2hbj Citations

Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain.

Proc Natl Acad Sci U S A 103 11898-903 (2006)
Related entries: 2hbk, 2hbl, 2hbm

Cited: 62 times
EuropePMC logo PMID: 16882719

Abstract

The multisubunit eukaryotic exosome is an essential RNA processing and degradation machine. In its nuclear form, the exosome associates with the auxiliary factor Rrp6p, which participates in both RNA processing and degradation reactions. The crystal structure of Saccharomyces cerevisiae Rrp6p displays a conserved RNase D core with a flanking HRDC (helicase and RNase D C-terminal) domain in an unusual conformation shown to be important for the processing function of the enzyme. Complexes with AMP and UMP, the products of the RNA degradation process, reveal how the protein specifically recognizes ribonucleotides and their bases. Finally, in vivo mutational studies show the importance of the domain contacts for the processing function of Rrp6p and highlight fundamental differences between the protein and its prokaryotic RNase D counterparts.

Articles - 2hbj mentioned but not cited (4)

  1. A strategy for dissecting the architectures of native macromolecular assemblies. Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT. Nat Methods 12 1135-1138 (2015)
  2. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Midtgaard SF, Assenholt J, Jonstrup AT, Van LB, Jensen TH, Brodersen DE. Proc Natl Acad Sci U S A 103 11898-11903 (2006)
  3. Activities of human RRP6 and structure of the human RRP6 catalytic domain. Januszyk K, Liu Q, Lima CD. RNA 17 1566-1577 (2011)
  4. Yeast nuclear RNA processing. Bernstein J, Toth EA. World J Biol Chem 3 7-26 (2012)


Reviews citing this publication (19)

  1. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  2. The exosome: a multipurpose RNA-decay machine. Schmid M, Jensen TH. Trends Biochem Sci 33 501-510 (2008)
  3. RNA decay machines: the exosome. Chlebowski A, Lubas M, Jensen TH, Dziembowski A. Biochim Biophys Acta 1829 552-560 (2013)
  4. The eukaryotic RNA exosome. Januszyk K, Lima CD. Curr Opin Struct Biol 24 132-140 (2014)
  5. The exosome and RNA quality control in the nucleus. Vanacova S, Stefl R. EMBO Rep 8 651-657 (2007)
  6. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. FEBS Lett 591 1801-1850 (2017)
  7. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. Tomecki R, Tomecki R, Dziembowski A. RNA 16 1692-1724 (2010)
  8. Ski2-like RNA helicase structures: common themes and complex assemblies. Johnson SJ, Jackson RN. RNA Biol 10 33-43 (2013)
  9. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Crit Rev Biochem Mol Biol 48 192-209 (2013)
  10. Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Arraiano CM, Mauxion F, Viegas SC, Matos RG, Séraphin B. Biochim Biophys Acta 1829 491-513 (2013)
  11. Comparison of the yeast and human nuclear exosome complexes. Sloan KE, Schneider C, Watkins NJ. Biochem Soc Trans 40 850-855 (2012)
  12. Structural organization of the RNA-degrading exosome. Lorentzen E, Basquin J, Conti E. Curr Opin Struct Biol 18 709-713 (2008)
  13. Mechanisms of RNA degradation by the eukaryotic exosome. Tomecki R, Tomecki R, Drazkowska K, Dziembowski A. Chembiochem 11 938-945 (2010)
  14. Emerging themes in non-coding RNA quality control. Reinisch KM, Wolin SL. Curr Opin Struct Biol 17 209-214 (2007)
  15. Information available at cut rates: structure and mechanism of ribonucleases. Worrall JA, Luisi BF. Curr Opin Struct Biol 17 128-137 (2007)
  16. RNA decay: a novel therapeutic target in bacteria. Eidem TM, Roux CM, Dunman PM. Wiley Interdiscip Rev RNA 3 443-454 (2012)
  17. Structural components and architectures of RNA exosomes. Januszyk K, Lima CD. Adv Exp Med Biol 702 9-28 (2010)
  18. Exonucleases and endonucleases involved in polyadenylation-assisted RNA decay. Slomovic S, Schuster G. Wiley Interdiscip Rev RNA 2 106-123 (2011)
  19. RNA Exosomes and Their Cofactors. Kilchert C. Methods Mol Biol 2062 215-235 (2020)

Articles citing this publication (39)

  1. Extensive degradation of RNA precursors by the exosome in wild-type cells. Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, Libri D. Mol Cell 48 409-421 (2012)
  2. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Wasmuth EV, Januszyk K, Lima CD. Nature 511 435-439 (2014)
  3. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Schilders G, van Dijk E, Pruijn GJ. Nucleic Acids Res 35 2564-2572 (2007)
  4. RNA degradation paths in a 12-subunit nuclear exosome complex. Makino DL, Schuch B, Stegmann E, Baumgärtner M, Basquin C, Conti E. Nature 524 54-58 (2015)
  5. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Wasmuth EV, Lima CD. Mol Cell 48 133-144 (2012)
  6. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. EMBO J 33 2829-2846 (2014)
  7. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Callahan KP, Butler JS. Nucleic Acids Res 36 6645-6655 (2008)
  8. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Zinder JC, Wasmuth EV, Lima CD. Mol Cell 64 734-745 (2016)
  9. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Stead JA, Costello JL, Livingstone MJ, Mitchell P. Nucleic Acids Res 35 5556-5567 (2007)
  10. The mitochondrial RNA landscape of Saccharomyces cerevisiae. Turk EM, Das V, Seibert RD, Andrulis ED. PLoS One 8 e78105 (2013)
  11. PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Yang Z, Chen KM, Pandey RR, Homolka D, Reuter M, Janeiro BK, Sachidanandam R, Fauvarque MO, McCarthy AA, Pillai RS. Mol Cell 61 138-152 (2016)
  12. The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme. Jonstrup AT, Andersen KR, Van LB, Brodersen DE. Nucleic Acids Res 35 3153-3164 (2007)
  13. Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. Assenholt J, Mouaikel J, Andersen KR, Brodersen DE, Libri D, Jensen TH. RNA 14 2305-2313 (2008)
  14. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3'-maturation. Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. J Biol Chem 286 4535-4543 (2011)
  15. The Leishmania tarentolae exosome: purification and structural analysis by electron microscopy. Cristodero M, Böttcher B, Diepholz M, Scheffzek K, Clayton C. Mol Biochem Parasitol 159 24-29 (2008)
  16. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Wasmuth EV, Lima CD. Nucleic Acids Res 45 846-860 (2017)
  17. The activity and selectivity of fission yeast Pop2p are affected by a high affinity for Zn2+ and Mn2+ in the active site. Andersen KR, Jonstrup AT, Van LB, Brodersen DE. RNA 15 850-861 (2009)
  18. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. Kim YM, Choi BS. Nucleic Acids Res 38 7764-7777 (2010)
  19. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Morris MR, Astuti D, Maher ER. Am J Med Genet C Semin Med Genet 163C 106-113 (2013)
  20. The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. Feigenbutz M, Garland W, Turner M, Mitchell P. PLoS One 8 e80752 (2013)
  21. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47. Feigenbutz M, Jones R, Besong TM, Harding SE, Mitchell P. J Biol Chem 288 15959-15970 (2013)
  22. Structure and function of the regulatory C-terminal HRDC domain from Deinococcus radiodurans RecQ. Killoran MP, Keck JL. Nucleic Acids Res 36 3139-3149 (2008)
  23. Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Grenier St-Sauveur V, Soucek S, Corbett AH, Bachand F. Mol Cell Biol 33 4718-4731 (2013)
  24. Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. Assenholt J, Mouaikel J, Saguez C, Rougemaille M, Libri D, Jensen TH. RNA 17 1788-1794 (2011)
  25. Large-scale reverse docking profiles and their applications. Lee M, Kim D. BMC Bioinformatics 13 Suppl 17 S6 (2012)
  26. Structure and Activities of the Eukaryotic RNA Exosome. Wasmuth EV, Lima CD. Enzymes 31 53-75 (2012)
  27. A novel plasmid-based microarray screen identifies suppressors of rrp6Delta in Saccharomyces cerevisiae. Abruzzi K, Denome S, Olsen JR, Assenholt J, Haaning LL, Jensen TH, Rosbash M. Mol Cell Biol 27 1044-1055 (2007)
  28. Crystal structure of a 9-subunit archaeal exosome in pre-catalytic states of the phosphorolytic reaction. Lorentzen E, Conti E. Archaea 2012 721869 (2012)
  29. News RNase II structure completes group portrait of 3' exoribonucleases. Grossman D, van Hoof A. Nat Struct Mol Biol 13 760-761 (2006)
  30. Processive RNA decay by the exosome: merits of a quantitative Bayesian sampling approach. Niederberger T, Hartung S, Hopfner KP, Tresch A. RNA Biol 8 55-60 (2011)
  31. RRP6 from Trypanosoma brucei: crystal structure of the catalytic domain, association with EAP3 and activity towards structured and non-structured RNA substrates. Barbosa RL, Legrand P, Wien F, Pineau B, Thompson A, Guimarães BG. PLoS One 9 e89138 (2014)
  32. Substrate selectivity by the exonuclease Rrp6p. Axhemi A, Wasmuth EV, Lima CD, Jankowsky E. Proc Natl Acad Sci U S A 117 982-992 (2020)
  33. Stress-induced nuclear depletion of Entamoeba histolytica 3'-5' exoribonuclease EhRrp6 and its role in growth and erythrophagocytosis. Singh SS, Naiyer S, Bharadwaj R, Kumar A, Singh YP, Ray AK, Subbarao N, Bhattacharya A, Bhattacharya S. J Biol Chem 293 16242-16260 (2018)
  34. Structural analysis of the yeast exosome Rrp6p-Rrp47p complex by small-angle X-ray scattering. Dedic E, Seweryn P, Jonstrup AT, Flygaard RK, Fedosova NU, Hoffmann SV, Boesen T, Brodersen DE. Biochem Biophys Res Commun 450 634-640 (2014)
  35. Characterization of the Catalytic Subunits of the RNA Exosome-like Complex in Plasmodium falciparum. Jiang N, Yu S, Yang N, Feng Y, Sang X, Wang Y, Wahlgren M, Chen Q. J Eukaryot Microbiol 65 843-853 (2018)
  36. Dis3- and exosome subunit-responsive 3' mRNA instability elements. Kiss DL, Hou D, Gross RH, Andrulis ED. Biochem Biophys Res Commun 423 461-466 (2012)
  37. Structural basis for guide RNA trimming by RNase D ribonuclease in Trypanosoma brucei. Gao Y, Liu H, Zhang C, Su S, Chen Y, Chen X, Li Y, Shao Z, Zhang Y, Shao Q, Li J, Huang Z, Ma J, Gan J. Nucleic Acids Res 49 568-583 (2021)
  38. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation. Santos MC, Goldfeder MB, Zanchin NI, Oliveira CC. PLoS One 6 e21686 (2011)
  39. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Cell Mol Life Sci 81 58 (2024)