2h3a Citations

Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA.

J Mol Biol 364 170-85 (2006)
Related entries: 2adl, 2adn, 2h3c

Cited: 79 times
EuropePMC logo PMID: 17007877

Abstract

Toxin-antitoxin systems are highly abundant in plasmids and bacterial chromosomes. They ensure plasmid maintenance by killing bacteria that have lost the plasmid. Their expression is autoregulated at the level of transcription. Here, we present the solution structure of CcdA, the antitoxin of the ccd system, as a free protein (16.7 kDa) and in complex with its cognate DNA (25.3 kDa). CcdA is composed of two distinct and independent domains: the N-terminal domain, responsible for DNA binding, which establishes a new family of the ribbon-helix-helix fold and the C-terminal region, which is responsible for the interaction with the toxin CcdB. The C-terminal domain is intrinsically unstructured and forms a tight complex with the toxin. We show that CcdA specifically recognizes a 6 bp palindromic DNA sequence within the operator-promoter (OP) region of the ccd operon and binds to DNA by insertion of the positively charged N-terminal beta-sheet into the major groove. The binding of up to three CcdA dimers to a 33mer DNA of its operator-promoter region was studied by NMR spectroscopy, isothermal titration calorimetry and single point mutation. The highly flexible C-terminal region of free CcdA explains its susceptibility to proteolysis by the Lon ATP-dependent protease.

Reviews - 2h3a mentioned but not cited (1)

  1. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Coussens NP, Daines DA. Exp Biol Med (Maywood) 241 1332-1342 (2016)


Reviews citing this publication (16)

  1. Toxin-antitoxin systems in bacteria and archaea. Yamaguchi Y, Park JH, Inouye M. Annu Rev Genet 45 61-79 (2011)
  2. Toxin-antitoxin systems in bacterial growth arrest and persistence. Page R, Peti W. Nat Chem Biol 12 208-214 (2016)
  3. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Collin F, Karkare S, Maxwell A. Appl Microbiol Biotechnol 92 479-497 (2011)
  4. Toxins-antitoxins: diversity, evolution and function. Hayes F, Van Melderen L. Crit Rev Biochem Mol Biol 46 386-408 (2011)
  5. Toxin-antitoxin systems as multilevel interaction systems. Goeders N, Van Melderen L. Toxins (Basel) 6 304-324 (2014)
  6. Biology and evolution of bacterial toxin-antitoxin systems. Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. Nat Rev Microbiol 20 335-350 (2022)
  7. Ribbon-helix-helix transcription factors: variations on a theme. Schreiter ER, Drennan CL. Nat Rev Microbiol 5 710-720 (2007)
  8. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Chan WT, Espinosa M, Yeo CC. Front Mol Biosci 3 9 (2016)
  9. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Göbl C, Madl T, Simon B, Sattler M. Prog Nucl Magn Reson Spectrosc 80 26-63 (2014)
  10. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Blower TR, Salmond GP, Luisi BF. Curr Opin Struct Biol 21 109-118 (2011)
  11. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Hayes F, Kędzierska B. Toxins (Basel) 6 337-358 (2014)
  12. Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy. Becker W, Bhattiprolu KC, Gubensäk N, Zangger K. Chemphyschem 19 895-906 (2018)
  13. Regulation of toxin-antitoxin systems by proteolysis. Brzozowska I, Zielenkiewicz U. Plasmid 70 33-41 (2013)
  14. parD toxin-antitoxin system of plasmid R1--basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. FEBS J 277 3097-3117 (2010)
  15. A survey of the year 2006 literature on applications of isothermal titration calorimetry. Okhrimenko O, Jelesarov I. J Mol Recognit 21 1-19 (2008)
  16. Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Tu CH, Holt M, Ruan S, Bourne C. Toxins (Basel) 12 E422 (2020)

Articles citing this publication (62)

  1. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R. Cell 142 101-111 (2010)
  2. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Overgaard M, Borch J, Jørgensen MG, Gerdes K. Mol Microbiol 69 841-857 (2008)
  3. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. Yamaguchi Y, Park JH, Inouye M. J Biol Chem 284 28746-28753 (2009)
  4. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wyns L, De Greve H, Loris R. Mol Cell 35 154-163 (2009)
  5. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. Garcia-Pino A, Christensen-Dalsgaard M, Wyns L, Yarmolinsky M, Magnuson RD, Gerdes K, Loris R. J Biol Chem 283 30821-30827 (2008)
  6. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. Overgaard M, Borch J, Gerdes K. J Mol Biol 394 183-196 (2009)
  7. Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module. Li GY, Zhang Y, Inouye M, Ikura M. J Mol Biol 380 107-119 (2008)
  8. The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. Brown BL, Lord DM, Grigoriu S, Peti W, Page R. J Biol Chem 288 1286-1294 (2013)
  9. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Dalton KM, Crosson S. Biochemistry 49 2205-2215 (2010)
  10. Rational Design of Evolutionarily Stable Microbial Kill Switches. Stirling F, Bitzan L, O'Keefe S, Redfield E, Oliver JWK, Way J, Silver PA. Mol Cell 68 686-697.e3 (2017)
  11. Structure of the Escherichia coli antitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. Brown BL, Wood TK, Peti W, Page R. J Biol Chem 286 2285-2296 (2011)
  12. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Simanshu DK, Yamaguchi Y, Park JH, Inouye M, Patel DJ. Mol Cell 52 447-458 (2013)
  13. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Oberer M, Zangger K, Gruber K, Keller W. Protein Sci 16 1676-1688 (2007)
  14. Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors. Yuan J, Sterckx Y, Mitchenall LA, Maxwell A, Loris R, Waldor MK. J Biol Chem 285 40397-40408 (2010)
  15. A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. Gelens L, Hill L, Vandervelde A, Danckaert J, Loris R. PLoS Comput Biol 9 e1003190 (2013)
  16. Interactions of Kid-Kis toxin-antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid-Kis oligomers. Monti MC, Hernández-Arriaga AM, Kamphuis MB, López-Villarejo J, Heck AJ, Boelens R, Díaz-Orejas R, van den Heuvel RH. Nucleic Acids Res 35 1737-1749 (2007)
  17. NMR and small-angle scattering-based structural analysis of protein complexes in solution. Madl T, Gabel F, Sattler M. J Struct Biol 173 472-482 (2011)
  18. Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Tripathi A, Dewan PC, Barua B, Varadarajan R. Proc Natl Acad Sci U S A 109 12497-12502 (2012)
  19. Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using NMR spectroscopy. Madl T, Bermel W, Zangger K. Angew Chem Int Ed Engl 48 8259-8262 (2009)
  20. Structural analysis of large protein complexes using solvent paramagnetic relaxation enhancements. Madl T, Güttler T, Görlich D, Sattler M. Angew Chem Int Ed Engl 50 3993-3997 (2011)
  21. The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. Pryor EE, Waligora EA, Xu B, Dellos-Nolan S, Wozniak DJ, Hollis T. PLoS Pathog 8 e1002648 (2012)
  22. VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. Maezato Y, Daugherty A, Dana K, Soo E, Cooper C, Tachdjian S, Kelly RM, Blum P. RNA 17 1381-1392 (2011)
  23. A Structure-free Method for Quantifying Conformational Flexibility in proteins. Burger VM, Arenas DJ, Stultz CM. Sci Rep 6 29040 (2016)
  24. Identification and characterization of acetyltransferase-type toxin-antitoxin locus in Klebsiella pneumoniae. Qian H, Yao Q, Tai C, Deng Z, Gan J, Ou HY. Mol Microbiol 108 336-349 (2018)
  25. Mechanism of regulation and neutralization of the AtaR-AtaT toxin-antitoxin system. Jurėnas D, Van Melderen L, Garcia-Pino A. Nat Chem Biol 15 285-294 (2019)
  26. Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. Bailey SE, Hayes F. J Bacteriol 191 762-772 (2009)
  27. Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function. Chopra N, Agarwal S, Verma S, Bhatnagar S, Bhatnagar R. J Comput Aided Mol Des 25 275-291 (2011)
  28. Solution structure and membrane binding of the toxin fst of the par addiction module. Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. Biochemistry 49 6567-6575 (2010)
  29. Developing Universal Genetic Tools for Rapid and Efficient Deletion Mutation in Vibrio Species Based on Suicide T-Vectors Carrying a Novel Counterselectable Marker, vmi480. Luo P, He X, Liu Q, Hu C. PLoS One 10 e0144465 (2015)
  30. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Front Mol Biosci 3 66 (2016)
  31. Maintenance forced by a restriction-modification system can be modulated by a region in its modification enzyme not essential for methyltransferase activity. Ohno S, Handa N, Watanabe-Matsui M, Takahashi N, Kobayashi I. J Bacteriol 190 2039-2049 (2008)
  32. Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Vandervelde A, Drobnak I, Hadži S, Sterckx YG, Welte T, De Greve H, Charlier D, Efremov R, Loris R, Lah J. Nucleic Acids Res 45 2937-2950 (2017)
  33. Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Hu MX, Zhang X, Li EL, Feng YJ. Int J Microbiol 2010 781430 (2010)
  34. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions. Smith AB, López-Villarejo J, Diago-Navarro E, Mitchenall LA, Barendregt A, Heck AJ, Lemonnier M, Maxwell A, Díaz-Orejas R. PLoS One 7 e46499 (2012)
  35. Structural studies of E73 from a hyperthermophilic archaeal virus identify the "RH3" domain, an elaborated ribbon-helix-helix motif involved in DNA recognition. Schlenker C, Goel A, Tripet BP, Menon S, Willi T, Dlakić M, Young MJ, Lawrence CM, Copié V. Biochemistry 51 2899-2910 (2012)
  36. Structure and function of AvtR, a novel transcriptional regulator from a hyperthermophilic archaeal lipothrixvirus. Peixeiro N, Keller J, Collinet B, Leulliot N, Campanacci V, Cortez D, Cambillau C, Nitta KR, Vincentelli R, Forterre P, Prangishvili D, Sezonov G, van Tilbeurgh H. J Virol 87 124-136 (2013)
  37. Linkage, mobility, and selfishness in the MazF family of bacterial toxins: a snapshot of bacterial evolution. Chopra N, Saumitra, Pathak A, Bhatnagar R, Bhatnagar S. Genome Biol Evol 5 2268-2284 (2013)
  38. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria) - structure, diversity and evolution. Maj A, Dziewit L, Czarnecki J, Wlodarczyk M, Baj J, Skrzypczyk G, Giersz D, Bartosik D. PLoS One 8 e80258 (2013)
  39. An efficient method for the purification of proteins from four distinct toxin-antitoxin modules. Sterckx YG, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. Protein Expr Purif 108 30-40 (2015)
  40. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions. Xu B, Ju Y, Soukup RJ, Ramsey DM, Fishel R, Wysocki VH, Wozniak DJ. Environ Microbiol Rep 8 85-90 (2016)
  41. Helicobacter pylori NikR protein exhibits distinct conformations when bound to different promoters. Benanti EL, Chivers PT. J Biol Chem 286 15728-15737 (2011)
  42. Alternative interactions define gyrase specificity in the CcdB family. De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, Sterckx Y, De Greve H, Lah J, Loris R. Mol Microbiol 84 965-978 (2012)
  43. Dynamics and orientation of a cationic antimicrobial peptide in two membrane-mimetic systems. Kosol S, Zangger K. J Struct Biol 170 172-179 (2010)
  44. Unrelated toxin-antitoxin systems cooperate to induce persistence. Fasani RA, Savageau MA. J R Soc Interface 12 20150130 (2015)
  45. Importance of the E. coli DinJ antitoxin carboxy terminus for toxin suppression and regulated proteolysis. Ruangprasert A, Maehigashi T, Miles SJ, Dunham CM. Mol Microbiol 104 65-77 (2017)
  46. Stability of the GraA Antitoxin Depends on Growth Phase, ATP Level, and Global Regulator MexT. Tamman H, Ainelo A, Tagel M, Hõrak R. J Bacteriol 198 787-796 (2015)
  47. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. Proc Natl Acad Sci U S A 120 e2305393120 (2023)
  48. Combinatorial targeting of ribbon-helix-helix artificial transcription factors to chimeric recognition sites. Zampini M, Hayes F. Nucleic Acids Res 40 6673-6682 (2012)
  49. Entropic pressure controls the oligomerization of the Vibrio cholerae ParD2 antitoxin. Garcia-Rodriguez G, Girardin Y, Volkov AN, Singh RK, Muruganandam G, Van Dyck J, Sobott F, Versées W, Charlier D, Loris R. Acta Crystallogr D Struct Biol 77 904-920 (2021)
  50. Crystallization and X-ray analysis of all of the players in the autoregulation of the ataRT toxin-antitoxin system. Jurėnas D, Van Melderen L, Garcia-Pino A. Acta Crystallogr F Struct Biol Commun 74 391-401 (2018)
  51. Off-Pathway-Sensitive Protein-Splicing Screening Based on a Toxin/Antitoxin System. Beyer HM, Iwaï H. Chembiochem 20 1933-1938 (2019)
  52. Sequence and Structure Properties Uncover the Natural Classification of Protein Complexes Formed by Intrinsically Disordered Proteins via Mutual Synergistic Folding. Mészáros B, Dobson L, Fichó E, Simon I. Int J Mol Sci 20 E5460 (2019)
  53. The High Mutational Sensitivity of ccdA Antitoxin Is Linked to Codon Optimality. Chandra S, Gupta K, Khare S, Kohli P, Asok A, Mohan SV, Gowda H, Varadarajan R. Mol Biol Evol 39 msac187 (2022)
  54. Structural and mutational analysis of MazE6-operator DNA complex provide insights into autoregulation of toxin-antitoxin systems. Kumari K, Sarma SP. Commun Biol 5 963 (2022)
  55. Mutational scan inferred binding energetics and structure in intrinsically disordered protein CcdA. Chandra S, Manjunath K, Asok A, Varadarajan R. Protein Sci 32 e4580 (2023)
  56. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state. Malik N, Kumar A, Kumar A. J Biomol NMR 66 21-35 (2016)
  57. Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDa homodimeric toxin CcdB from Vibrio fischeri. Respondek M, Buts L, De Jonge N, Haesaerts S, Loris R, Van Melderen L, Wyns L, Zangger K. Biomol NMR Assign 3 145-147 (2009)
  58. Ter-Seq: A high-throughput method to stabilize transient ternary complexes and measure associated kinetics. Chattopadhyay G, Ahmed S, Srilatha NS, Asok A, Varadarajan R. Protein Sci 32 e4514 (2023)
  59. Antitoxin MqsA decreases antibiotic susceptibility through the global regulator AgtR in Pseudomonas fluorescens. Zhang S-P, Ye Y-P, Hou J, Ye Z-R, Wang Z-S, Yu X-Q, Guo D-D, Wang Y, He Y-X. Antimicrob Agents Chemother 67 e0081223 (2023)
  60. Dynamics-Based Regulatory Switches of Type II Antitoxins: Insights into New Antimicrobial Discovery. Lee KY, Lee BJ. Antibiotics (Basel) 12 637 (2023)
  61. Modularized Design and Construction of Tunable Microbial Consortia with Flexible Topologies. Chen X, He C, Zhang Q, Bayakmetov S, Wang X. ACS Synth Biol 13 183-194 (2024)
  62. Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46-DNA binding. Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. FEBS J 286 1174-1190 (2019)