2f21 Citations

Structure-function-folding relationship in a WW domain.

Proc Natl Acad Sci U S A 103 10648-53 (2006)
Cited: 139 times
EuropePMC logo PMID: 16807295

Abstract

Protein folding barriers result from a combination of factors including unavoidable energetic frustration from nonnative interactions, natural variation and selection of the amino acid sequence for function, and/or selection pressure against aggregation. The rate-limiting step for human Pin1 WW domain folding is the formation of the loop 1 substructure. The native conformation of this six-residue loop positions side chains that are important for mediating protein-protein interactions through the binding of Pro-rich sequences. Replacement of the wild-type loop 1 primary structure by shorter sequences with a high propensity to fold into a type-I' beta-turn conformation or the statistically preferred type-I G1 bulge conformation accelerates WW domain folding by almost an order of magnitude and increases thermodynamic stability. However, loop engineering to optimize folding energetics has a significant downside: it effectively eliminates WW domain function according to ligand-binding studies. The energetic contribution of loop 1 to ligand binding appears to have evolved at the expense of fast folding and additional protein stability. Thus, the two-state barrier exhibited by the wild-type human Pin1 WW domain principally results from functional requirements, rather than from physical constraints inherent to even the most efficient loop formation process.

Reviews - 2f21 mentioned but not cited (3)

  1. Fast protein folding kinetics. Gelman H, Gruebele M. Q Rev Biophys 47 95-142 (2014)
  2. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Muñoz V, Cerminara M. Biochem J 473 2545-2559 (2016)
  3. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Thapar R. Biomolecules 5 974-999 (2015)

Articles - 2f21 mentioned but not cited (30)

  1. Systematic validation of protein force fields against experimental data. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE. PLoS One 7 e32131 (2012)
  2. Letter Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Freddolino PL, Liu F, Gruebele M, Schulten K. Biophys J 94 L75-7 (2008)
  3. Challenges in protein folding simulations: Timescale, representation, and analysis. Freddolino PL, Harrison CB, Liu Y, Schulten K. Nat Phys 6 751-758 (2010)
  4. Structure-function-folding relationship in a WW domain. Jäger M, Zhang Y, Bieschke J, Nguyen H, Dendle M, Bowman ME, Noel JP, Gruebele M, Kelly JW. Proc Natl Acad Sci U S A 103 10648-10653 (2006)
  5. Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. Shirvanyants D, Ding F, Tsao D, Ramachandran S, Dokholyan NV. J Phys Chem B 116 8375-8382 (2012)
  6. Force field bias in protein folding simulations. Freddolino PL, Park S, Roux B, Schulten K. Biophys J 96 3772-3780 (2009)
  7. Accelerated molecular dynamics simulations of protein folding. Miao Y, Feixas F, Eun C, McCammon JA. J Comput Chem 36 1536-1549 (2015)
  8. Tackling force-field bias in protein folding simulations: folding of Villin HP35 and Pin WW domains in explicit water. Mittal J, Best RB. Biophys J 99 L26-8 (2010)
  9. Evaluating beta-turn mimics as beta-sheet folding nucleators. Fuller AA, Du D, Liu F, Davoren JE, Bhabha G, Kroon G, Case DA, Dyson HJ, Powers ET, Wipf P, Gruebele M, Kelly JW. Proc Natl Acad Sci U S A 106 11067-11072 (2009)
  10. Nanopore Sensing of Protein Folding. Si W, Aksimentiev A. ACS Nano 11 7091-7100 (2017)
  11. Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. Chen W, Enck S, Price JL, Powers DL, Powers ET, Wong CH, Dyson HJ, Kelly JW. J Am Chem Soc 135 9877-9884 (2013)
  12. Global DNA methylation profiling reveals silencing of a secreted form of Epha7 in mouse and human germinal center B-cell lymphomas. Dawson DW, Hong JS, Shen RR, French SW, Troke JJ, Wu YZ, Chen SS, Gui D, Regelson M, Marahrens Y, Morse HC, Said J, Plass C, Teitell MA. Oncogene 26 4243-4252 (2007)
  13. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Price JL, Powers DL, Powers ET, Kelly JW. Proc Natl Acad Sci U S A 108 14127-14132 (2011)
  14. N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Price JL, Culyba EK, Chen W, Murray AN, Hanson SR, Wong CH, Powers ET, Kelly JW. Biopolymers 98 195-211 (2012)
  15. Native states of fast-folding proteins are kinetic traps. Dickson A, Brooks CL. J Am Chem Soc 135 4729-4734 (2013)
  16. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations. Wirth AJ, Liu Y, Prigozhin MB, Schulten K, Gruebele M. J Am Chem Soc 137 7152-7159 (2015)
  17. The Role of Electrostatic Interactions in Folding of β-Proteins. Davis CM, Dyer RB. J Am Chem Soc 138 1456-1464 (2016)
  18. Evaluation of β-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure. Mortenson DE, Kreitler DF, Thomas NC, Guzei IA, Gellman SH, Forest KT. Chembiochem 19 604-612 (2018)
  19. Letter Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation. Zanetti-Polzi L, Davis CM, Gruebele M, Dyer RB, Amadei A, Daidone I. FEBS Lett 591 3265-3275 (2017)
  20. Sampling of the conformational landscape of small proteins with Monte Carlo methods. Heilmann N, Wolf M, Kozlowska M, Sedghamiz E, Setzler J, Brieg M, Wenzel W. Sci Rep 10 18211 (2020)
  21. Downhill, Ultrafast and Fast Folding Proteins Revised. Banach M, Stapor K, Konieczny L, Fabian P, Roterman I. Int J Mol Sci 21 E7632 (2020)
  22. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder. Seffernick JT, Ren H, Kim SS, Lindert S. J Phys Chem B 123 7103-7112 (2019)
  23. Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics. Schultze S, Grubmüller H. J Chem Theory Comput 17 5766-5776 (2021)
  24. Influence of PEGylation on the Strength of Protein Surface Salt Bridges. Xiao Q, Draper SRE, Smith MS, Brown N, Pugmire NAB, Ashton DS, Carter AJ, Lawrence EEK, Price JL. ACS Chem Biol 14 1652-1659 (2019)
  25. Quantifying the Sources of Kinetic Frustration in Folding Simulations of Small Proteins. Savol AJ, Chennubhotla CS. J Chem Theory Comput 10 2964-2974 (2014)
  26. All-atom simulation of the HET-s prion replication. Terruzzi L, Spagnolli G, Boldrini A, Requena JR, Biasini E, Faccioli P. PLoS Comput Biol 16 e1007922 (2020)
  27. Competition of individual domain folding with inter-domain interaction in WW domain engineered repeat proteins. Dave K, Gasic AG, Cheung MS, Gruebele M. Phys Chem Chem Phys 21 24393-24405 (2019)
  28. Examining a Thermodynamic Order Parameter of Protein Folding. Chong SH, Ham S. Sci Rep 8 7148 (2018)
  29. Proton TOCSY NMR relaxation rates quantitate protein side chain mobility in the Pin1 WW domain. Danmaliki GI, Hwang PM. J Biomol NMR 76 121-135 (2022)
  30. Uncertainties in Markov State Models of Small Proteins. Kozlowski N, Grubmüller H. J Chem Theory Comput 19 5516-5524 (2023)


Reviews citing this publication (17)

  1. Transition networks for modeling the kinetics of conformational change in macromolecules. Noé F, Fischer S. Curr Opin Struct Biol 18 154-162 (2008)
  2. Insights from coarse-grained Gō models for protein folding and dynamics. Hills RD, Brooks CL. Int J Mol Sci 10 889-905 (2009)
  3. Intermediates: ubiquitous species on folding energy landscapes? Brockwell DJ, Radford SE. Curr Opin Struct Biol 17 30-37 (2007)
  4. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Bartlett AI, Radford SE. Nat Struct Mol Biol 16 582-588 (2009)
  5. Roles of beta-turns in protein folding: from peptide models to protein engineering. Marcelino AM, Gierasch LM. Biopolymers 89 380-391 (2008)
  6. A polymer physics perspective on driving forces and mechanisms for protein aggregation. Pappu RV, Wang X, Vitalis A, Crick SL. Arch Biochem Biophys 469 132-141 (2008)
  7. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Yoo J, Aksimentiev A. Phys Chem Chem Phys 20 8432-8449 (2018)
  8. Computational design and experimental testing of the fastest-folding β-sheet protein. Piana S, Sarkar K, Lindorff-Larsen K, Guo M, Gruebele M, Shaw DE. J Mol Biol 405 43-48 (2011)
  9. Combining experiment and simulation in protein folding: closing the gap for small model systems. Schaeffer RD, Fersht A, Daggett V. Curr Opin Struct Biol 18 4-9 (2008)
  10. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective. Jager M, Deechongkit S, Koepf EK, Nguyen H, Gao J, Powers ET, Gruebele M, Kelly JW. Biopolymers 90 751-758 (2008)
  11. Molecular insights into the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1. Sudol M, McDonald CB, Farooq A. FEBS Lett 586 2795-2799 (2012)
  12. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer. Chen S, Wang H, Huang YF, Li ML, Cheng JH, Hu P, Lu CH, Zhang Y, Liu N, Tzeng CM, Zhang ZM. Mol Cancer 16 128 (2017)
  13. How cooperative are protein folding and unfolding transitions? Malhotra P, Udgaonkar JB. Protein Sci 25 1924-1941 (2016)
  14. A survey of the year 2006 literature on applications of isothermal titration calorimetry. Okhrimenko O, Jelesarov I. J Mol Recognit 21 1-19 (2008)
  15. Using the folding landscapes of proteins to understand protein function. Giri Rao VV, Gosavi S. Curr Opin Struct Biol 36 67-74 (2016)
  16. Activity and Affinity of Pin1 Variants. Born A, Henen MA, Vögeli B. Molecules 25 E36 (2019)
  17. Fast-folding proteins under stress. Dave K, Gruebele M. Cell Mol Life Sci 72 4273-4285 (2015)

Articles citing this publication (89)

  1. Atomic-level characterization of the structural dynamics of proteins. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W. Science 330 341-346 (2010)
  2. Markov models of molecular kinetics: generation and validation. Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera JD, Schütte C, Noé F. J Chem Phys 134 174105 (2011)
  3. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Noé F, Schütte C, Vanden-Eijnden E, Reich L, Weikl TR. Proc Natl Acad Sci U S A 106 19011-19016 (2009)
  4. Identification of slow molecular order parameters for Markov model construction. Pérez-Hernández G, Paul F, Giorgino T, De Fabritiis G, Noé F. J Chem Phys 139 015102 (2013)
  5. MSMBuilder2: Modeling Conformational Dynamics at the Picosecond to Millisecond Scale. Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande VS. J Chem Theory Comput 7 3412-3419 (2011)
  6. Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Ding Q, Huo L, Yang JY, Xia W, Wei Y, Liao Y, Chang CJ, Yang Y, Lai CC, Lee DF, Yen CJ, Chen YJ, Hsu JM, Kuo HP, Lin CY, Tsai FJ, Li LY, Tsai CH, Hung MC. Cancer Res 68 6109-6117 (2008)
  7. Markov state model reveals folding and functional dynamics in ultra-long MD trajectories. Lane TJ, Bowman GR, Beauchamp K, Voelz VA, Pande VS. J Am Chem Soc 133 18413-18419 (2011)
  8. Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Gao J, Bosco DA, Powers ET, Kelly JW. Nat Struct Mol Biol 16 684-690 (2009)
  9. Simple few-state models reveal hidden complexity in protein folding. Beauchamp KA, McGibbon R, Lin YS, Pande VS. Proc Natl Acad Sci U S A 109 17807-17813 (2012)
  10. Markov state models based on milestoning. Schütte C, Noé F, Lu J, Sarich M, Vanden-Eijnden E. J Chem Phys 134 204105 (2011)
  11. The proteasome antechamber maintains substrates in an unfolded state. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. Nature 467 868-871 (2010)
  12. Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of eucaryotic cells. Dhar A, Girdhar K, Singh D, Gelman H, Ebbinghaus S, Gruebele M. Biophys J 101 421-430 (2011)
  13. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. Carcinogenesis 35 1352-1361 (2014)
  14. Extracting function from a beta-trefoil folding motif. Gosavi S, Whitford PC, Jennings PA, Onuchic JN. Proc Natl Acad Sci U S A 105 10384-10389 (2008)
  15. Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Urusova DV, Shim JH, Kim DJ, Jung SK, Zykova TA, Carper A, Bode AM, Dong Z. Cancer Prev Res (Phila) 4 1366-1377 (2011)
  16. Tuning lambda6-85 towards downhill folding at its melting temperature. Liu F, Gruebele M. J Mol Biol 370 574-584 (2007)
  17. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. Noé F, Doose S, Daidone I, Löllmann M, Sauer M, Chodera JD, Smith JC. Proc Natl Acad Sci U S A 108 4822-4827 (2011)
  18. Probability distributions of molecular observables computed from Markov models. Noé F. J Chem Phys 128 244103 (2008)
  19. Increasing protein stability by improving beta-turns. Fu H, Grimsley GR, Razvi A, Scholtz JM, Pace CN. Proteins 77 491-498 (2009)
  20. Activation of Erk by sonic hedgehog independent of canonical hedgehog signalling. Chang H, Li Q, Moraes RC, Lewis MT, Hamel PA. Int J Biochem Cell Biol 42 1462-1471 (2010)
  21. Globular Protein Folding In Vitro and In Vivo. Gruebele M, Dave K, Sukenik S. Annu Rev Biophys 45 233-251 (2016)
  22. Modeling conformational ensembles of slow functional motions in Pin1-WW. Morcos F, Chatterjee S, McClendon CL, Brenner PR, López-Rendón R, Zintsmaster J, Ercsey-Ravasz M, Sweet CR, Jacobson MP, Peng JW, Izaguirre JA. PLoS Comput Biol 6 e1001015 (2010)
  23. Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein. Jäger M, Dendle M, Kelly JW. Protein Sci 18 1806-1813 (2009)
  24. Sequence-specific dynamics modulate recognition specificity in WW domains. Peng T, Zintsmaster JS, Namanja AT, Peng JW. Nat Struct Mol Biol 14 325-331 (2007)
  25. A cross-strand Trp Trp pair stabilizes the hPin1 WW domain at the expense of function. Jäger M, Dendle M, Fuller AA, Kelly JW. Protein Sci 16 2306-2313 (2007)
  26. Learning protein constitutive motifs from sequence data. Tubiana J, Cocco S, Monasson R. Elife 8 e39397 (2019)
  27. Microsecond folding experiments and simulations: a match is made. Prigozhin MB, Gruebele M. Phys Chem Chem Phys 15 3372-3388 (2013)
  28. Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics. Price JL, Shental-Bechor D, Dhar A, Turner MJ, Powers ET, Gruebele M, Levy Y, Kelly JW. J Am Chem Soc 132 15359-15367 (2010)
  29. The role of the turn in beta-hairpin formation during WW domain folding. Sharpe T, Jonsson AL, Rutherford TJ, Daggett V, Fersht AR. Protein Sci 16 2233-2239 (2007)
  30. Probing the lower size limit for protein-like fold stability: ten-residue microproteins with specific, rigid structures in water. Kier BL, Andersen NH. J Am Chem Soc 130 14675-14683 (2008)
  31. Nonnative interactions in the FF domain folding pathway from an atomic resolution structure of a sparsely populated intermediate: an NMR relaxation dispersion study. Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE. J Am Chem Soc 133 10974-10982 (2011)
  32. Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions. Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M. J Mol Biol 371 256-268 (2007)
  33. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. Chen W, Kong L, Connelly S, Dendle JM, Liu Y, Wilson IA, Powers ET, Kelly JW. ACS Chem Biol 11 1852-1861 (2016)
  34. The Dependence of Carbohydrate-Aromatic Interaction Strengths on the Structure of the Carbohydrate. Hsu CH, Park S, Mortenson DE, Foley BL, Wang X, Woods RJ, Case DA, Powers ET, Wong CH, Dyson HJ, Kelly JW. J Am Chem Soc 138 7636-7648 (2016)
  35. A logical OR redundancy within the Asx-Pro-Asx-Gly type I beta-turn motif. Lee J, Dubey VK, Longo LM, Blaber M. J Mol Biol 377 1251-1264 (2008)
  36. COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer. Kim G, Khanal P, Kim JY, Yun HJ, Lim SC, Shim JH, Choi HS. Mol Carcinog 54 440-448 (2015)
  37. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data. Metzner P, Noé F, Schütte C. Phys Rev E Stat Nonlin Soft Matter Phys 80 021106 (2009)
  38. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements. Zhou R, Maisuradze GG, Suñol D, Todorovski T, Macias MJ, Xiao Y, Scheraga HA, Czaplewski C, Liwo A. Proc Natl Acad Sci U S A 111 18243-18248 (2014)
  39. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding. Jäger M, Nguyen H, Dendle M, Gruebele M, Kelly JW. Protein Sci 16 1495-1501 (2007)
  40. Interdomain communication revealed in the diabetes drug target mitoNEET. Baxter EL, Jennings PA, Onuchic JN. Proc Natl Acad Sci U S A 108 5266-5271 (2011)
  41. Characterization of folding mechanisms of Trp-cage and WW-domain by network analysis of simulations with a hybrid-resolution model. Han W, Schulten K. J Phys Chem B 117 13367-13377 (2013)
  42. Interfacial water molecules in SH3 interactions: a revised paradigm for polyproline recognition. Martin-Garcia JM, Ruiz-Sanz J, Luque I. Biochem J 442 443-451 (2012)
  43. Understanding the folding-function tradeoff in proteins. Gosavi S. PLoS One 8 e61222 (2013)
  44. Coevolution of function and the folding landscape: correlation with density of native contacts. Hills RD, Brooks CL. Biophys J 95 L57-9 (2008)
  45. Structure and dynamics of human Nedd4-1 WW3 in complex with the αENaC PY motif. Bobby R, Medini K, Neudecker P, Lee TV, Brimble MA, McDonald FJ, Lott JS, Dingley AJ. Biochim Biophys Acta 1834 1632-1641 (2013)
  46. Assessing AMBER force fields for protein folding in an implicit solvent. Shao Q, Zhu W. Phys Chem Chem Phys 20 7206-7216 (2018)
  47. Allosteric control in a metalloprotein dramatically alters function. Baxter EL, Zuris JA, Wang C, Vo PL, Axelrod HL, Cohen AE, Paddock ML, Nechushtai R, Onuchic JN, Jennings PA. Proc Natl Acad Sci U S A 110 948-953 (2013)
  48. Imprints of function on the folding landscape: functional role for an intermediate in a conserved eukaryotic binding protein. Munshi S, Naganathan AN. Phys Chem Chem Phys 17 11042-11052 (2015)
  49. Strand swapping regulates the iron-sulfur cluster in the diabetes drug target mitoNEET. Baxter EL, Jennings PA, Onuchic JN. Proc Natl Acad Sci U S A 109 1955-1960 (2012)
  50. Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins. Weikl TR. Biophys J 94 929-937 (2008)
  51. Characterization of the cofactor-induced folding mechanism of a zinc-binding peptide using computationally designed mutants. Tang J, Kang SG, Saven JG, Gai F. J Mol Biol 389 90-102 (2009)
  52. Dynamic heterogeneity in the folding/unfolding transitions of FiP35. Mori T, Saito S. J Chem Phys 142 135101 (2015)
  53. Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins. Chong SH, Ham S. Sci Rep 9 14927 (2019)
  54. Local vs global motions in protein folding. Maisuradze GG, Liwo A, Senet P, Scheraga HA. J Chem Theory Comput 9 2907-2921 (2013)
  55. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain. Maisuradze GG, Zhou R, Liwo A, Xiao Y, Scheraga HA. J Mol Biol 420 350-365 (2012)
  56. Folding mechanisms of individual beta-hairpins in a Go model of Pin1 WW domain by all-atom molecular dynamics simulations. Luo Z, Ding J, Zhou Y. J Chem Phys 128 225103 (2008)
  57. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide. Zhang Y, Schulten K, Gruebele M, Bansal PS, Wilson D, Daly NL. Biophys J 110 1744-1752 (2016)
  58. Dynamics of an ultrafast folding subdomain in the context of a larger protein fold. Davis CM, Dyer RB. J Am Chem Soc 135 19260-19267 (2013)
  59. Functionally Relevant Specific Packing Can Determine Protein Folding Routes. Yadahalli S, Gosavi S. J Mol Biol 428 509-521 (2016)
  60. Investigation of an anomalously accelerating substitution in the folding of a prototypical two-state protein. Lawrence C, Kuge J, Ahmad K, Plaxco KW. J Mol Biol 403 446-458 (2010)
  61. Selection of a high-affinity WW domain against the extracellular region of VEGF receptor isoform-2 from a combinatorial library using CIS display. Patel S, Mathonet P, Jaulent AM, Ullman CG. Protein Eng Des Sel 26 307-315 (2013)
  62. Adaptive Markov state model estimation using short reseeding trajectories. Wan H, Voelz VA. J Chem Phys 152 024103 (2020)
  63. Circular permutation of a WW domain: folding still occurs after excising the turn of the folding-nucleating hairpin. Kier BL, Anderson JM, Andersen NH. J Am Chem Soc 136 741-749 (2014)
  64. High-Resolution Mapping of the Folding Transition State of a WW Domain. Dave K, Jäger M, Nguyen H, Kelly JW, Gruebele M. J Mol Biol 428 1617-1636 (2016)
  65. Mammary epithelial-restricted expression of activated c-src rescues the block to mammary gland morphogenesis due to the deletion of the C-terminus of Patched-1. Chang H, Balenci L, Okolowsky N, Muller WJ, Hamel PA. Dev Biol 370 187-197 (2012)
  66. Comment Structural biology: proteins downhill all the way. Kelly JW. Nature 442 255-256 (2006)
  67. Toward a quantitative description of microscopic pathway heterogeneity in protein folding. Gopi S, Singh A, Suresh S, Paul S, Ranu S, Naganathan AN. Phys Chem Chem Phys 19 20891-20903 (2017)
  68. Aryl-aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization. Anderson JM, Kier BL, Jurban B, Byrne A, Shu I, Eidenschink LA, Shcherbakov AA, Hudson M, Fesinmeyer RM, Andersen NH. Biopolymers 105 337-356 (2016)
  69. Crystal structure of the first WW domain of human YAP2 isoform. Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A. J Struct Biol 191 381-387 (2015)
  70. Frustration Sculpts the Early Stages of Protein Folding. Di Silvio E, Brunori M, Gianni S. Angew Chem Int Ed Engl 54 10867-10869 (2015)
  71. Increasing protein stability by engineering the n → π* interaction at the β-turn. Khatri B, Majumder P, Nagesh J, Penmatsa A, Chatterjee J. Chem Sci 11 9480-9487 (2020)
  72. Protein stabilization by tuning the steric restraint at the reverse turn. Lahiri P, Verma H, Ravikumar A, Chatterjee J. Chem Sci 9 4600-4609 (2018)
  73. Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities. Ardejani MS, Powers ET, Kelly JW. Acc Chem Res 50 1875-1882 (2017)
  74. Elimination of a cis-proline-containing loop and turn optimization stabilizes a protein and accelerates its folding. Jakob RP, Zierer BK, Weininger U, Hofmann SD, Lorenz SH, Balbach J, Dobbek H, Schmid FX. J Mol Biol 399 331-346 (2010)
  75. Folding behavior of ribosomal protein S6 studied by modified Gō-like model. Wu L, Zhang J, Wang J, Li WF, Wang W. Phys Rev E Stat Nonlin Soft Matter Phys 75 031914 (2007)
  76. Post-Translational Backbone Engineering through Selenomethionine-Mediated Incorporation of Freidinger Lactams. Flood DT, Yan NL, Dawson PE. Angew Chem Int Ed Engl 57 8697-8701 (2018)
  77. Equilibrium unfolding of the PDZ domain of β2-syntrophin. Torchio GM, Ermácora MR, Sica MP. Biophys J 102 2835-2844 (2012)
  78. Polyethylene Glycol Based Changes to β-Sheet Protein Conformational and Proteolytic Stability Depend on Conjugation Strategy and Location. Draper SRE, Lawrence PB, Billings WM, Xiao Q, Brown NP, Bécar NA, Matheson DJ, Stephens AR, Price JL. Bioconjug Chem 28 2507-2513 (2017)
  79. Redesign of a WW domain peptide for selective recognition of single-stranded DNA. Stewart AL, Park JH, Waters ML. Biochemistry 50 2575-2584 (2011)
  80. Folding in Place: Design of β-Strap Motifs to Stabilize the Folding of Hairpins with Long Loops. Richaud AD, Zhao G, Hobloss S, Roche SP. J Org Chem 86 13535-13547 (2021)
  81. Simple Model of Protein Energetics To Identify Ab Initio Folding Transitions from All-Atom MD Simulations of Proteins. Meli M, Morra G, Colombo G. J Chem Theory Comput 16 5960-5971 (2020)
  82. New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain. Kachlishvili K, Korneev A, Maisuradze L, Liu J, Scheraga HA, Molochkov A, Senet P, Niemi AJ, Maisuradze GG. J Phys Chem B 124 3855-3872 (2020)
  83. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II. Zhang M, Gill GN, Zhang Y. Nano Rev 1 (2010)
  84. The CSY-protecting group in the microwave-assisted synthesis of aggregation-prone peptides. Pham TL, Zilke J, Müller CC, Thomas F. RSC Chem Biol 3 426-430 (2022)
  85. Diffusion Monte Carlo study on temporal evolution of entropy and free energy in nonequilibrium processes. Tanaka S. J Chem Phys 144 094103 (2016)
  86. Flow cytometric analysis of genetic FRET detectors containing variable substrate sequences. Hong Lim K, Hsu CK, Park S. Biotechnol Prog 26 1765-1771 (2010)
  87. How Often Do Protein Genes Navigate Valleys of Low Fitness? Nelson ED, Grishin NV. Genes (Basel) 10 E283 (2019)
  88. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains. Neitz H, Paul NB, Häge FR, Lindner C, Graebner R, Kovermann M, Thomas F. Chem Sci 13 9079-9090 (2022)
  89. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Chen XR, Igumenova TI. Adv Biol Regul 87 100938 (2023)