1wzy Citations

Crystal structure of human ERK2 complexed with a pyrazolo[3,4-c]pyridazine derivative.

Bioorg Med Chem Lett 16 55-8 (2006)
Cited: 23 times
EuropePMC logo PMID: 16242327

Abstract

A series of pyrazolopyridazine compounds were briefly investigated as ERK2 inhibitors. The crystal structure of ERK2 complexed with an allyl derivative was determined. The compound induces structural change including movement of the glycine-rich loop and peptide flip between Met108-Glu109. As a result, the newly formed subsite can recognize small hydrophobic substituents but not hydrophilic ones.

Articles - 1wzy mentioned but not cited (7)

  1. A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Xu J, Xie J, Yan C, Zou X, Ren D, Zhang S. Plant J 77 222-234 (2014)
  2. Serotyping Streptococcus pneumoniae by multiplex PCR. Brito DA, Ramirez M, de Lencastre H. J Clin Microbiol 41 2378-2384 (2003)
  3. Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F, Westwood NJ, Hui R, Zuercher WJ, Duraisingh MT, Moreno SN, Lourido S. J Biol Chem 291 9566-9580 (2016)
  4. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. PLoS Comput Biol 10 e1003470 (2014)
  5. Utilizing network pharmacology and molecular docking to explore the underlying mechanism of Guizhi Fuling Wan in treating endometriosis. Wang H, Zhou G, Zhuang M, Wang W, Fu X. PeerJ 9 e11087 (2021)
  6. Target Identification of 22-(4-Pyridinecarbonyl) Jorunnamycin A, a Tetrahydroisoquinoline Derivative from the Sponge Xestospongia sp., in Mediating Non-Small-Cell Lung Cancer Cell Apoptosis. Iksen I, Sinsook S, Wattanathamsan O, Buaban K, Chamni S, Pongrakhananon V. Molecules 27 8948 (2022)
  7. Light-Mediated Transformation of Renieramycins and Semisynthesis of 4'-Pyridinecarbonyl-Substituted Renieramycin-Type Derivatives as Potential Cytotoxic Agents against Non-Small-Cell Lung Cancer Cells. Sinsook S, Buaban K, Iksen I, Petsri K, Innets B, Chansriniyom C, Suwanborirux K, Yokoya M, Saito N, Pongrakhananon V, Chanvorachote P, Chamni S. Mar Drugs 21 400 (2023)


Reviews citing this publication (1)

  1. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Mazanetz MP, Fischer PM. Nat Rev Drug Discov 6 464-479 (2007)

Articles citing this publication (15)

  1. Role of a cysteine residue in the active site of ERK and the MAPKK family. Ohori M, Kinoshita T, Yoshimura S, Warizaya M, Nakajima H, Miyake H. Biochem Biophys Res Commun 353 633-637 (2007)
  2. Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T. Biochem Biophys Res Commun 377 1123-1127 (2008)
  3. Norathyriol suppresses skin cancers induced by solar ultraviolet radiation by targeting ERK kinases. Li J, Malakhova M, Mottamal M, Reddy K, Kurinov I, Carper A, Langfald A, Oi N, Kim MO, Zhu F, Sosa CP, Zhou K, Bode AM, Dong Z. Cancer Res 72 260-270 (2012)
  4. Quercetin-3-methyl ether inhibits esophageal carcinogenesis by targeting the AKT/mTOR/p70S6K and MAPK pathways. Zhao S, Jiang Y, Zhao J, Li H, Yin X, Wang Y, Xie Y, Chen X, Lu J, Dong Z, Liu K. Mol Carcinog 57 1540-1552 (2018)
  5. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Azevedo R, van Zeeland M, Raaijmakers H, Kazemier B, de Vlieg J, Oubrie A. Acta Crystallogr D Biol Crystallogr 68 1041-1050 (2012)
  6. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB. ACS Med Chem Lett 8 726-731 (2017)
  7. A computational workflow for the design of irreversible inhibitors of protein kinases. Del Rio A, Sgobba M, Parenti MD, Degliesposti G, Forestiero R, Percivalle C, Conte PF, Freccero M, Rastelli G. J Comput Aided Mol Des 24 183-194 (2010)
  8. Knowledge-based identification of the ERK2/STAT3 signal pathway as a therapeutic target for type 2 diabetes and drug discovery. Kinoshita T, Doi K, Sugiyama H, Kinoshita S, Wada M, Naruto S, Tomonaga A. Chem Biol Drug Des 78 471-476 (2011)
  9. Multi-gram scale synthesis of FR180204. Patnaik S, Dietz HC, Zheng W, Austin C, Marugan JJ. J Org Chem 74 8870-8873 (2009)
  10. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags. Söveges B, Imre T, Szende T, Póti ÁL, Cserép GB, Hegedűs T, Kele P, Németh K. Org Biomol Chem 14 6071-6078 (2016)
  11. Identification of a key element for hydrogen-bonding patterns between protein kinases and their inhibitors. Katayama N, Orita M, Yamaguchi T, Hisamichi H, Kuromitsu S, Kurihara H, Sakashita H, Matsumoto Y, Fujita S, Niimi T. Proteins 73 795-801 (2008)
  12. New inhibitors of the complement system inspired in K76-COOH. A SAR study of filifolinol derivatives through modifications of the C3' position. Larghi EL, Operto MA, Torres R, Kaufman TS. Bioorg Med Chem Lett 19 6172-6175 (2009)
  13. A high throughput assay to identify substrate-selective inhibitors of the ERK protein kinases. Miller CJ, Muftuoglu Y, Turk BE. Biochem Pharmacol 142 39-45 (2017)
  14. Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Park H, Bahn YJ, Jeong DG, Woo EJ, Kwon JS, Ryu SE. Bioorg Med Chem Lett 18 5372-5376 (2008)
  15. Repositioning of amprenavir as a novel extracellular signal-regulated kinase-2 inhibitor and apoptosis inducer in MCF-7 human breast cancer. Jiang W, Li X, Li T, Wang H, Shi W, Qi P, Li C, Chen J, Bao J, Huang G, Wang Y. Int J Oncol 50 823-834 (2017)