2ees Citations

Mutational analysis of the purine riboswitch aptamer domain.

Biochemistry 46 13297-309 (2007)
Related entries: 2eet, 2eeu, 2eev, 2eew

Cited: 70 times
EuropePMC logo PMID: 17960911

Abstract

The purine riboswitch is one of a number of mRNA elements commonly found in the 5'-untranslated region capable of controlling expression in a cis-fashion via its ability to directly bind small-molecule metabolites. Extensive biochemical and structural analysis of the nucleobase-binding domain of the riboswitch, referred to as the aptamer domain, has revealed that the mRNA recognizes its cognate ligand using an intricately folded three-way junction motif that completely encapsulates the ligand. High-affinity binding of the purine nucleobase is facilitated by a distal loop-loop interaction that is conserved between both the adenine and guanine riboswitches. To understand the contribution of conserved nucleotides in both the three-way junction and the loop-loop interaction of this RNA, we performed a detailed mutagenic survey of these elements in the context of an adenine-responsive variant of the xpt-pbuX guanine riboswitch from Bacillus subtilis. The varying ability of these mutants to bind ligand as measured by isothermal titration calorimetry uncovered the conserved nucleotides whose identity is required for purine binding. Crystallographic analysis of the bound form of five mutants and chemical probing of their free state demonstrate that the identity of several universally conserved nucleotides is not essential for formation of the RNA-ligand complex but rather for maintaining a binding-competent form of the free RNA. These data show that conservation patterns in riboswitches arise from a combination of formation of the ligand-bound complex, promoting an open form of the free RNA, and participating in the secondary structural switch with the expression platform.

Reviews - 2ees mentioned but not cited (1)

Articles - 2ees mentioned but not cited (10)

  1. Mutational analysis of the purine riboswitch aptamer domain. Gilbert SD, Love CE, Edwards AL, Batey RT. Biochemistry 46 13297-13309 (2007)
  2. Semiautomated model building for RNA crystallography using a directed rotameric approach. Keating KS, Pyle AM. Proc Natl Acad Sci U S A 107 8177-8182 (2010)
  3. Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Kumar R, Bunn PT, Singh SS, Ng SS, Montes de Oca M, De Labastida Rivera F, Chauhan SB, Singh N, Faleiro RJ, Edwards CL, Frame TCM, Sheel M, Austin RJ, Lane SW, Bald T, Smyth MJ, Hill GR, Best SE, Haque A, Corvino D, Waddell N, Koufariotis L, Mukhopadhay P, Rai M, Chakravarty J, Singh OP, Sacks D, Nylen S, Uzonna J, Sundar S, Engwerda CR. Cell Rep 30 2512-2525.e9 (2020)
  4. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Mandula JK, Chang S, Mohamed E, Jimenez R, Sierra-Mondragon RA, Chang DC, Obermayer AN, Moran-Segura CM, Das S, Vazquez-Martinez JA, Prieto K, Chen A, Smalley KSM, Czerniecki B, Forsyth P, Koya RC, Ruffell B, Cubillos-Ruiz JR, Munn DH, Shaw TI, Conejo-Garcia JR, Rodriguez PC. Cancer Cell 40 1145-1160.e9 (2022)
  5. RLDOCK: A New Method for Predicting RNA-Ligand Interactions. Sun LZ, Jiang Y, Zhou Y, Chen SJ. J Chem Theory Comput 16 7173-7183 (2020)
  6. FASTR3D: a fast and accurate search tool for similar RNA 3D structures. Lai CE, Tsai MY, Liu YC, Wang CW, Chen KT, Lu CL. Nucleic Acids Res 37 W287-95 (2009)
  7. A new way to see RNA. Keating KS, Humphris EL, Pyle AM. Q Rev Biophys 44 433-466 (2011)
  8. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. Hua L, Song Y, Kim N, Laing C, Wang JT, Schlick T. PLoS One 11 e0147097 (2016)
  9. RLDOCK method for predicting RNA-small molecule binding modes. Jiang Y, Chen SJ. Methods 197 97-105 (2022)
  10. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling. Li J, Chen SJ. Nucleic Acids Res 51 3341-3356 (2023)


Reviews citing this publication (12)

  1. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. Chem Rev 118 4177-4338 (2018)
  2. Riboswitches: structures and mechanisms. Garst AD, Edwards AL, Batey RT. Cold Spring Harb Perspect Biol 3 a003533 (2011)
  3. The long and the short of riboswitches. Serganov A. Curr Opin Struct Biol 19 251-259 (2009)
  4. A switch in time: detailing the life of a riboswitch. Garst AD, Batey RT. Biochim Biophys Acta 1789 584-591 (2009)
  5. Engineering and In Vivo Applications of Riboswitches. Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Annu Rev Biochem 86 515-539 (2017)
  6. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. de la Peña M, Dufour D, Gallego J. RNA 15 1949-1964 (2009)
  7. Structure and mechanism of purine-binding riboswitches. Batey RT. Q Rev Biophys 45 345-381 (2012)
  8. The promise of riboswitches as potential antibacterial drug targets. Lünse CE, Schüller A, Mayer G. Int J Med Microbiol 304 79-92 (2014)
  9. A survey of the year 2007 literature on applications of isothermal titration calorimetry. Bjelić S, Jelesarov I. J Mol Recognit 21 289-312 (2008)
  10. The purine riboswitch as a model system for exploring RNA biology and chemistry. Porter EB, Marcano-Velázquez JG, Batey RT. Biochim Biophys Acta 1839 919-930 (2014)
  11. Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Abduljalil JM. Noncoding RNA Res 3 54-63 (2018)
  12. Multilevel Regulation and Translational Switches in Synthetic Biology. Kopniczky MB, Moore SJ, Freemont PS. IEEE Trans Biomed Circuits Syst 9 485-496 (2015)

Articles citing this publication (47)

  1. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Trausch JJ, Ceres P, Reyes FE, Batey RT. Structure 19 1413-1423 (2011)
  2. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. Baird NJ, Ferré-D'Amaré AR. RNA 16 598-609 (2010)
  3. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Gilbert SD, Reyes FE, Edwards AL, Batey RT. Structure 17 857-868 (2009)
  4. Ligand-dependent folding of the three-way junction in the purine riboswitch. Stoddard CD, Gilbert SD, Batey RT. RNA 14 675-684 (2008)
  5. Design and antimicrobial action of purine analogues that bind Guanine riboswitches. Kim JN, Blount KF, Puskarz I, Lim J, Link KH, Breaker RR. ACS Chem Biol 4 915-927 (2009)
  6. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Heppell B, Blouin S, Dussault AM, Mulhbacher J, Ennifar E, Penedo JC, Lafontaine DA. Nat Chem Biol 7 384-392 (2011)
  7. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT. ACS Synth Biol 2 463-472 (2013)
  8. A structural basis for the recognition of 2'-deoxyguanosine by the purine riboswitch. Edwards AL, Batey RT. J Mol Biol 385 938-948 (2009)
  9. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Leipply D, Draper DE. Biochemistry 50 2790-2799 (2011)
  10. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Brenner MD, Scanlan MS, Nahas MK, Ha T, Silverman SK. Biochemistry 49 1596-1605 (2010)
  11. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. Weinberg Z, Weinberg Z, Nelson JW, Lünse CE, Sherlock ME, Breaker RR. Proc Natl Acad Sci U S A 114 E2077-E2085 (2017)
  12. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch. Sharma M, Bulusu G, Mitra A. RNA 15 1673-1692 (2009)
  13. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Chen J, Wang X, Pang L, Zhang JZH, Zhu T. Nucleic Acids Res 47 6618-6631 (2019)
  14. Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch. Pikovskaya O, Polonskaia A, Patel DJ, Serganov A. Nat Chem Biol 7 748-755 (2011)
  15. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes. Kondo J, Westhof E. Nucleic Acids Res 39 8628-8637 (2011)
  16. Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m-values. Lambert D, Draper DE. Biochemistry 51 9014-9026 (2012)
  17. High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. Tian S, Cordero P, Kladwang W, Das R. RNA 20 1815-1826 (2014)
  18. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. Stoddard CD, Widmann J, Trausch JJ, Marcano-Velázquez JG, Knight R, Batey RT. J Mol Biol 425 1596-1611 (2013)
  19. Riboswitch structure: an internal residue mimicking the purine ligand. Delfosse V, Bouchard P, Bonneau E, Dagenais P, Lemay JF, Lafontaine DA, Legault P. Nucleic Acids Res 38 2057-2068 (2010)
  20. Computational identification of riboswitches based on RNA conserved functional sequences and conformations. Chang TH, Huang HD, Wu LC, Yeh CT, Liu BJ, Horng JT. RNA 15 1426-1430 (2009)
  21. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z, Zhao Y, Chen C, Xiao Y. J Biomol Struct Dyn 29 403-416 (2011)
  22. 'Z-DNA like' fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. D'Ascenzo L, Leonarski F, Vicens Q, Auffinger P. Nucleic Acids Res 44 5944-5956 (2016)
  23. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy. Wacker A, Buck J, Mathieu D, Richter C, Wöhnert J, Schwalbe H. Nucleic Acids Res 39 6802-6812 (2011)
  24. RNALogo: a new approach to display structural RNA alignment. Chang TH, Horng JT, Huang HD. Nucleic Acids Res 36 W91-6 (2008)
  25. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant. Tremblay R, Lemay JF, Blouin S, Mulhbacher J, Bonneau É, Legault P, Dupont P, Penedo JC, Lafontaine DA. J Biol Chem 286 27406-27415 (2011)
  26. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. Marcano-Velázquez JG, Batey RT. J Biol Chem 290 4464-4475 (2015)
  27. Modeling the noncovalent interactions at the metabolite binding site in purine riboswitches. Sharma P, Sharma S, Chawla M, Mitra A. J Mol Model 15 633-649 (2009)
  28. Base pairs and pseudo pairs observed in RNA-ligand complexes. Kondo J, Westhof E. J Mol Recognit 23 241-252 (2010)
  29. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. Tian S, Kladwang W, Das R. Elife 7 e29602 (2018)
  30. ITC analysis of ligand binding to preQ₁ riboswitches. Liberman JA, Bogue JT, Jenkins JL, Salim M, Wedekind JE. Methods Enzymol 549 435-450 (2014)
  31. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching. Torgerson CD, Hiller DA, Stav S, Strobel SA. RNA 24 1813-1827 (2018)
  32. Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana. Grojean J, Downes B. Biol Direct 5 60 (2010)
  33. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches. Prychyna O, Dahabieh MS, Chao J, O'Neill MA. Biopolymers 91 953-965 (2009)
  34. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Nucleic Acids Res 45 2099-2111 (2017)
  35. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches. Appasamy SD, Ramlan EI, Firdaus-Raih M. PLoS One 8 e73984 (2013)
  36. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. Wacker A, Buck J, Richter C, Schwalbe H, Wöhnert J. RNA Biol 9 672-680 (2012)
  37. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Matyjasik MM, Batey RT. Nucleic Acids Res 47 10931-10941 (2019)
  38. Theoretical studies on the interaction of modified pyrimidines and purines with purine riboswitch. Ling B, Wang Z, Zhang R, Meng X, Liu Y, Zhang C, Liu C. J Mol Graph Model 28 37-45 (2009)
  39. Role of lysine binding residues in the global folding of the lysC riboswitch. Smith-Peter E, Lamontagne AM, Lafontaine DA. RNA Biol 12 1372-1382 (2015)
  40. Ultrasensitive fluorescence detection of transcription factors based on kisscomplex formation and the T7 RNA polymerase amplification method. Zhang K, Wang K, Zhu X, Xie M. Chem Commun (Camb) 53 5846-5849 (2017)
  41. Exploiting natural riboswitches for aptamer engineering and validation. Mohsen MG, Midy MK, Balaji A, Breaker RR. Nucleic Acids Res 51 966-981 (2023)
  42. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK, Batey RT. PLoS One 15 e0243155 (2020)
  43. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches. Hwang Y, Kim SG, Jang S, Kim J, Jung GY. J Biol Eng 15 11 (2021)
  44. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. Hanke CA, Gohlke H. PLoS One 12 e0179271 (2017)
  45. The Metabolome Weakens RNA Thermodynamic Stability and Strengthens RNA Chemical Stability. Sieg JP, McKinley LN, Huot MJ, Yennawar NH, Bevilacqua PC. Biochemistry 61 2579-2591 (2022)
  46. Disentangling contact and ensemble epistasis in a riboswitch. Wonderlick DR, Widom JR, Harms MJ. Biophys J 122 1600-1612 (2023)
  47. Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1. Wang KW, Riveros I, DeLoye J, Yildirim I. Biophys J 122 180-196 (2023)