2fd6 Citations

Structure of human urokinase plasminogen activator in complex with its receptor.

Abstract

The urokinase plasminogen activator binds to its cellular receptor with high affinity and initiates signaling cascades that are implicated in pathological processes including tumor growth, metastasis, and inflammation. We report the crystal structure at 1.9 angstroms of the urokinase receptor complexed with the urokinase amino-terminal fragment and an antibody against the receptor. The three domains of urokinase receptor form a concave shape with a central cone-shaped cavity where the urokinase fragment inserts. The structure provides insight into the flexibility of the urokinase receptor that enables its interaction with a wide variety of ligands and a basis for the design of urokinase-urokinase receptor antagonists.

Reviews - 2fd6 mentioned but not cited (4)

  1. Chemistry and Enzymology of Disulfide Cross-Linking in Proteins. Fass D, Thorpe C. Chem Rev 118 1169-1198 (2018)
  2. Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. Goettig P. Int J Mol Sci 17 E1969 (2016)
  3. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Metrangolo V, Ploug M, Engelholm LH. Cancers (Basel) 13 5376 (2021)
  4. Endogenous phospholipase A2 inhibitors in snakes: a brief overview. Campos PC, de Melo LA, Dias GLF, Fortes-Dias CL. J Venom Anim Toxins Incl Trop Dis 22 37 (2016)

Articles - 2fd6 mentioned but not cited (37)



Reviews citing this publication (47)

  1. Regulation of cell signalling by uPAR. Smith HW, Marshall CJ. Nat Rev Mol Cell Biol 11 23-36 (2010)
  2. Targeting nanoparticles to cancer. Wang M, Thanou M. Pharmacol Res 62 90-99 (2010)
  3. Proteases involved in cartilage matrix degradation in osteoarthritis. Troeberg L, Nagase H. Biochim Biophys Acta 1824 133-145 (2012)
  4. Evolving role of uPA/uPAR system in human cancers. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Cancer Treat Rev 34 122-136 (2008)
  5. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. Blasi F, Sidenius N. FEBS Lett 584 1923-1930 (2010)
  6. Pericellular proteolysis in cancer. Sevenich L, Joyce JA. Genes Dev 28 2331-2347 (2014)
  7. Role of urokinase receptor in tumor progression and development. Noh H, Hong S, Huang S. Theranostics 3 487-495 (2013)
  8. The urokinase plasminogen activator receptor as a gene therapy target for cancer. Pillay V, Dass CR, Choong PF, Choong PF. Trends Biotechnol 25 33-39 (2007)
  9. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Tsetlin VI. Trends Pharmacol Sci 36 109-123 (2015)
  10. Therapeutics targeting the fibrinolytic system. Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Exp Mol Med 52 367-379 (2020)
  11. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  12. Correlates for disease progression and prognosis during concurrent HIV/TB infection. Djoba Siawaya JF, Ruhwald M, Eugen-Olsen J, Walzl G. Int J Infect Dis 11 289-299 (2007)
  13. The neurobiological basis of sleep: Insights from Drosophila. Ly S, Pack AI, Naidoo N. Neurosci Biobehav Rev 87 67-86 (2018)
  14. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Li Santi A, Napolitano F, Montuori N, Ragno P. Int J Mol Sci 22 4111 (2021)
  15. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. Hudson NE. Biomed Res Int 2017 2748340 (2017)
  16. Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Li R, Zheng K, Yuan C, Chen Z, Huang M. Nanotheranostics 1 346-357 (2017)
  17. Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibronectin. Pérez-García S, Carrión M, Gutiérrez-Cañas I, Villanueva-Romero R, Castro D, Martínez C, González-Álvaro I, Blanco FJ, Juarranz Y, Gomariz RP. Cells 9 E40 (2019)
  18. The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target. O'Halloran TV, Ahn R, Hankins P, Swindell E, Mazar AP. Theranostics 3 496-506 (2013)
  19. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. Pulicherla KK, Verma MK. AAPS PharmSciTech 16 223-233 (2015)
  20. Inflammation and Cardiovascular Disease Associated With Hemodialysis for End-Stage Renal Disease. Wang Y, Gao L. Front Pharmacol 13 800950 (2022)
  21. Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers. Chen Z, Zheng W, Huang P, Tu D, Zhou S, Huang M, Chen X. Nanoscale 7 4274-4290 (2015)
  22. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target: potential clinical applications. Persson M, Kjaer A. Clin Physiol Funct Imaging 33 329-337 (2013)
  23. Soluble urokinase receptor and focal segmental glomerulosclerosis. Reiser J, Wei C, Tumlin J. Curr Opin Nephrol Hypertens 21 428-432 (2012)
  24. Structural Biology and Protein Engineering of Thrombolytics. Mican J, Toul M, Bednar D, Damborsky J. Comput Struct Biotechnol J 17 917-938 (2019)
  25. Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus. Dande RR, Peev V, Altintas MM, Reiser J. J Diabetes Res 2017 3232848 (2017)
  26. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Alfano D, Franco P, Stoppelli MP. Front Cell Dev Biol 10 818616 (2022)
  27. Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist. Ploug M. Theranostics 3 467-476 (2013)
  28. Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer. Masucci MT, Minopoli M, Di Carluccio G, Motti ML, Carriero MV. Cancers (Basel) 14 498 (2022)
  29. Primary focal and segmental glomerulosclerosis and soluble factor urokinase-type plasminogen activator receptor. Trimarchi H. World J Nephrol 2 103-110 (2013)
  30. Unwinding focal segmental glomerulosclerosis. Peev V, Hahm E, Reiser J, Reiser J. F1000Res 6 466 (2017)
  31. uPAR: An Essential Factor for Tumor Development. Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. J Cancer 12 7026-7040 (2021)
  32. Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches? Sanchis-Gomar F, Pareja-Galeano H, Perez-Quilis C, Santos-Lozano A, Fiuza-Luces C, Garatachea N, Lippi G, Lucia A, Lucia A. Cell Stress Chaperones 20 3-13 (2015)
  33. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. EJNMMI Res 10 87 (2020)
  34. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Gonias SL. Am J Physiol Cell Physiol 321 C721-C734 (2021)
  35. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis. Kryczka J, Boncela J. Mediators Inflamm 2017 2570154 (2017)
  36. Targeting urokinase-type plasminogen activator and its receptor for cancer therapy. Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Ohara T, Yamamoto E. Anticancer Drugs 17 1109-1117 (2006)
  37. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Shin WJ, Seong BL. Expert Opin Drug Discov 12 1139-1152 (2017)
  38. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Leth JM, Ploug M. Front Cell Dev Biol 9 732015 (2021)
  39. Bacterial staphylokinase as a promising third-generation drug in the treatment for vascular occlusion. Nedaeinia R, Faraji H, Javanmard SH, Ferns GA, Ghayour-Mobarhan M, Goli M, Mashkani B, Nedaeinia M, Haghighi MHH, Ranjbar M. Mol Biol Rep 47 819-841 (2020)
  40. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Zhong J, Whitman JB, Yang HC, Fogo AB. J Histochem Cytochem 67 623-632 (2019)
  41. suPAR, a Circulating Kidney Disease Factor. Wei C, Spear R, Hahm E, Reiser J. Front Med (Lausanne) 8 745838 (2021)
  42. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. Cells 12 445 (2023)
  43. Biomarkers in AL Amyloidosis. Fotiou D, Theodorakakou F, Kastritis E. Int J Mol Sci 22 10916 (2021)
  44. Impact of expression of the uPA system in sarcomas. Taubert H, Magdolen V, Kotzsch M. Biomark Med 7 473-480 (2013)
  45. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Xu P, Andreasen PA, Huang M. Int J Biol Sci 13 1222-1233 (2017)
  46. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. Liao TH, Wu HC, Liao MT, Hu WC, Tsai KW, Lin CC, Lu KC. Int J Mol Sci 23 10725 (2022)
  47. Radiometallated peptides targeting guanylate cyclase C and the urokinase-type plasminogen activator receptor. Praharaj S, Overbey D, Giblin MF. Future Oncol 6 1325-1337 (2010)

Articles citing this publication (117)