1zhz Citations

Structural mechanism for sterol sensing and transport by OSBP-related proteins.

Nature 437 154-8 (2005)
Related entries: 1zht, 1zhw, 1zhx, 1zhy, 1zi7

Cited: 258 times
EuropePMC logo PMID: 16136145

Abstract

The oxysterol-binding-protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and are implicated in the regulation of sterol homeostasis and in signal transduction pathways. Here we report the structure of the full-length yeast ORP Osh4 (also known as Kes1) at 1.5-1.9 A resolution in complexes with ergosterol, cholesterol, and 7-, 20- and 25-hydroxycholesterol. We find that a single sterol molecule binds within a hydrophobic tunnel in a manner consistent with a transport function for ORPs. The entrance is blocked by a flexible amino-terminal lid and surrounded by basic residues that are critical for Osh4 function. The structure of the open state of a lid-truncated form of Osh4 was determined at 2.5 A resolution. Structural analysis and limited proteolysis show that sterol binding closes the lid and stabilizes a conformation favouring transport across aqueous barriers and signal transmission. The structure of Osh4 in the absence of ligand exposes potential phospholipid-binding sites that are positioned for membrane docking and sterol exchange. On the basis of these observations, we propose a model in which sterol and membrane binding promote reciprocal conformational changes that facilitate a sterol transfer and signalling cycle.

Reviews - 1zhz mentioned but not cited (3)

  1. Mechanisms of nonvesicular lipid transport. Reinisch KM, Prinz WA. J Cell Biol 220 e202012058 (2021)
  2. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Pemberton JG, Balla T. Adv Exp Med Biol 1111 77-137 (2019)
  3. Review on Structures of Pesticide Targets. Li X, Yang X, Zheng X, Bai M, Hu D. Int J Mol Sci 21 E7144 (2020)

Articles - 1zhz mentioned but not cited (7)

  1. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. Nature 437 154-158 (2005)
  2. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W, Antonny B, Drin G. J Cell Biol 195 965-978 (2011)
  3. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. Radauer C, Lackner P, Breiteneder H. BMC Evol Biol 8 286 (2008)
  4. The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Suchanek M, Hynynen R, Wohlfahrt G, Lehto M, Johansson M, Saarinen H, Radzikowska A, Thiele C, Olkkonen VM. Biochem J 405 473-480 (2007)
  5. A highly potent CD73 biparatopic antibody blocks organization of the enzyme active site through dual mechanisms. Stefano JE, Lord DM, Zhou Y, Jaworski J, Hopke J, Travaline T, Zhang N, Wong K, Lennon A, He T, Bric-Furlong E, Cherrie C, Magnay T, Remy E, Brondyk W, Qiu H, Radošević K. J Biol Chem 295 18379-18389 (2020)
  6. Structural basis for cooperativity of human monoclonal antibodies to meningococcal factor H-binding protein. Peschiera I, Giuliani M, Giusti F, Melero R, Paccagnini E, Donnarumma D, Pansegrau W, Carazo JM, Sorzano COS, Scarselli M, Masignani V, Liljeroos LJ, Ferlenghi I. Commun Biol 2 241 (2019)
  7. Modeling the membrane binding mechanism of a lipid transport protein Osh4 to single membranes. Karmakar S, Klauda JB. Biophys J 121 1560-1575 (2022)


Reviews citing this publication (88)

  1. Structure and function of ER membrane contact sites with other organelles. Phillips MJ, Voeltz GK. Nat Rev Mol Cell Biol 17 69-82 (2016)
  2. Cholesterol sensing, trafficking, and esterification. Chang TY, Chang CC, Ohgami N, Yamauchi Y. Annu Rev Cell Dev Biol 22 129-157 (2006)
  3. Organization and function of membrane contact sites. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Biochim Biophys Acta 1833 2526-2541 (2013)
  4. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Balla A, Balla T. Trends Cell Biol 16 351-361 (2006)
  5. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Bigay J, Antonny B. Dev Cell 23 886-895 (2012)
  6. Mechanisms of membrane curvature sensing. Antonny B. Annu Rev Biochem 80 101-123 (2011)
  7. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Lev S. Nat Rev Mol Cell Biol 11 739-750 (2010)
  8. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Carrasco S, Meyer T. Annu Rev Biochem 80 973-1000 (2011)
  9. Cholesterol and the interaction of proteins with membrane domains. Epand RM. Prog Lipid Res 45 279-294 (2006)
  10. Inter-organelle membrane contact sites: through a glass, darkly. Levine T, Loewen C. Curr Opin Cell Biol 18 371-378 (2006)
  11. Endoplasmic Reticulum-Plasma Membrane Contact Sites. Saheki Y, De Camilli P. Annu Rev Biochem 86 659-684 (2017)
  12. Intracellular sterol dynamics. Mesmin B, Maxfield FR. Biochim Biophys Acta 1791 636-645 (2009)
  13. Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Toulmay A, Prinz WA. Curr Opin Cell Biol 23 458-463 (2011)
  14. The diverse functions of oxysterol-binding proteins. Raychaudhuri S, Prinz WA. Annu Rev Cell Dev Biol 26 157-177 (2010)
  15. ER-PM connections: sites of information transfer and inter-organelle communication. Stefan CJ, Manford AG, Emr SD. Curr Opin Cell Biol 25 434-442 (2013)
  16. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. J Neurochem 111 1275-1308 (2009)
  17. Phosphoinositide signaling: new tools and insights. Balla T, Szentpetery Z, Kim YJ. Physiology (Bethesda) 24 231-244 (2009)
  18. Emerging Roles for the Lysosome in Lipid Metabolism. Thelen AM, Zoncu R. Trends Cell Biol 27 833-850 (2017)
  19. Advances on the Transfer of Lipids by Lipid Transfer Proteins. Wong LH, Čopič A, Levine TP. Trends Biochem Sci 42 516-530 (2017)
  20. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Olkkonen VM, Li S. Prog Lipid Res 52 529-538 (2013)
  21. Intracellular sterol transport and distribution. Maxfield FR, Menon AK. Curr Opin Cell Biol 18 379-385 (2006)
  22. Cholesterol as a co-solvent and a ligand for membrane proteins. Song Y, Kenworthy AK, Sanders CR. Protein Sci 23 1-22 (2014)
  23. Linking phospholipid flippases to vesicle-mediated protein transport. Muthusamy BP, Natarajan P, Zhou X, Graham TR. Biochim Biophys Acta 1791 612-619 (2009)
  24. Disorders in the initial steps of steroid hormone synthesis. Miller WL. J Steroid Biochem Mol Biol 165 18-37 (2017)
  25. Non-vesicular sterol transport in cells. Prinz WA. Prog Lipid Res 46 297-314 (2007)
  26. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Mousley CJ, Tyeryar KR, Vincent-Pope P, Bankaitis VA. Biochim Biophys Acta 1771 727-736 (2007)
  27. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Antonny B, Bigay J, Mesmin B. Annu Rev Biochem 87 809-837 (2018)
  28. Lipid-transfer proteins in biosynthetic pathways. D'Angelo G, Vicinanza M, De Matteis MA. Curr Opin Cell Biol 20 360-370 (2008)
  29. Functional implications of sterol transport by the oxysterol-binding protein gene family. Ngo MH, Colbourne TR, Ridgway ND. Biochem J 429 13-24 (2010)
  30. Genetic and biochemical analysis of non-vesicular lipid traffic. Voelker DR. Annu Rev Biochem 78 827-856 (2009)
  31. Nonvesicular lipid transfer from the endoplasmic reticulum. Lev S. Cold Spring Harb Perspect Biol 4 a013300 (2012)
  32. Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling. Ile KE, Schaaf G, Bankaitis VA. Nat Chem Biol 2 576-583 (2006)
  33. Topological regulation of lipid balance in cells. Drin G. Annu Rev Biochem 83 51-77 (2014)
  34. Membrane and protein interactions of oxysterols. Massey JB. Curr Opin Lipidol 17 296-301 (2006)
  35. A detour for yeast oxysterol binding proteins. Beh CT, McMaster CR, Kozminski KG, Menon AK. J Biol Chem 287 11481-11488 (2012)
  36. Insights into the mechanisms of sterol transport between organelles. Mesmin B, Antonny B, Drin G. Cell Mol Life Sci 70 3405-3421 (2013)
  37. Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Schulz TA, Prinz WA. Biochim Biophys Acta 1771 769-780 (2007)
  38. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC. Prog Lipid Res 61 30-39 (2016)
  39. Golgi membrane dynamics and lipid metabolism. Bankaitis VA, Garcia-Mata R, Mousley CJ. Curr Biol 22 R414-24 (2012)
  40. Bridging the molecular and biological functions of the oxysterol-binding protein family. Pietrangelo A, Ridgway ND. Cell Mol Life Sci 75 3079-3098 (2018)
  41. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Weber-Boyvat M, Zhong W, Yan D, Olkkonen VM. Biochem Pharmacol 86 89-95 (2013)
  42. Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. Philos Trans R Soc Lond B Biol Sci 370 20150027 (2015)
  43. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation. Wriessnegger T, Pichler H. Prog Lipid Res 52 277-293 (2013)
  44. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. Hanada K. J Lipid Res 59 1341-1366 (2018)
  45. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. Grabon A, Bankaitis VA, McDermott MI. J Lipid Res 60 242-268 (2019)
  46. The Vps13 Family of Lipid Transporters and Its Role at Membrane Contact Sites. Dziurdzik SK, Conibear E. Int J Mol Sci 22 2905 (2021)
  47. Inositol lipid regulation of lipid transfer in specialized membrane domains. Kim YJ, Hernandez ML, Balla T. Trends Cell Biol 23 270-278 (2013)
  48. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Olkkonen VM. Lipid Insights 8 1-9 (2015)
  49. Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA. Mol Plant Pathol 15 747-761 (2014)
  50. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Hanada K. Biochim Biophys Acta 1841 704-719 (2014)
  51. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Du X, Brown AJ, Yang H. Curr Opin Cell Biol 35 37-42 (2015)
  52. Macrophage oxysterols and their binding proteins: roles in atherosclerosis. Olkkonen VM. Curr Opin Lipidol 23 462-470 (2012)
  53. Sterols and sphingolipids: dynamic duo or partners in crime? Gulati S, Liu Y, Munkacsi AB, Wilcox L, Sturley SL. Prog Lipid Res 49 353-365 (2010)
  54. Lipid transport required to make lipids of photosynthetic membranes. LaBrant E, Barnes AC, Roston RL. Photosynth Res 138 345-360 (2018)
  55. A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: from yeast to man. Hönscher C, Ungermann C. Crit Rev Biochem Mol Biol 49 262-268 (2014)
  56. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Lipp NF, Ikhlef S, Milanini J, Drin G. Front Cell Dev Biol 8 663 (2020)
  57. Common structural features of cholesterol binding sites in crystallized soluble proteins. Bukiya AN, Dopico AM. J Lipid Res 58 1044-1054 (2017)
  58. Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution. Hariri H, Ugrankar R, Liu Y, Henne WM. Commun Integr Biol 9 e1156278 (2016)
  59. Intracellular sterol transport in eukaryotes, a connection to mitochondrial function? Schneiter R. Biochimie 89 255-259 (2007)
  60. Lipid requirements for endocytosis in yeast. Souza CM, Pichler H. Biochim Biophys Acta 1771 442-454 (2007)
  61. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus. Li T, You H, Zhang J, Mo X, He W, Chen Y, Tang X, Jiang Z, Tu R, Zeng L, Lu W, Hu Z. Mol Neurobiol 49 1449-1459 (2014)
  62. Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions. Li C, Qian T, He R, Wan C, Liu Y, Yu H. Front Cell Dev Biol 9 627700 (2021)
  63. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange. Quon E, Beh CT. Lipid Insights 8 55-63 (2015)
  64. Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Nakatsu F, Kawasaki A. Front Cell Dev Biol 9 664788 (2021)
  65. Sticking With It: ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and Proteins at the Cell Cortex. Zaman MF, Nenadic A, Radojičić A, Rosado A, Beh CT. Front Cell Dev Biol 8 675 (2020)
  66. Endosomal cholesterol trafficking: protein factors at a glance. Du X, Yang H. Acta Biochim Biophys Sin (Shanghai) 45 11-17 (2013)
  67. Non-vesicular Lipid Transport Machinery in Entamoeba histolytica. Das K, Nozaki T. Front Cell Infect Microbiol 8 315 (2018)
  68. OSBP-related proteins: liganding by glycerophospholipids opens new insight into their function. Olkkonen VM. Molecules 18 13666-13679 (2013)
  69. The oxysterol-binding protein superfamily: new concepts and old proteins. Villasmil ML, Bankaitis VA, Mousley CJ. Biochem Soc Trans 40 469-473 (2012)
  70. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Egea PF. Front Cell Dev Biol 9 784367 (2021)
  71. ORP5 and ORP8: Sterol Sensors and Phospholipid Transfer Proteins at Membrane Contact Sites? Santos NC, Girik V, Nunes-Hasler P. Biomolecules 10 E928 (2020)
  72. Roles for ER:endosome membrane contact sites in ligand-stimulated intraluminal vesicle formation. Wong LH, Eden ER, Futter CE. Biochem Soc Trans 46 1055-1062 (2018)
  73. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Kattan WE, Hancock JF. Biochem J 477 2893-2919 (2020)
  74. The function of yeast CAP family proteins in lipid export, mating, and pathogen defense. Darwiche R, El Atab O, Cottier S, Schneiter R. FEBS Lett 592 1304-1311 (2018)
  75. You are lost without a map: Navigating the sea of protein structures. Lamb AL, Kappock TJ, Silvaggi NR. Biochim Biophys Acta 1854 258-268 (2015)
  76. Surprising roles for phospholipid binding proteins revealed by high throughput genetics. LeBlanc MA, McMaster CR. Biochem Cell Biol 88 565-574 (2010)
  77. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Front Cell Dev Biol 9 737907 (2021)
  78. Schweinfurthins: Lipid Modulators with Promising Anticancer Activity. Koubek EJ, Weissenrieder JS, Neighbors JD, Hohl RJ. Lipids 53 767-784 (2018)
  79. Perspective on architecture and assembly of membrane contact sites. Hoffmann PC, Kukulski W. Biol Cell 109 400-408 (2017)
  80. Advances in the role of microRNAs in lipid metabolism-related anti-atherosclerotic drug discovery. Wang L, Yang Y, Hong B. Expert Opin Drug Discov 8 977-990 (2013)
  81. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Hewlett B, Singh NP, Vannier C, Galli T. Front Cell Dev Biol 9 635518 (2021)
  82. Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. McDermott MI, Mousley CJ. Chem Phys Lipids 200 42-61 (2016)
  83. Phosphoinositide transport and metabolism at membrane contact sites. Dickson EJ. Biochim Biophys Acta Mol Cell Biol Lipids 1867 159107 (2022)
  84. Adenovirus Reveals New Pathway for Cholesterol Egress from the Endolysosomal System. Carlin C, Manor D. Int J Mol Sci 21 E5808 (2020)
  85. Interorganellar Communication Through Membrane Contact Sites in Toxoplasma Gondii. Huet D, Moreno SNJ. Contact (Thousand Oaks) 6 25152564231189064 (2023)
  86. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Das K, Nozaki T. Int J Mol Sci 24 10637 (2023)
  87. Organelles are miscommunicating: Membrane contact sites getting hijacked by pathogens. Paul P, Tiwari B. Virulence 14 2265095 (2023)
  88. Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport. Zheng Koh DH, Saheki Y. Contact (Thousand Oaks) 4 25152564211042451 (2021)

Articles citing this publication (160)

  1. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J. J Cell Biol 185 1209-1225 (2009)
  2. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. Cell 155 830-843 (2013)
  3. A general amphipathic alpha-helical motif for sensing membrane curvature. Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B. Nat Struct Mol Biol 14 138-146 (2007)
  4. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Proc Natl Acad Sci U S A 104 6511-6518 (2007)
  5. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD. Cell 144 389-401 (2011)
  6. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P. Science 349 428-432 (2015)
  7. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ. Cell 139 337-351 (2009)
  8. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Cell 166 408-423 (2016)
  9. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C. Cardiovasc Res 83 131-139 (2009)
  10. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Moser von Filseck J, Čopič A, Delfosse V, Vanni S, Jackson CL, Bourguet W, Drin G. Science 349 432-436 (2015)
  11. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC. Nature 501 257-261 (2013)
  12. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. J Cell Biol 173 107-119 (2006)
  13. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H. J Cell Biol 192 121-135 (2011)
  14. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, Culp JS, Danley DE, Freeman TB, Geoghegan KF, Griffor MC, Hawrylik SJ, Hayward CM, Hensley P, Hoth LR, Karam GA, Lira ME, Lloyd DB, McGrath KM, Stutzman-Engwall KJ, Subashi AK, Subashi TA, Thompson JF, Wang IK, Zhao H, Seddon AP. Nat Struct Mol Biol 14 106-113 (2007)
  15. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, Bankaitis VA. Mol Cell 29 191-206 (2008)
  16. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Perry RJ, Ridgway ND. Mol Biol Cell 17 2604-2616 (2006)
  17. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. Schulz TA, Choi MG, Raychaudhuri S, Mears JA, Ghirlando R, Hinshaw JE, Prinz WA. J Cell Biol 187 889-903 (2009)
  18. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. Gatta AT, Wong LH, Sere YY, Calderón-Noreña DM, Cockcroft S, Menon AK, Levine TP. Elife 4 (2015)
  19. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. J Biol Chem 282 23525-23531 (2007)
  20. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Freinkman E, Chng SS, Kahne D. Proc Natl Acad Sci U S A 108 2486-2491 (2011)
  21. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G. Biochim Biophys Acta 1811 1165-1176 (2011)
  22. Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Ngo M, Ridgway ND. Mol Biol Cell 20 1388-1399 (2009)
  23. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C. Proc Natl Acad Sci U S A 102 17981-17986 (2005)
  24. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares AH, Saeed M, Holehouse AS, Ploss A, Levental I, Douam F, Padera RF, Levy BD, Brangwynne CP. Elife 10 e65962 (2021)
  25. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, Counihan JL, Ory DS, Nomura DK, Zoncu R. Nat Cell Biol 21 1206-1218 (2019)
  26. Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. Korade Z, Xu L, Shelton R, Porter NA. J Lipid Res 51 3259-3269 (2010)
  27. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Moser von Filseck J, Vanni S, Mesmin B, Antonny B, Drin G. Nat Commun 6 6671 (2015)
  28. Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi. Tóth B, Balla A, Ma H, Knight ZA, Shokat KM, Balla T. J Biol Chem 281 36369-36377 (2006)
  29. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Ghai R, Du X, Wang H, Dong J, Ferguson C, Brown AJ, Parton RG, Wu JW, Yang H. Nat Commun 8 757 (2017)
  30. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. EMBO J 36 3156-3174 (2017)
  31. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Sheng R, Chen Y, Yung Gee H, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Källberg M, Fujiwara TK, Hye Hong J, Pyo Kim K, Lu H, Kusumi A, Goo Lee M, Cho W. Nat Commun 3 1249 (2012)
  32. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Tong J, Yang H, Yang H, Eom SH, Im YJ. Structure 21 1203-1213 (2013)
  33. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. Traffic 12 1341-1355 (2011)
  34. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. PLoS Pathog 7 e1002047 (2011)
  35. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Gamir J, Darwiche R, Van't Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F. Plant J 89 502-509 (2017)
  36. A sterol-binding protein integrates endosomal lipid metabolism with TOR signaling and nitrogen sensing. Mousley CJ, Yuan P, Gaur NA, Trettin KD, Nile AH, Deminoff SJ, Dewar BJ, Wolpert M, Macdonald JM, Herman PK, Hinnebusch AG, Bankaitis VA. Cell 148 702-715 (2012)
  37. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Choudhary V, Schneiter R. Proc Natl Acad Sci U S A 109 16882-16887 (2012)
  38. The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Fairn GD, Curwin AJ, Stefan CJ, McMaster CR. Proc Natl Acad Sci U S A 104 15352-15357 (2007)
  39. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  40. Role of ORPs in sterol transport from plasma membrane to ER and lipid droplets in mammalian cells. Jansen M, Ohsaki Y, Rega LR, Bittman R, Olkkonen VM, Ikonen E. Traffic 12 218-231 (2011)
  41. Sterol binding by OSBP-related protein 1L regulates late endosome motility and function. Vihervaara T, Uronen RL, Wohlfahrt G, Björkhem I, Björkhem I, Ikonen E, Olkkonen VM. Cell Mol Life Sci 68 537-551 (2011)
  42. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. Hynynen R, Suchanek M, Spandl J, Bäck N, Thiele C, Olkkonen VM. J Lipid Res 50 1305-1315 (2009)
  43. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. J Lipid Res 47 2614-2630 (2006)
  44. The sterol-binding protein Kes1/Osh4p is a regulator of polarized exocytosis. Alfaro G, Johansen J, Dighe SA, Duamel G, Kozminski KG, Beh CT. Traffic 12 1521-1536 (2011)
  45. A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast. Reiner S, Micolod D, Zellnig G, Schneiter R. Mol Biol Cell 17 90-103 (2006)
  46. Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Zhang AX, Yu WH, Ma BF, Yu XB, Mao FF, Liu W, Zhang JQ, Zhang XM, Li SN, Li MT, Lahn BT, Xiang AP. Mol Cell Biochem 304 167-179 (2007)
  47. Homologues of oxysterol-binding proteins affect Cdc42p- and Rho1p-mediated cell polarization in Saccharomyces cerevisiae. Kozminski KG, Alfaro G, Dighe S, Beh CT. Traffic 7 1224-1242 (2006)
  48. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F. Plant J 58 817-830 (2009)
  49. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. Du X, Zhou L, Aw YC, Mak HY, Xu Y, Rae J, Wang W, Zadoorian A, Hancock SE, Osborne B, Chen X, Wu JW, Turner N, Parton RG, Li P, Yang H. J Cell Biol 219 e201905162 (2020)
  50. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA. Mol Biol Cell 19 4785-4803 (2008)
  51. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR. Mol Biol Cell 26 4674-4685 (2015)
  52. Gene expression changes in areas of focal loss of retinal ganglion cells in the retina of DBA/2J mice. Panagis L, Zhao X, Ge Y, Ren L, Mittag TW, Danias J. Invest Ophthalmol Vis Sci 51 2024-2034 (2010)
  53. Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis. Goto A, Liu X, Robinson CA, Ridgway ND. Mol Biol Cell 23 3624-3635 (2012)
  54. Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Dong J, Du X, Wang H, Wang J, Lu C, Chen X, Zhu Z, Luo Z, Yu L, Brown AJ, Yang H, Wu JW. Nat Commun 10 829 (2019)
  55. Cholesterol trafficking and distribution. Iaea DB, Maxfield FR. Essays Biochem 57 43-55 (2015)
  56. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Tong J, Manik MK, Im YJ. Proc Natl Acad Sci U S A 115 E856-E865 (2018)
  57. Using HHsearch to tackle proteins of unknown function: A pilot study with PH domains. Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, Levine TP. Traffic 17 1214-1226 (2016)
  58. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Muthusamy BP, Raychaudhuri S, Natarajan P, Abe F, Liu K, Prinz WA, Graham TR. Mol Biol Cell 20 2920-2931 (2009)
  59. Molecular basis for sterol transport by StART-like lipid transfer domains. Horenkamp FA, Valverde DP, Nunnari J, Reinisch KM. EMBO J 37 e98002 (2018)
  60. Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P2 Synthesis. Nishimura T, Gecht M, Covino R, Hummer G, Surma MA, Klose C, Arai H, Kono N, Stefan CJ. Mol Cell 75 1043-1057.e8 (2019)
  61. Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes. Gay A, Rye D, Radhakrishnan A. Biophys J 108 1459-1469 (2015)
  62. Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Wyles JP, Perry RJ, Ridgway ND. Exp Cell Res 313 1426-1437 (2007)
  63. Multivesicular body formation requires OSBP-related proteins and cholesterol. Kobuna H, Inoue T, Shibata M, Gengyo-Ando K, Yamamoto A, Mitani S, Arai H. PLoS Genet 6 e1001055 (2010)
  64. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature. Ling Y, Hayano S, Novick P. Mol Biol Cell 25 3389-3400 (2014)
  65. Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Kumpula LS, Kumpula JM, Taskinen MR, Jauhiainen M, Kaski K, Ala-Korpela M. Chem Phys Lipids 155 57-62 (2008)
  66. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. Yu F, He F, Yao H, Wang C, Wang J, Li J, Qi X, Xue H, Ding J, Zhang P. EMBO Rep 16 813-823 (2015)
  67. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). Benned-Jensen T, Norn C, Laurent S, Madsen CM, Larsen HM, Arfelt KN, Wolf RM, Frimurer T, Sailer AW, Rosenkilde MM. J Biol Chem 287 35470-35483 (2012)
  68. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation. Lessmann E, Ngo M, Leitges M, Minguet S, Ridgway ND, Huber M. Cell Signal 19 384-392 (2007)
  69. Oxysterol binding protein-related protein-5 is related to invasion and poor prognosis in pancreatic cancer. Koga Y, Ishikawa S, Nakamura T, Masuda T, Nagai Y, Takamori H, Hirota M, Kanemitsu K, Baba Y, Baba H. Cancer Sci 99 2387-2394 (2008)
  70. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction. Manik MK, Yang H, Tong J, Im YJ. Structure 25 617-629.e3 (2017)
  71. Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-trans-Golgi trafficking pathways. LeBlanc MA, McMaster CR. J Biol Chem 285 33875-33884 (2010)
  72. Nonvesicular sterol transport: two protein families and a sterol sensor? Yang H. Trends Cell Biol 16 427-432 (2006)
  73. Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family. Udagawa O, Ito C, Ogonuki N, Sato H, Lee S, Tripvanuntakul P, Ichi I, Uchida Y, Nishimura T, Murakami M, Ogura A, Inoue T, Toshimori K, Arai H. Genes Cells 19 13-27 (2014)
  74. Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites. Telbisz Á, Hegedüs C, Váradi A, Sarkadi B, Özvegy-Laczka C. Drug Metab Dispos 42 575-585 (2014)
  75. The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. Sobajima T, Yoshimura SI, Maeda T, Miyata H, Miyoshi E, Harada A. J Cell Biol 217 1777-1796 (2018)
  76. Identification and characterization of PiORP1, a Petunia oxysterol-binding-protein related protein involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in Arabidopsis. Skirpan AL, Dowd PE, Sijacic P, Jaworski CJ, Gilroy S, Kao TH. Plant Mol Biol 61 553-565 (2006)
  77. Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR. PLoS Pathog 8 e1002476 (2012)
  78. Membrane-binding mechanism of a peripheral membrane protein through microsecond molecular dynamics simulations. Rogaski B, Klauda JB. J Mol Biol 423 847-861 (2012)
  79. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein. Darwiche R, Mène-Saffrané L, Gfeller D, Asojo OA, Schneiter R. J Biol Chem 292 8304-8314 (2017)
  80. Binding and release of cholesterol in the Osh4 protein of yeast. Singh RP, Brooks BR, Klauda JB. Proteins 75 468-477 (2009)
  81. The AAA ATPase VPS4/SKD1 regulates endosomal cholesterol trafficking independently of ESCRT-III. Du X, Kazim AS, Dawes IW, Brown AJ, Yang H. Traffic 14 107-119 (2013)
  82. The caveolin-binding motif of the pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is required for in vivo export of cholesteryl acetate. Choudhary V, Darwiche R, Gfeller D, Zoete V, Michielin O, Schneiter R. J Lipid Res 55 883-894 (2014)
  83. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity. Chen BY, Honig B. PLoS Comput Biol 6 e1000881 (2010)
  84. A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Huang J, Mousley CJ, Dacquay L, Maitra N, Drin G, He C, Ridgway ND, Tripathi A, Kennedy M, Kennedy BK, Liu W, Baetz K, Polymenis M, Bankaitis VA. Dev Cell 44 378-391.e5 (2018)
  85. A functional steroid-binding element in an ATP-binding cassette multidrug transporter. Velamakanni S, Janvilisri T, Shahi S, van Veen HW. Mol Pharmacol 73 12-17 (2008)
  86. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. Cianciola NL, Chung S, Manor D, Carlin CR. J Virol 91 e01904-16 (2017)
  87. Structural basis of sterol binding and transport by a yeast StARkin domain. Jentsch JA, Kiburu I, Pandey K, Timme M, Ramlall T, Levkau B, Wu J, Eliezer D, Boudker O, Menon AK. J Biol Chem 293 5522-5531 (2018)
  88. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis. Ernst WL, Shome K, Wu CC, Gong X, Frizzell RA, Aridor M. J Biol Chem 291 5206-5220 (2016)
  89. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9). Liu X, Ridgway ND. PLoS One 9 e108368 (2014)
  90. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants. Xu K, Nagy PD. J Virol 91 e01984-16 (2017)
  91. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis. Escajadillo T, Wang H, Li L, Li D, Sewer MB. Mol Cell Endocrinol 427 73-85 (2016)
  92. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein. Darwiche R, Kelleher A, Hudspeth EM, Schneiter R, Asojo OA. Sci Rep 6 28838 (2016)
  93. Tritium suicide selection identifies proteins involved in the uptake and intracellular transport of sterols in Saccharomyces cerevisiae. Sullivan DP, Georgiev A, Menon AK. Eukaryot Cell 8 161-169 (2009)
  94. Differing activities of oxysterol-binding protein (OSBP) targeting anti-viral compounds. Roberts BL, Severance ZC, Bensen RC, Le-McClain AT, Malinky CA, Mettenbrink EM, Nuñez JI, Reddig WJ, Blewett EL, Burgett AWG. Antiviral Res 170 104548 (2019)
  95. Dynamics of cholesterol exchange in the oxysterol binding protein family. Canagarajah BJ, Hummer G, Prinz WA, Hurley JH. J Mol Biol 378 737-748 (2008)
  96. Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast. Tian S, Ohta A, Horiuchi H, Fukuda R. J Biol Chem 293 5636-5648 (2018)
  97. Sterol biosensor reveals LAM-family Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. Marek M, Vincenzetti V, Martin SG. J Cell Biol 219 e202001147 (2020)
  98. Vesicle trafficking from a lipid perspective: Lipid regulation of exocytosis in Saccharomyces cerevisiae. Johansen J, Ramanathan V, Beh CT. Cell Logist 2 151-160 (2012)
  99. A candidate gene analysis of canine hypoadrenocorticism in 3 dog breeds. Short AD, Boag A, Catchpole B, Kennedy LJ, Massey J, Rothwell S, Husebye E, Ollier B. J Hered 104 807-820 (2013)
  100. ORP4L Facilitates Macrophage Survival via G-Protein-Coupled Signaling: ORP4L-/- Mice Display a Reduction of Atherosclerosis. Zhong W, Pan G, Wang L, Li S, Ou J, Xu M, Li J, Zhu B, Cao X, Ma H, Li C, Xu J, Olkkonen VM, Staels B, Yan D. Circ Res 119 1296-1312 (2016)
  101. Yeast oxysterol-binding proteins: sterol transporters or regulators of cell polarization? Beh CT, Alfaro G, Duamel G, Sullivan DP, Kersting MC, Dighe S, Kozminski KG, Menon AK. Mol Cell Biochem 326 9-13 (2009)
  102. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae). Telang A, Rechel JA, Brandt JR, Donnell DM. J Insect Physiol 59 283-294 (2013)
  103. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. Buwaneka P, Ralko A, Liu SL, Cho W. J Lipid Res 62 100084 (2021)
  104. Membrane phospholipid asymmetry counters the adverse effects of sterol overloading in the Golgi membrane of Drosophila. Ma Z, Liu Z, Huang X. Genetics 190 1299-1308 (2012)
  105. Novel oxysterols activate the Hedgehog pathway and induce osteogenesis. Stappenbeck F, Xiao W, Epperson M, Riley M, Priest A, Huang D, Nguyen K, Jung ME, Thies RS, Farouz F. Bioorg Med Chem Lett 22 5893-5897 (2012)
  106. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RG, Michaely P. Exp Cell Res 318 2128-2142 (2012)
  107. An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Lipp NF, Gautier R, Magdeleine M, Renard M, Albanèse V, Čopič A, Drin G. Nat Commun 10 3926 (2019)
  108. Genetic basis of haloperidol resistance in Saccharomyces cerevisiae is complex and dose dependent. Wang X, Kruglyak L. PLoS Genet 10 e1004894 (2014)
  109. Identification of OORP-T, a novel oocyte-specific gene encoding a protein with a conserved oxysterol binding protein domain in rainbow trout. Ramachandra RK, Lankford SE, Weber GM, Rexroad CE, Yao J. Mol Reprod Dev 74 502-511 (2007)
  110. Oxysterol-binding protein (OSBP) is required for the perinuclear localization of intra-Golgi v-SNAREs. Nishimura T, Uchida Y, Yachi R, Kudlyk T, Lupashin V, Inoue T, Taguchi T, Arai H. Mol Biol Cell 24 3534-3544 (2013)
  111. Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP-VAPA complexes and their impacts on organelle structure. Kentala H, Pfisterer SG, Olkkonen VM, Weber-Boyvat M. Steroids 99 248-258 (2015)
  112. Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors. Khan D, McGrath KR, Dorosheva O, Bankaitis VA, Tripathi A. J Lipid Res 57 650-662 (2016)
  113. Building lipid 'PIPelines' throughout the cell by ORP/Osh proteins. Moser von Filseck J, Mesmin B, Bigay J, Antonny B, Drin G. Biochem Soc Trans 42 1465-1470 (2014)
  114. Phosphatidylinositol transfer proteins and functional specification of lipid signaling pools. Bankaitis VA, Vincent P, Merkulova M, Tyeryar K, Liu Y. Adv Enzyme Regul 47 27-40 (2007)
  115. Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis. Cocklin S, Jost M, Robertson NM, Weeks SD, Weber HW, Young E, Seal S, Zhang C, Mosser E, Loll PJ, Saunders AJ, Rest RF, Chaiken IM. J Mol Recognit 19 354-362 (2006)
  116. Two distinct oxysterol binding protein-related proteins in the parasitic protist Cryptosporidium parvum (Apicomplexa). Zeng B, Zhu G. Biochem Biophys Res Commun 346 591-599 (2006)
  117. Web-based computational chemistry education with CHARMMing I: Lessons and tutorial. Miller BT, Singh RP, Schalk V, Pevzner Y, Sun J, Miller CS, Boresch S, Ichiye T, Brooks BR, Woodcock HL. PLoS Comput Biol 10 e1003719 (2014)
  118. Lipid Exchange Factors at Membrane Contact Sites in African Swine Fever Virus Infection. Galindo I, Cuesta-Geijo MÁ, Del Puerto A, Soriano E, Alonso C. Viruses 11 E199 (2019)
  119. OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Kentala H, Koponen A, Vihinen H, Pirhonen J, Liebisch G, Pataj Z, Kivelä A, Li S, Karhinen L, Jääskeläinen E, Andrews R, Meriläinen L, Matysik S, Ikonen E, Zhou Y, Jokitalo E, Olkkonen VM. Cell Mol Life Sci 75 4041-4057 (2018)
  120. Plant pathogenesis-related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities. Darwiche R, El Atab O, Baroni RM, Teixeira PJPL, Mondego JMC, Pereira GAG, Schneiter R. J Biol Chem 292 20558-20569 (2017)
  121. The yeast oxysterol binding protein Kes1 maintains sphingolipid levels. LeBlanc MA, Fairn GD, Russo SB, Czyz O, Zaremberg V, Cowart LA, McMaster CR. PLoS One 8 e60485 (2013)
  122. Crystal Structure of MpPR-1i, a SCP/TAPS protein from Moniliophthora perniciosa, the fungus that causes Witches' Broom Disease of Cacao. Baroni RM, Luo Z, Darwiche R, Hudspeth EM, Schneiter R, Pereira GAG, Mondego JMC, Asojo OA. Sci Rep 7 7818 (2017)
  123. Lipid-dependent regulation of exocytosis in S. cerevisiae by OSBP homolog (Osh) 4. Smindak RJ, Heckle LA, Chittari SS, Hand MA, Hyatt DM, Mantus GE, Sanfelippo WA, Kozminski KG. J Cell Sci 130 3891-3906 (2017)
  124. ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Weber-Boyvat M, Trimbuch T, Shah S, Jäntti J, Olkkonen VM, Rosenmund C. Cell Mol Life Sci 78 1689-1708 (2021)
  125. OSBP-related protein 4L promotes phospholipase Cβ3 translocation from the nucleus to the plasma membrane in Jurkat T-cells. Pan G, Cao X, Liu B, Li C, Li D, Zheng J, Lai C, Olkkonen VM, Zhong W, Yan D. J Biol Chem 293 17430-17441 (2018)
  126. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. Bühler N, Hagiwara D, Takeshita N. Eukaryot Cell 14 908-921 (2015)
  127. Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. de la Mora E, Dezi M, Di Cicco A, Bigay J, Gautier R, Manzi J, Polidori J, Castaño-Díez D, Mesmin B, Antonny B, Lévy D. Nat Commun 12 3459 (2021)
  128. Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms. Yang X, Liang J, Ding L, Li X, Lam SM, Shui G, Ding M, Huang X. PLoS Genet 15 e1008548 (2019)
  129. Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma membrane. Kishimoto T, Mioka T, Itoh E, Williams DE, Andersen RJ, Tanaka K. Mol Biol Cell 32 1374-1392 (2021)
  130. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Sci Rep 7 16057 (2017)
  131. A vertebrate model for the study of lipid binding/transfer protein function: conservation of OSBP-related proteins between zebrafish and human. Zhou Y, Wohlfahrt G, Paavola J, Olkkonen VM. Biochem Biophys Res Commun 446 675-680 (2014)
  132. Crystal structure of Brugia malayi venom allergen-like protein-1 (BmVAL-1), a vaccine candidate for lymphatic filariasis. Darwiche R, Lugo F, Drurey C, Varossieau K, Smant G, Wilbers RHP, Maizels RM, Schneiter R, Asojo OA. Int J Parasitol 48 371-378 (2018)
  133. Exchange of water for sterol underlies sterol egress from a StARkin domain. Khelashvili G, Chauhan N, Pandey K, Eliezer D, Menon AK. Elife 8 e53444 (2019)
  134. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Asojo OA, Darwiche R, Gebremedhin S, Smant G, Lozano-Torres JL, Drurey C, Pollet J, Maizels RM, Schneiter R, Wilbers RHP. Int J Parasitol 48 359-369 (2018)
  135. High-throughput computational structure-based characterization of protein families: START domains and implications for structural genomics. Lee H, Li Z, Silkov A, Fischer M, Petrey D, Honig B, Murray D. J Struct Funct Genomics 11 51-59 (2010)
  136. Structural determinants of cholesterol recognition in helical integral membrane proteins. Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Biophys J 120 1592-1604 (2021)
  137. A new way for sterols to walk on water. Levine T. Mol Cell 19 722-723 (2005)
  138. A protein pair with PIPs inside. Levine TP, Menon AK. Structure 21 1070-1071 (2013)
  139. Free-radical Destruction of Sphingolipids Resulting in 2-hexadecenal Formation. Shadyro O, Lisovskaya A, Semenkova G, Edimecheva I, Amaegberi N. Lipid Insights 8 1-9 (2015)
  140. Anadenanthera colubrina (Vell.) Brenan produces steroidal substances that are active against Alternaria alternata (Fr.) Keissler and that may bind to oxysterol-binding proteins. Campos VA, Perina FJ, Alves E, Sartorelli J, Moura AM, Oliveira DF. Pest Manag Sci 70 1815-1822 (2014)
  141. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. Fu Q, Lynn-Miller A, Lan Q. Insect Mol Biol 20 541-552 (2011)
  142. Crystallization and preliminary X-ray crystallographic analysis of the oxysterol-binding protein Osh3 from Saccharomyces cerevisiae. Tong J, Yang H, Ha S, Lee Y, Eom SH, Im YJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 1498-1502 (2012)
  143. Lipid traffic: Osh4p makes an unexpected exchange. Levine TP. J Cell Biol 195 927-929 (2011)
  144. Phosphorylation of a serine/proline-rich motif in oxysterol binding protein-related protein 4L (ORP4L) regulates cholesterol and vimentin binding. Pietrangelo A, Ridgway ND. PLoS One 14 e0214768 (2019)
  145. Regulation of phosphoinositide levels by the phospholipid transfer protein Sec14p controls Cdc42p/p21-activated kinase-mediated cell cycle progression at cytokinesis. Howe AG, Fairn GD, MacDonald K, Bankaitis VA, McMaster CR. Eukaryot Cell 6 1814-1823 (2007)
  146. Synthesis and structure of 16,22-diketocholesterol bound to oxysterol-binding protein Osh4. Koag MC, Cheun Y, Kou Y, Ouzon-Shubeita H, Min K, Monzingo AF, Lee S. Steroids 78 938-944 (2013)
  147. Localization and functional characterization of the pathogenesis-related proteins Rbe1p and Rbt4p in Candida albicans. Bantel Y, Darwiche R, Rupp S, Schneiter R, Sohn K. PLoS One 13 e0201932 (2018)
  148. Structure of human ORP3 ORD reveals conservation of a key function and ligand specificity in OSBP-related proteins. Tong J, Tan L, Im YJ. PLoS One 16 e0248781 (2021)
  149. The yeast cell wall protein Pry3 inhibits mating through highly conserved residues within the CAP domain. Cottier S, Darwiche R, Meyenhofer F, Debelyy MO, Schneiter R. Biol Open 9 bio053470 (2020)
  150. Necator americanus Ancylostoma Secreted Protein-2 (Na-ASP-2) Binds an Ascaroside (ascr#3) in Its Fatty Acid Binding Site. El Atab O, Darwiche R, Truax NJ, Schneiter R, Hull KG, Romo D, Asojo OA. Front Chem 8 608296 (2020)
  151. Crystal Structure of Borrelia turicatae protein, BTA121, a differentially regulated  gene in the tick-mammalian transmission cycle of relapsing fever spirochetes. Luo Z, Kelleher AJ, Darwiche R, Hudspeth EM, Shittu OK, Krishnavajhala A, Schneiter R, Lopez JE, Asojo OA. Sci Rep 7 15310 (2017)
  152. Heterologous expression and functional characterization of the ligand-binding domain of oxysterol-binding protein from Aspergillus oryzae. Ma L, Zhang X, Hu Z, He B, Ai M, Zeng B. Braz J Microbiol 50 415-424 (2019)
  153. miR-195 Serves as a Tumor Suppressor in the Progression of Liposarcoma by Targeting OSBP. Cao Y, Li L, Han L, Zheng J, Lv C. Onco Targets Ther 13 6465-6474 (2020)
  154. Creating and sensing asymmetric lipid distributions throughout the cell. Drin G. Emerg Top Life Sci 7 7-19 (2023)
  155. Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale. Zhang S, Zhou F, Liu Z, Feng X, Li Y, Zhu P. Hortic Res 9 uhac219 (2022)
  156. Osh-dependent and -independent Regulation of PI4P Levels During Polarized Growth of Saccharomyces cerevisiae. Heckle LA, Kozminski KG. Mol Biol Cell 34 ar104 (2023)
  157. PI(4,5)P2 and Cholesterol: Synthesis, Regulation, and Functions. Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. Adv Exp Med Biol 1422 3-59 (2023)
  158. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Adv Exp Med Biol 1422 327-352 (2023)
  159. Structure-Activity Relationships of Ligand Binding to Oxysterol-Binding Protein (OSBP) and OSBP-Related Protein 4. Severance ZC, Nuñez JI, Le-McClain AT, Malinky CA, Bensen RC, Fogle RS, Manginelli GW, Sakers SH, Falcon EC, Bui RH, Snead KJ, Bourne CR, Burgett AWG. J Med Chem 66 3866-3875 (2023)
  160. The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles in vivo. Zhang L, Wang Y, Dong Y, Pant A, Liu Y, Masserman L, Xu Y, McLaughlin RN, Bai J. Dev Cell 57 750-766.e5 (2022)