2huk Citations

An approach to crystallizing proteins by synthetic symmetrization.

Proc Natl Acad Sci U S A 103 16230-5 (2006)
Related entries: 2hul, 2hum

Cited: 48 times
EuropePMC logo PMID: 17050682

Abstract

Previous studies of symmetry preferences in protein crystals suggest that symmetric proteins, such as homodimers, might crystallize more readily on average than asymmetric, monomeric proteins. Proteins that are naturally monomeric can be made homodimeric artificially by forming disulfide bonds between individual cysteine residues introduced by mutagenesis. Furthermore, by creating a variety of single-cysteine mutants, a series of distinct synthetic dimers can be generated for a given protein of interest, with each expected to gain advantage from its added symmetry and to exhibit a crystallization behavior distinct from the other constructs. This strategy was tested on phage T4 lysozyme, a protein whose crystallization as a monomer has been studied exhaustively. Experiments on three single-cysteine mutants, each prepared in dimeric form, yielded numerous novel crystal forms that cannot be realized by monomeric lysozyme. Six new crystal forms have been characterized. The results suggest that synthetic symmetrization may be a useful approach for enlarging the search space for crystallizing proteins.

Articles - 2huk mentioned but not cited (2)

  1. An approach to crystallizing proteins by synthetic symmetrization. Banatao DR, Cascio D, Crowley CS, Fleissner MR, Tienson HL, Yeates TO. Proc Natl Acad Sci U S A 103 16230-16235 (2006)
  2. Homodimeric Protein-Polymer Conjugates via the Tetrazine-trans-Cyclooctene Ligation. Lorenzo MM, Decker CG, Kahveci MU, Paluck SJ, Maynard HD. Macromolecules 49 30-37 (2016)


Reviews citing this publication (8)

  1. Lessons from the lysozyme of phage T4. Baase WA, Liu L, Tronrud DE, Matthews BW. Protein Sci 19 631-641 (2010)
  2. Racemic protein crystallography. Yeates TO, Kent SB. Annu Rev Biophys 41 41-61 (2012)
  3. Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Manjasetty BA, Turnbull AP, Panjikar S, Büssow K, Chance MR. Proteomics 8 612-625 (2008)
  4. A historical perspective on protein crystallization from 1840 to the present day. Giegé R. FEBS J 280 6456-6497 (2013)
  5. Benefits of structural genomics for drug discovery research. Grabowski M, Chruszcz M, Zimmerman MD, Kirillova O, Minor W. Infect Disord Drug Targets 9 459-474 (2009)
  6. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  7. Modeling and Structure Determination of Homo-Oligomeric Proteins: An Overview of Challenges and Current Approaches. Gaber A, Pavšič M. Int J Mol Sci 22 9081 (2021)
  8. Can the propensity of protein crystallization be increased by using systematic screening with metals? Hegde RP, Pavithra GC, Dey D, Almo SC, Ramakumar S, Ramagopal UA. Protein Sci 26 1704-1713 (2017)

Articles citing this publication (38)

  1. Computational design of a protein crystal. Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG. Proc Natl Acad Sci U S A 109 7304-7309 (2012)
  2. Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Price WN, Chen Y, Handelman SK, Neely H, Manor P, Karlin R, Nair R, Liu J, Baran M, Everett J, Tong SN, Forouhar F, Swaminathan SS, Acton T, Xiao R, Luft JR, Lauricella A, DeTitta GT, Rost B, Montelione GT, Hunt JF. Nat Biotechnol 27 51-57 (2009)
  3. An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Laganowsky A, Zhao M, Soriaga AB, Sawaya MR, Cascio D, Yeates TO. Protein Sci 20 1876-1890 (2011)
  4. Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme.substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation. Jönsson TJ, Johnson LC, Lowther WT. J Biol Chem 284 33305-33310 (2009)
  5. Analysis of solvent content and oligomeric states in protein crystals--does symmetry matter? Chruszcz M, Potrzebowski W, Zimmerman MD, Grabowski M, Zheng H, Lasota P, Minor W. Protein Sci 17 623-632 (2008)
  6. 'Crystal lattice engineering,' an approach to engineer protein crystal contacts by creating intermolecular symmetry: crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Yamada H, Tamada T, Kosaka M, Miyata K, Fujiki S, Tano M, Moriya M, Yamanishi M, Honjo E, Tada H, Ino T, Yamaguchi H, Futami J, Seno M, Nomoto T, Hirata T, Yoshimura M, Kuroki R. Protein Sci 16 1389-1397 (2007)
  7. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. Medina-Morales A, Perez A, Brodin JD, Tezcan FA. J Am Chem Soc 135 12013-12022 (2013)
  8. A PDB-wide, evolution-based assessment of protein-protein interfaces. Baskaran K, Duarte JM, Biyani N, Bliven S, Capitani G. BMC Struct Biol 14 22 (2014)
  9. A novel inhibitor-binding site on the HIV-1 capsid N-terminal domain leads to improved crystallization via compound-mediated dimerization. Lemke CT, Titolo S, Goudreau N, Faucher AM, Mason SW, Bonneau P. Acta Crystallogr D Biol Crystallogr 69 1115-1123 (2013)
  10. Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. Partridge JR, Schwartz TU. J Mol Biol 391 375-389 (2009)
  11. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae. Ito K, Sugawara T, Shiroishi M, Tokuda N, Kurokawa A, Misaka T, Makyio H, Yurugi-Kobayashi T, Shimamura T, Nomura N, Murata T, Abe K, Iwata S, Kobayashi T. Biochem Biophys Res Commun 371 841-845 (2008)
  12. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. Muthu M, Richardson KA, Sutherland-Smith AJ. PLoS One 7 e40066 (2012)
  13. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding. Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS, Terwilliger TC, Yeates TO. Structure 23 1754-1768 (2015)
  14. Design of disulfide-linked thioredoxin dimers and multimers through analysis of crystal contacts. Das M, Kobayashi M, Yamada Y, Sreeramulu S, Ramakrishnan C, Wakatsuki S, Kato R, Varadarajan R. J Mol Biol 372 1278-1292 (2007)
  15. It's all in the crystals…. Derewenda ZS. Acta Crystallogr D Biol Crystallogr 67 243-248 (2011)
  16. Structural and functional characterization of human Iba proteins. Schulze JO, Quedenau C, Roske Y, Adam T, Schüler H, Behlke J, Turnbull AP, Sievert V, Scheich C, Mueller U, Heinemann U, Büssow K. FEBS J 275 4627-4640 (2008)
  17. Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121. Quistgaard EM, Martinez Molledo M, Löw C. PLoS One 12 e0173126 (2017)
  18. Temperature artifacts in protein structures bias ligand-binding predictions. Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Chem Sci 12 11275-11293 (2021)
  19. Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non-auxotrophic strain. Salgado PS, Taylor JD, Cota E, Matthews SJ. Acta Crystallogr D Biol Crystallogr 67 8-13 (2011)
  20. Conversion of scFv peptide-binding specificity for crystal chaperone development. Pai JC, Culver JA, Drury JE, Motani RS, Lieberman RL, Maynard JA. Protein Eng Des Sel 24 419-428 (2011)
  21. Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima. Forse GJ, Ram N, Banatao DR, Cascio D, Sawaya MR, Klock HE, Lesley SA, Yeates TO. Protein Sci 20 168-178 (2011)
  22. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms. Fusco D, Barnum TJ, Bruno AE, Luft JR, Snell EH, Mukherjee S, Charbonneau P. PLoS One 9 e101123 (2014)
  23. Molecular basis for dimer formation of TRbeta variant D355R. Jouravel N, Sablin E, Togashi M, Baxter JD, Webb P, Fletterick RJ. Proteins 75 111-117 (2009)
  24. Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. Pujari N, Saundh SL, Acquah FA, Mooers BHM, Ferré-D'Amaré AR, Leung AK. Crystals (Basel) 11 952 (2021)
  25. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure. Nakabayashi M, Kataoka M, Mishima Y, Maeno Y, Ishikawa K. Acta Crystallogr D Biol Crystallogr 70 877-888 (2014)
  26. Metal-mediated self-assembly of a beta-sandwich protein. Crowley PB, Matias PM, Khan AR, Roessle M, Svergun DI. Chemistry 15 12672-12680 (2009)
  27. Mutagenesis of the crystal contact of acidic fibroblast growth factor. Honjo E, Tamada T, Adachi M, Kuroki R, Meher A, Blaber M. J Synchrotron Radiat 15 285-287 (2008)
  28. Redefining Protein Interfaces within Protein Single Crystals with DNA. Partridge BE, Winegar PH, Han Z, Mirkin CA. J Am Chem Soc 143 8925-8934 (2021)
  29. Supramolecular protein cages constructed from a crystalline protein matrix. Negishi H, Abe S, Yamashita K, Hirata K, Niwase K, Boudes M, Coulibaly F, Mori H, Ueno T. Chem Commun (Camb) 54 1988-1991 (2018)
  30. Widening the protein crystallization bottleneck. Doerr A. Nat Methods 3 961 (2006)
  31. An unexpected outcome of surface engineering an integral membrane protein: improved crystallization of cytochrome ba(3) from Thermus thermophilus. Liu B, Luna VM, Chen Y, Stout CD, Fee JA. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 1029-1034 (2007)
  32. Co-crystallization with diabodies: A case study for the introduction of synthetic symmetry. Chesterman C, Arnold E. Structure 29 598-605.e3 (2021)
  33. Protein crystallization in drug design: towards a rational approach. Derewenda ZS. Expert Opin Drug Discov 2 1329-1340 (2007)
  34. Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. Liu D, Shao Y, Piccirilli JA, Weizmann Y. Sci Adv 7 eabf4459 (2021)
  35. Creation of Cross-Linked Crystals With Intermolecular Disulfide Bonds Connecting Symmetry-Related Molecules Allows Retention of Tertiary Structure in Different Solvent Conditions. Hiromoto T, Ikura T, Honjo E, Blaber M, Kuroki R, Tamada T. Front Mol Biosci 9 908394 (2022)
  36. Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Subramanian RH, Zhu J, Bailey JB, Chiong JA, Li Y, Golub E, Tezcan FA. Nat Protoc 16 3264-3297 (2021)
  37. Distinguishing Between Monomeric scFv and Diabody in Solution Using Light and Small Angle X-ray Scattering. Lüdel F, Bufe S, Bleymüller WM, de Jonge H, Iamele L, Niemann HH, Hellweg T. Antibodies (Basel) 8 E48 (2019)
  38. Polymorphic nanobody crystals as long-acting intravitreal therapy for wet age-related macular degeneration. Zhu S, Fan S, Tang T, Huang J, Zhou H, Huang C, Chen Y, Qian F. Bioeng Transl Med 8 e10523 (2023)