1w7k Citations

Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy.

J Biol Chem 280 18916-22 (2005)
Cited: 25 times
EuropePMC logo PMID: 15705579

Abstract

In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.

Articles - 1w7k mentioned but not cited (1)

  1. Biological and computational studies provide insights into Caesalphinia digyna Rottler stems. Emon NU, Alam MM, Uddin Sawon MS, Rana EH, Afroj M, Hasan Tanvir MM. Biochem Biophys Rep 26 100994 (2021)


Reviews citing this publication (6)

  1. Structure, function and dynamics in the mur family of bacterial cell wall ligases. Smith CA. J Mol Biol 362 640-655 (2006)
  2. Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Hyde JE. Curr Drug Targets 8 31-47 (2007)
  3. Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Bourne CR. Antibiotics (Basel) 3 1-28 (2014)
  4. Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Bertacine Dias MV, Santos JC, Libreros-Zúñiga GA, Ribeiro JA, Chavez-Pacheco SM. Future Med Chem 10 935-959 (2018)
  5. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J. Med Res Rev 39 684-705 (2019)
  6. Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance. Kordus SL, Baughn AD. Medchemcomm 10 880-895 (2019)

Articles citing this publication (18)

  1. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K, Camacho LR. J Biol Chem 288 23447-23456 (2013)
  2. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. de Crécy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD. BMC Genomics 8 245 (2007)
  3. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Zhao F, Wang XD, Erber LN, Luo M, Guo AZ, Yang SS, Gu J, Turman BJ, Gao YR, Li DF, Cui ZQ, Zhang ZP, Bi LJ, Baughn AD, Zhang XE, Deng JY. Antimicrob Agents Chemother 58 1479-1487 (2014)
  4. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Sousa FL, Sousa FL, Martin WF. Biochim Biophys Acta 1837 964-981 (2014)
  5. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q. Antimicrob Agents Chemother 59 1320-1324 (2015)
  6. Streptococcus pneumoniae folate biosynthesis responds to environmental CO2 levels. Burghout P, Zomer A, van der Gaast-de Jongh CE, Janssen-Megens EM, Françoijs KJ, Stunnenberg HG, Hermans PW. J Bacteriol 195 1573-1582 (2013)
  7. Characterisation of the bifunctional dihydrofolate synthase-folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition. Wang P, Wang Q, Yang Y, Coward JK, Nzila A, Sims PF, Hyde JE. Mol Biochem Parasitol 172 41-51 (2010)
  8. An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets. Radusky LG, Hassan S, Lanzarotti E, Tiwari S, Jamal S, Ali J, Ali A, Ferreira R, Barh D, Silva A, Turjanski AG, Azevedo VA. BMC Genomics 16 Suppl 5 S9 (2015)
  9. Concentration-dependent processivity of multiple glutamate ligations catalyzed by folylpoly-gamma-glutamate synthetase. Tomsho JW, Moran RG, Coward JK. Biochemistry 47 9040-9050 (2008)
  10. Synthesis of (6R)- and (6S)-5,10-dideazatetrahydrofolate oligo-gamma-glutamates: kinetics of multiple glutamate ligations catalyzed by folylpoly-gamma-glutamate synthetase. Tomsho JW, McGuire JJ, Coward JK. Org Biomol Chem 3 3388-3398 (2005)
  11. A single amino acid substitution in the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae dependent on CO2 and temperature. Burghout P, Quintero B, Bos L, Beilharz K, Veening JW, de Jonge MI, van der Linden M, van der Ende A, Hermans PW. Mol Microbiol 89 494-506 (2013)
  12. Isolation of the Pneumocystis carinii dihydrofolate synthase gene and functional complementation in Saccharomyces cerevisiae. Hauser PM, Macreadie IG. FEMS Microbiol Lett 256 244-250 (2006)
  13. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents. Ahn YY, Lee DS, Burd H, Blank W, Kapatral V. PLoS One 9 e85195 (2014)
  14. The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control Escherichia coli folylpoly-γ-glutamate synthase FolC. Rodionova IA, Goodacre N, Do J, Hosseinnia A, Babu M, Uetz P, Saier MH. J Biol Chem 293 15725-15732 (2018)
  15. Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Luo M, Li K, Zhang H, Yan X, Gu J, Zhang Z, Chen Y, Li J, Wang J, Chen Y. Infect Drug Resist 12 2269-2275 (2019)
  16. Phylogenetic and Structural Significance of Dihydrofolate Synthase (folC) Mutations in Drug-Resistant Mycobacterium tuberculosis. Cheng VW, Leung KS, Kwok JS, Leung RK, Yang KY, Chan RC, Kam KM, Tsui SK. Microb Drug Resist 22 545-551 (2016)
  17. Purification, crystallization and preliminary X-ray analysis of Mycobacterium tuberculosisfolylpolyglutamate synthase (MtbFPGS). Young PG, Smith CA, Sun X, Baker EN, Metcalf P. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 579-582 (2006)
  18. Determination of critical concentration for drug susceptibility testing of Mycobacterium tuberculosis against para-aminosalicylic acid with clinical isolates with thyA, folC and dfrA mutations. Wang W, Li S, Ge Q, Guo H, Shang Y, Ren W, Wang Y, Xue Z, Lu J, Pang Y. Ann Clin Microbiol Antimicrob 21 48 (2022)