2h64 Citations

A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor.

OpenAccess logo BMC Struct Biol 7 6 (2007)
Cited: 94 times
EuropePMC logo PMID: 17295905

Abstract

Background

Bone morphogenetic proteins (BMPs) are key regulators in the embryonic development and postnatal tissue homeostasis in all animals. Loss of function or dysregulation of BMPs results in severe diseases or even lethality. Like transforming growth factors beta (TGF-betas), activins, growth and differentiation factors (GDFs) and other members of the TGF-beta superfamily, BMPs signal by assembling two types of serine/threonine-kinase receptor chains to form a hetero-oligomeric ligand-receptor complex. BMP ligand receptor interaction is highly promiscuous, i.e. BMPs bind more than one receptor of each subtype, and a receptor bind various ligands. The activin type II receptors are of particular interest, since they bind a large number of diverse ligands. In addition they act as high-affinity receptors for activins but are also low-affinity receptors for BMPs. ActR-II and ActR-IIB therefore represent an interesting example how affinity and specificity might be generated in a promiscuous background.

Results

Here we present the high-resolution structures of the ternary complexes of wildtype and a variant BMP-2 bound to its high-affinity type I receptor BMPR-IA and its low-affinity type II receptor ActR-IIB and compare them with the known structures of binary and ternary ligand-receptor complexes of BMP-2. In contrast to activin or TGF-beta3 no changes in the dimer architecture of the BMP-2 ligand occur upon complex formation. Functional analysis of the ActR-IIB binding epitope shows that hydrophobic interactions dominate in low-affinity binding of BMPs; polar interactions contribute only little to binding affinity. However, a conserved H-bond in the center of the type II ligand-receptor interface, which does not contribute to binding in the BMP-2 - ActR-IIB interaction can be mutationally activated resulting in a BMP-2 variant with high-affinity for ActR-IIB. Further mutagenesis studies were performed to elucidate the binding mechanism allowing us to construct BMP-2 variants with defined type II receptor binding properties.

Reviews - 2h64 mentioned but not cited (2)

  1. Structural Biology and Evolution of the TGF-β Family. Hinck AP, Mueller TD, Springer TA. Cold Spring Harb Perspect Biol 8 (2016)
  2. Specification of BMP Signaling. Nickel J, Mueller TD. Cells 8 (2019)

Articles - 2h64 mentioned but not cited (13)

  1. Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV. J Biol Chem 287 27313-27325 (2012)
  2. A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. Weber D, Kotzsch A, Nickel J, Harth S, Seher A, Mueller U, Sebald W, Mueller TD. BMC Struct Biol 7 6 (2007)
  3. Mechanical strength of 17,134 model proteins and cysteine slipknots. Sikora M, Sułkowska JI, Cieplak M. PLoS Comput Biol 5 e1000547 (2009)
  4. Evaluation of germline BMP4 mutation as a cause of colorectal cancer. Lubbe SJ, Pittman AM, Matijssen C, Twiss P, Olver B, Lloyd A, Qureshi M, Brown N, Nye E, Stamp G, Blagg J, Houlston RS. Hum Mutat 32 E1928-38 (2011)
  5. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. PLoS Biol 17 e3000557 (2019)
  6. BioAssemblyModeler (BAM): user-friendly homology modeling of protein homo- and heterooligomers. Shapovalov MV, Wang Q, Xu Q, Andrake M, Dunbrack RL. PLoS One 9 e98309 (2014)
  7. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Gutierrez JM, Feizi A, Li S, Kallehauge TB, Hefzi H, Grav LM, Ley D, Baycin Hizal D, Betenbaugh MJ, Voldborg B, Faustrup Kildegaard H, Min Lee G, Palsson BO, Nielsen J, Lewis NE. Nat Commun 11 68 (2020)
  8. The TβR-I pre-helix extension is structurally ordered in the unbound form and its flanking prolines are essential for binding. Zuniga JE, Ilangovan U, Mahlawat P, Hinck CS, Huang T, Groppe JC, McEwen DG, Hinck AP. J Mol Biol 412 601-618 (2011)
  9. Modifications of human growth differentiation factor 9 to improve the generation of embryos from low competence oocytes. Li JJ, Sugimura S, Mueller TD, White MA, Martin GA, Ritter LJ, Liang XY, Gilchrist RB, Mottershead DG. Mol Endocrinol 29 40-52 (2015)
  10. A compound-based computational approach for the accurate determination of hot spots. Wang L, Hou Y, Quan H, Xu W, Bao Y, Li Y, Fu Y, Zou S. Protein Sci 22 1060-1070 (2013)
  11. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Khodr V, Machillot P, Migliorini E, Reiser JB, Picart C. Biointerphases 16 031001 (2021)
  12. A Novel GDF6 Mutation in a Family with Multiple Synostoses Syndrome without Hearing Loss. Drage Berentsen R, Haukanes BI, Júlíusson PB, Rosendahl K, Houge G. Mol Syndromol 9 228-234 (2019)
  13. Site-Directed Immobilization of an Engineered Bone Morphogenetic Protein 2 (BMP2) Variant to Collagen-Based Microspheres Induces Bone Formation In Vivo. Siverino C, Fahmy-Garcia S, Mumcuoglu D, Oberwinkler H, Muehlemann M, Mueller T, Farrell E, van Osch GJVM, Nickel J. Int J Mol Sci 23 3928 (2022)


Reviews citing this publication (17)

  1. Promiscuity and specificity in BMP receptor activation. Mueller TD, Nickel J. FEBS Lett 586 1846-1859 (2012)
  2. Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Rider CC, Mulloy B. Biochem J 429 1-12 (2010)
  3. Structural studies of the TGF-βs and their receptors - insights into evolution of the TGF-β superfamily. Hinck AP. FEBS Lett 586 1860-1870 (2012)
  4. Intricacies of BMP receptor assembly. Nickel J, Sebald W, Groppe JC, Mueller TD. Cytokine Growth Factor Rev 20 367-377 (2009)
  5. Growth and differentiation factors for cartilage healing and repair. Gaissmaier C, Koh JL, Weise K. Injury 39 Suppl 1 S88-96 (2008)
  6. TGF-β family co-receptor function and signaling. Nickel J, Ten Dijke P, Mueller TD. Acta Biochim Biophys Sin (Shanghai) 50 12-36 (2018)
  7. Oligomeric interactions of TGF-β and BMP receptors. Ehrlich M, Gutman O, Knaus P, Henis YI. FEBS Lett 586 1885-1896 (2012)
  8. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  9. Design of second generation therapeutic recombinant bone morphogenetic proteins. Alaoui-Ismaili MH, Falb D. Cytokine Growth Factor Rev 20 501-507 (2009)
  10. Engineering TGF-β superfamily ligands for clinical applications. Kwiatkowski W, Gray PC, Choe S. Trends Pharmacol Sci 35 648-657 (2014)
  11. Structural perspective of BMP ligands and signaling. Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Bone 140 115549 (2020)
  12. Receptor binding competition: A paradigm for regulating TGF-β family action. Martinez-Hackert E, Sundan A, Holien T. Cytokine Growth Factor Rev 57 39-54 (2021)
  13. Antagonism of activin by activin chimeras. Muenster U, Korupolu R, Rastogi R, Read J, Fischer WH. Vitam Horm 85 105-128 (2011)
  14. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Hinck AP. Bioorg Med Chem 26 5239-5246 (2018)
  15. Molecular Mechanisms of AMH Signaling. Howard JA, Hart KN, Thompson TB. Front Endocrinol (Lausanne) 13 927824 (2022)
  16. Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease. O'Keeffe GW, Hegarty SV, Sullivan AM. Neuronal Signal 1 NS20170027 (2017)
  17. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Cate RL. Front Endocrinol (Lausanne) 13 905324 (2022)

Articles citing this publication (62)

  1. Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB, Schwarz PM, Wrana JL, Hinck AP. Mol Cell 29 157-168 (2008)
  2. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Little SC, Mullins MC. Nat Cell Biol 11 637-643 (2009)
  3. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding. Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB. EMBO J 28 2662-2676 (2009)
  4. Crystal structure analysis reveals how the Chordin family member crossveinless 2 blocks BMP-2 receptor binding. Zhang JL, Qiu LY, Kotzsch A, Weidauer S, Patterson L, Hammerschmidt M, Sebald W, Mueller TD. Dev Cell 14 739-750 (2008)
  5. Ternary complex of transforming growth factor-beta1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD. J Biol Chem 285 14806-14814 (2010)
  6. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez-Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R. J Biol Chem 285 21037-21048 (2010)
  7. Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, Nickel J. BMC Biol 7 59 (2009)
  8. von Willebrand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms. Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. J Biol Chem 282 20002-20014 (2007)
  9. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Kuo WJ, Digman MA, Lander AD. Mol Biol Cell 21 4028-4041 (2010)
  10. Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Zouani OF, Chollet C, Guillotin B, Durrieu MC. Biomaterials 31 8245-8253 (2010)
  11. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality. Mottershead DG, Sugimura S, Al-Musawi SL, Li JJ, Richani D, White MA, Martin GA, Trotta AP, Ritter LJ, Shi J, Mueller TD, Harrison CA, Gilchrist RB. J Biol Chem 290 24007-24020 (2015)
  12. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Healey EG, Bishop B, Elegheert J, Bell CH, Padilla-Parra S, Siebold C. Nat Struct Mol Biol 22 458-465 (2015)
  13. The structure of FSTL3.activin A complex. Differential binding of N-terminal domains influences follistatin-type antagonist specificity. Stamler R, Keutmann HT, Sidis Y, Kattamuri C, Schneyer A, Thompson TB. J Biol Chem 283 32831-32838 (2008)
  14. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. La WG, Jin M, Park S, Yoon HH, Jeong GJ, Bhang SH, Park H, Char K, Kim BS. Int J Nanomedicine 9 Suppl 1 107-116 (2014)
  15. Crystal structure analysis reveals a spring-loaded latch as molecular mechanism for GDF-5-type I receptor specificity. Kotzsch A, Nickel J, Seher A, Sebald W, Müller TD. EMBO J 28 937-947 (2009)
  16. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Morvan F, Rondeau JM, Zou C, Minetti G, Scheufler C, Scharenberg M, Jacobi C, Brebbia P, Ritter V, Toussaint G, Koelbing C, Leber X, Schilb A, Witte F, Lehmann S, Koch E, Geisse S, Glass DJ, Lach-Trifilieff E. Proc Natl Acad Sci U S A 114 12448-12453 (2017)
  17. Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding. Aykul S, Martinez-Hackert E. J Biol Chem 291 10792-10804 (2016)
  18. Conserved structural determinants in three-fingered protein domains. Galat A, Gross G, Drevet P, Sato A, Ménez A. FEBS J 275 3207-3225 (2008)
  19. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation. Horbelt D, Boergermann JH, Chaikuad A, Alfano I, Williams E, Lukonin I, Timmel T, Bullock AN, Knaus P. J Biol Chem 290 3390-3404 (2015)
  20. Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Xu Z, Liu XW, Ma YS, Gao HW. Environ Sci Pollut Res Int 17 798-806 (2010)
  21. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. PLoS Genet 12 e1005810 (2016)
  22. New insights into the molecular mechanism of multiple synostoses syndrome (SYNS): mutation within the GDF5 knuckle epitope causes noggin-resistance. Schwaerzer GK, Hiepen C, Schrewe H, Nickel J, Ploeger F, Sebald W, Mueller T, Knaus P. J Bone Miner Res 27 429-442 (2012)
  23. Characterization of follistatin-type domains and their contribution to myostatin and activin A antagonism. Cash JN, Angerman EB, Keutmann HT, Thompson TB. Mol Endocrinol 26 1167-1178 (2012)
  24. Formation of stable homomeric and transient heteromeric bone morphogenetic protein (BMP) receptor complexes regulates Smad protein signaling. Marom B, Heining E, Knaus P, Henis YI. J Biol Chem 286 19287-19296 (2011)
  25. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St Andre M, Svenson K, Morris C, Tchistiakova L. MAbs 8 1302-1318 (2016)
  26. Characterization of ligand-binding properties of the human BMP type II receptor extracellular domain. Yin H, Yeh LC, Hinck AP, Lee JC. J Mol Biol 378 191-203 (2008)
  27. Structure of the Alk1 extracellular domain and characterization of its bone morphogenetic protein (BMP) binding properties. Mahlawat P, Ilangovan U, Biswas T, Sun LZ, Hinck AP. Biochemistry 51 6328-6341 (2012)
  28. Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Goebel EJ, Corpina RA, Hinck CS, Czepnik M, Castonguay R, Grenha R, Boisvert A, Miklossy G, Fullerton PT, Matzuk MM, Idone VJ, Economides AN, Kumar R, Hinck AP, Thompson TB. Proc Natl Acad Sci U S A 116 15505-15513 (2019)
  29. Common structural traits for cystine knot domain of the TGFβ superfamily of proteins and three-fingered ectodomain of their cellular receptors. Galat A. Cell Mol Life Sci 68 3437-3451 (2011)
  30. Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. Huang T, Hinck AP. Methods Mol Biol 1344 63-92 (2016)
  31. N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding. Lowery JW, Amich JM, Andonian A, Rosen V. Cell Mol Life Sci 71 3165-3172 (2014)
  32. Structural investigations on the Nodal-Cripto binding: a theoretical and experimental approach. Calvanese L, Marasco D, Doti N, Saporito A, D'Auria G, Paolillo L, Ruvo M, Falcigno L. Biopolymers 93 1011-1021 (2010)
  33. B2A as a positive BMP receptor modulator. Lin X, Guo H, Takahashi K, Liu Y, Zamora PO. Growth Factors 30 149-157 (2012)
  34. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Heo SY, Ko SC, Nam SY, Oh J, Kim YM, Kim JI, Kim N, Yi M, Jung WK. Cell Biochem Funct 36 137-146 (2018)
  35. BMP-7 induces apoptosis in human germinal center B cells and is influenced by TGF-β receptor type I ALK5. Bollum LK, Huse K, Oksvold MP, Bai B, Hilden VI, Forfang L, Yoon SO, Wälchli S, Smeland EB, Myklebust JH. PLoS One 12 e0177188 (2017)
  36. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Salmon RM, Guo J, Wood JH, Tong Z, Beech JS, Lawera A, Yu M, Grainger DJ, Reckless J, Morrell NW, Li W. Nat Commun 11 1621 (2020)
  37. A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity. Harth S, Kotzsch A, Hu J, Sebald W, Mueller TD. PLoS One 5 (2010)
  38. Osteogenic properties of a short BMP-2 chimera peptide. Falcigno L, D'Auria G, Calvanese L, Marasco D, Iacobelli R, Scognamiglio PL, Brun P, Danesin R, Pasqualin M, Castagliuolo I, Dettin M. J Pept Sci 21 700-709 (2015)
  39. Utilizing BMP-2 muteins for treatment of multiple myeloma. Seher A, Lagler C, Stühmer T, Müller-Richter UDA, Kübler AC, Sebald W, Müller TD, Nickel J. PLoS One 12 e0174884 (2017)
  40. A host-guest relationship in bone morphogenetic protein receptor-II defines specificity in ligand-receptor recognition. Yeh LC, Falcon WE, Garces A, Lee JC, Lee JC. Biochemistry 51 6968-6980 (2012)
  41. Purification, crystallization and preliminary data analysis of ligand-receptor complexes of growth and differentiation factor 5 (GDF5) and BMP receptor IB (BRIB). Kotzsch A, Nickel J, Sebald W, Mueller TD. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 779-783 (2009)
  42. BMP heterodimers signal via distinct type I receptor class functions. Tajer B, Dutko JA, Little SC, Mullins MC. Proc Natl Acad Sci U S A 118 (2021)
  43. Lecture Molecular basis of cytokine signalling--theme and variations. Sebald W, Nickel J, Zhang JL, Mueller TD. FEBS J 277 106-118 (2010)
  44. Thrombospondin-1 (TSP-1), a new bone morphogenetic protein-2 and -4 (BMP-2/4) antagonist identified in pituitary cells. Sallon C, Callebaut I, Boulay I, Fontaine J, Logeart-Avramoglou D, Henriquet C, Pugnière M, Cayla X, Monget P, Harichaux G, Labas V, Canepa S, Taragnat C. J Biol Chem 292 15352-15368 (2017)
  45. A specific affinity cyclic peptide enhances the adhesion, expansion and proliferation of rat bone mesenchymal stem cells on β‑tricalcium phosphate scaffolds. Sun T, Man Z, Peng C, Wang G, Sun S. Mol Med Rep 20 1157-1166 (2019)
  46. Analysis of the contribution of receptor subdomains to the cooperative binding and internalization of transforming growth factor-beta (TGF-beta) type I and type II receptors. Zwaagstra JC, Collins C, Langlois MJ, O'Connor-McCourt MD. Exp Cell Res 314 2553-2568 (2008)
  47. Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Kim SK, Whitley MJ, Krzysiak TC, Hinck CS, Taylor AB, Zwieb C, Byeon CH, Zhou X, Mendoza V, López-Casillas F, Furey W, Hinck AP. Structure 27 1427-1442.e4 (2019)
  48. The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent. Lagler C, El-Mesery M, Kübler AC, Müller-Richter UDA, Stühmer T, Nickel J, Müller TD, Wajant H, Seher A. PLoS One 12 e0185720 (2017)
  49. Association of distinct type 1 bone morphogenetic protein receptors with different molecular pathways and survival outcomes in neuroblastoma. Alshangiti AM, Wyatt SL, McCarthy E, Collins LM, Hegarty SV, Sullivan AM, O'Keeffe GW. Neuronal Signal 4 NS20200006 (2020)
  50. Structures of activin ligand traps using natural sets of type I and type II TGFβ receptors. Goebel EJ, Kattamuri C, Gipson GR, Krishnan L, Chavez M, Czepnik M, Maguire MC, Grenha R, Håkansson M, Logan DT, Grinberg AV, Sako D, Castonguay R, Kumar R, Thompson TB. iScience 25 103590 (2022)
  51. A blocking monoclonal antibody reveals dimerization of intracellular domains of ALK2 associated with genetic disorders. Katagiri T, Tsukamoto S, Kuratani M, Tsuji S, Nakamura K, Ohte S, Kawaguchi Y, Takaishi K. Nat Commun 14 2960 (2023)
  52. Chemotropic signaling by BMP7 requires selective interaction at a key residue in ActRIIA. Perron JC, Rodrigues AA, Surubholta N, Dodd J. Biol Open 8 (2019)
  53. Competition between type I activin and BMP receptors for binding to ACVR2A regulates signaling to distinct Smad pathways. Szilágyi SS, Amsalem-Zafran AR, Shapira KE, Ehrlich M, Henis YI. BMC Biol 20 50 (2022)
  54. Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10. Guo J, Liu B, Thorikay M, Yu M, Li X, Tong Z, Salmon RM, Read RJ, Ten Dijke P, Morrell NW, Li W. Nat Commun 13 2395 (2022)
  55. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Monsivais D, Nagashima T, Prunskaite-Hyyryläinen R, Nozawa K, Shimada K, Tang S, Hamor C, Agno JE, Chen F, Masand RP, Young SL, Creighton CJ, DeMayo FJ, Ikawa M, Lee SJ, Matzuk MM. Nat Commun 12 3386 (2021)
  56. Expression of BMP2-Hydrophobin fusion protein in the tobacco plant and molecular dynamic evaluation of its simulated model. Rahimifard Hamedani P, Solouki M, Ehsani P, Emamjomeh A, Ofoghi H. Plant Biotechnol Rep 1-8 (2021)
  57. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Life Sci Alliance 6 e202201662 (2023)
  58. Heterodimer-heterotetramer formation mediates enhanced sensor activity in a biophysical model for BMP signaling. Karim MS, Madamanchi A, Dutko JA, Mullins MC, Umulis DM. PLoS Comput Biol 17 e1009422 (2021)
  59. High-Throughput, Biosensor-Based Approach to Examine Bone Morphogenetic Protein (BMP)-Receptor Interactions. Aykul S, Martinez-Hackert E. Methods Mol Biol 1891 37-49 (2019)
  60. Nanoscale Topographical Effects on the Adsorption Behavior of Bone Morphogenetic Protein-2 on Graphite. Marquetti I, Desai S. Int J Mol Sci 23 2432 (2022)
  61. Quinacrine and Niclosamide Promote Neurite Growth in Midbrain Dopaminergic Neurons Through the Canonical BMP-Smad Pathway and Protect Against Neurotoxin and α-Synuclein-Induced Neurodegeneration. Goulding SR, Lévesque M, Sullivan AM, Collins LM, O'Keeffe GW. Mol Neurobiol 58 3405-3416 (2021)
  62. Structural analysis of the interaction between human cytokine BMP-2 and the antagonist Noggin reveals molecular details of cell chondrogenesis inhibition. Robert C, Kerff F, Bouillenne F, Gavage M, Vandevenne M, Filée P, Matagne A. J Biol Chem 299 102892 (2023)