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs. Qureshi NS, Matzel T, Cetiner EC, Schnieders R, Jonker HRA, Schwalbe H, Fürtig B. Nucleic Acids Res 49 7753-7764 (2021)
  101. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Nucleic Acids Res 49 9539-9547 (2021)
  102. The ribosome goes Nobel. Rodnina MV, Wintermeyer W. Trends Biochem Sci 35 1-5 (2010)
  103. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, Yonath A. Nucleic Acids Res 50 1770-1782 (2022)
  104. Nanometer scale pores similar in size to the entrance of the ribosomal exit cavity are a common feature of large RNAs. Rivas M, Tran Q, Fox GE. RNA 19 1349-1354 (2013)
  105. New photoreactive tRNA derivatives for probing the peptidyl transferase center of the ribosome. Manuilov AV, Hixson SS, Zimmermann RA. RNA 13 793-800 (2007)
  106. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNA(Ala). Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Org Biomol Chem 11 6161-6169 (2013)
  107. Distal Proton Shuttle Mechanism of Ribosome Catalysed Peptide Bond Formation-A Theoretical Study. Zhang X, Jiang Y, Mao Q, Tan H, Li X, Chen G, Jia Z. Molecules 22 E571 (2017)
  108. Do zwitterionic species exist in the non-enzymatic peptide bond formation? Świderek K, Tuñón I, Martí S, Moliner V, Bertrán J. Chem Commun (Camb) 48 11253-11255 (2012)
  109. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs. Nagano K, Nagano N. J Theor Biol 245 644-668 (2007)
  110. Comment Protein synthesis: Translocation in slow motion. Ehrenberg M. Nature 466 325-326 (2010)
  111. Sparsomycin Exhibits Potent Antiplasmodial Activity In Vitro and In Vivo. Ariefta NR, Pagmadulam B, Nihei CI, Nishikawa Y. Pharmaceutics 14 544 (2022)
  112. The role of initiator tRNAimet in fidelity of initiation of protein synthesis. Monajemi H, Omar NY, Daud MN, Zain SM, Abdullah WA. Nucleosides Nucleotides Nucleic Acids 30 726-739 (2011)
  113. Letter Evolution of translational machinery: could translation termination come into being before elongation? Hauryliuk V. J Theor Biol 248 574-578 (2007)
  114. Intrinsic pKa values of 3'-N-α-l-aminoacyl-3'-aminodeoxyadenosines determined by pH dependent 1H NMR in H2O. Krishnakumar KS, Michel BY, Nguyen-Trung NQ, Fenet B, Strazewski P. Chem Commun (Camb) 47 3290-3292 (2011)
  115. Solvent Organization and Electrostatics Tuned by Solute Electronic Structure: Amide versus Non-Amide Carbonyls. Fried SDE, Zheng C, Mao Y, Markland TE, Boxer SG. J Phys Chem B 126 5876-5886 (2022)