2ja8 Citations

CPD damage recognition by transcribing RNA polymerase II.

Science 315 859-62 (2007)
Related entries: 2ja5, 2ja6, 2ja7

Cited: 150 times
EuropePMC logo PMID: 17290000

Abstract

Cells use transcription-coupled repair (TCR) to efficiently eliminate DNA lesions such as ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs). Here we present the structure-based mechanism for the first step in eukaryotic TCR, CPD-induced stalling of RNA polymerase (Pol) II. A CPD in the transcribed strand slowly passes a translocation barrier and enters the polymerase active site. The CPD 5'-thymine then directs uridine misincorporation into messenger RNA, which blocks translocation. Artificial replacement of the uridine by adenosine enables CPD bypass; thus, Pol II stalling requires CPD-directed misincorporation. In the stalled complex, the lesion is inaccessible, and the polymerase conformation is unchanged. This is consistent with nonallosteric recruitment of repair factors and excision of a lesion-containing DNA fragment in the presence of Pol II.

Reviews - 2ja8 mentioned but not cited (1)

Articles - 2ja8 mentioned but not cited (2)

  1. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. PLoS Biol 9 e1000603 (2011)
  2. Image-centric compression of protein structures improves space savings. Staniscia L, Yu YW. BMC Bioinformatics 24 437 (2023)


Reviews citing this publication (43)

  1. Transcription-coupled DNA repair: two decades of progress and surprises. Hanawalt PC, Spivak G. Nat Rev Mol Cell Biol 9 958-970 (2008)
  2. Structure of eukaryotic RNA polymerases. Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Annu Rev Biophys 37 337-352 (2008)
  3. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Wilson MD, Harreman M, Svejstrup JQ. Biochim Biophys Acta 1829 151-157 (2013)
  4. Mammalian transcription-coupled excision repair. Vermeulen W, Fousteri M. Cold Spring Harb Perspect Biol 5 a012625 (2013)
  5. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. Fuss JO, Tainer JA. DNA Repair (Amst) 10 697-713 (2011)
  6. RNA polymerase fidelity and transcriptional proofreading. Sydow JF, Cramer P. Curr Opin Struct Biol 19 732-739 (2009)
  7. The Cellular Response to Transcription-Blocking DNA Damage. Gregersen LH, Svejstrup JQ. Trends Biochem Sci 43 327-341 (2018)
  8. Structural basis of transcription elongation. Martinez-Rucobo FW, Cramer P. Biochim Biophys Acta 1829 9-19 (2013)
  9. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! Scrima A, Fischer ES, Lingaraju GM, Böhm K, Cavadini S, Thomä NH. FEBS Lett 585 2818-2825 (2011)
  10. Mechanistic insights into transcription coupled DNA repair. Pani B, Nudler E. DNA Repair (Amst) 56 42-50 (2017)
  11. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Gaillard H, Aguilera A. Biochim Biophys Acta 1829 141-150 (2013)
  12. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. DNA Repair (Amst) 19 71-83 (2014)
  13. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Brooks PJ. Free Radic Biol Med 107 90-100 (2017)
  14. Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Puumalainen MR, Rüthemann P, Min JH, Naegeli H. Cell Mol Life Sci 73 547-566 (2016)
  15. Chemical investigation of light induced DNA bipyrimidine damage and repair. Heil K, Pearson D, Carell T. Chem Soc Rev 40 4271-4278 (2011)
  16. The RNA Response to DNA Damage. Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. J Mol Biol 428 2636-2651 (2016)
  17. CE at the omics level: towards systems biology--an update. Song EJ, Babar SM, Oh E, Hasan MN, Hong HM, Yoo YS. Electrophoresis 29 129-142 (2008)
  18. Polymerase stalling during replication, transcription and translation. Edenberg ER, Downey M, Toczyski D. Curr Biol 24 R445-52 (2014)
  19. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. Crit Rev Biochem Mol Biol 50 503-519 (2015)
  20. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W, Xu J, Chong J, Wang D. DNA Repair (Amst) 71 43-55 (2018)
  21. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. Li S. DNA Repair (Amst) 36 43-48 (2015)
  22. Transcriptional mutagenesis and its potential roles in the etiology of cancer and bacterial antibiotic resistance. Morreall JF, Petrova L, Doetsch PW. J Cell Physiol 228 2257-2261 (2013)
  23. UVSSA and USP7, a new couple in transcription-coupled DNA repair. Schwertman P, Vermeulen W, Marteijn JA. Chromosoma 122 275-284 (2013)
  24. Versatile protection from mutagenic DNA lesions conferred by bipartite recognition in nucleotide excision repair. Maillard O, Camenisch U, Blagoev KB, Naegeli H. Mutat Res 658 271-286 (2008)
  25. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. Steurer B, Marteijn JA. J Mol Biol 429 3146-3155 (2017)
  26. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Free Radic Biol Med 107 159-169 (2017)
  27. Elongation by RNA polymerase: a race through roadblocks. Vassylyev DG. Curr Opin Struct Biol 19 691-700 (2009)
  28. DNA photodamage recognition by RNA polymerase II. Brueckner F, Cramer P. FEBS Lett 581 2757-2760 (2007)
  29. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome. Frosina G. Free Radic Biol Med 43 165-177 (2007)
  30. Formation and Recognition of UV-Induced DNA Damage within Genome Complexity. Johann To Berens P, Molinier J. Int J Mol Sci 21 E6689 (2020)
  31. Interplay of DNA repair with transcription: from structures to mechanisms. Deaconescu AM, Artsimovitch I, Grigorieff N. Trends Biochem Sci 37 543-552 (2012)
  32. Facilitators and Repressors of Transcription-coupled DNA Repair in Saccharomyces cerevisiae. Li W, Li S. Photochem Photobiol 93 259-267 (2017)
  33. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. Rüthemann P, Balbo Pogliano C, Naegeli H. Front Genet 7 68 (2016)
  34. Mechanism of transcription-coupled DNA modification recognition. Shin JH, Xu L, Wang D. Cell Biosci 7 9 (2017)
  35. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Hantsche M, Cramer P. Angew Chem Int Ed Engl 55 15972-15981 (2016)
  36. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Deaconescu AM, Suhanovsky MM. Photochem Photobiol 93 268-279 (2017)
  37. RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences. Agapov A, Olina A, Kulbachinskiy A. Nucleic Acids Res 50 3018-3041 (2022)
  38. RNA polymerase between lesion bypass and DNA repair. Deaconescu AM. Cell Mol Life Sci 70 4495-4509 (2013)
  39. Transcription Blockage Leads to New Beginnings. Andrade-Lima LC, Veloso A, Ljungman M. Biomolecules 5 1600-1617 (2015)
  40. Stopped in its tracks: the RNA polymerase molecular motor as a robust sensor of DNA damage. Howan K, Monnet J, Fan J, Strick TR. DNA Repair (Amst) 20 49-57 (2014)
  41. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Oh J, Xu J, Chong J, Wang D. Methods 159-160 29-34 (2019)
  42. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Front Cell Neurosci 16 852002 (2022)
  43. Towards molecular systems biology of gene transcription and regulation. Cramer P. Biol Chem 391 731-735 (2010)

Articles citing this publication (104)

  1. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. EMBO J 29 717-726 (2010)
  2. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Miller C, Schwalb B, Maier K, Schulz D, Dümcke S, Zacher B, Mayer A, Sydow J, Marcinowski L, Dölken L, Martin DE, Tresch A, Cramer P. Mol Syst Biol 7 458 (2011)
  3. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Brueckner F, Cramer P. Nat Struct Mol Biol 15 811-818 (2008)
  4. Functional architecture of RNA polymerase I. Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Cell 131 1260-1272 (2007)
  5. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Sydow JF, Brueckner F, Cheung AC, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Mol Cell 34 710-721 (2009)
  6. Molecular basis of RNA polymerase III transcription repression by Maf1. Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P. Cell 143 59-70 (2010)
  7. Structure of transcribing mammalian RNA polymerase II. Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P. Nature 529 551-554 (2016)
  8. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Xu J, Lahiri I, Wang W, Wier A, Cianfrocco MA, Chong J, Hare AA, Dervan PB, DiMaio F, Leschziner AE, Wang D. Nature 551 653-657 (2017)
  9. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA. Mol Cell 51 469-479 (2013)
  10. Molecular basis of RNA-dependent RNA polymerase II activity. Lehmann E, Brueckner F, Cramer P. Nature 450 445-449 (2007)
  11. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. Nat Struct Mol Biol 14 1127-1133 (2007)
  12. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Walmacq C, Cheung AC, Kireeva ML, Lubkowska L, Ye C, Gotte D, Strathern JN, Carell T, Cramer P, Kashlev M. Mol Cell 46 18-29 (2012)
  13. Single-molecule tracking of mRNA exiting from RNA polymerase II. Andrecka J, Lewis R, Brückner F, Lehmann E, Cramer P, Michaelis J. Proc Natl Acad Sci U S A 105 135-140 (2008)
  14. X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Wang D, Zhu G, Huang X, Lippard SJ. Proc Natl Acad Sci U S A 107 9584-9589 (2010)
  15. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. Da LT, Wang D, Huang X. J Am Chem Soc 134 2399-2406 (2012)
  16. A movie of RNA polymerase II transcription. Cheung AC, Cramer P. Cell 149 1431-1437 (2012)
  17. Structural basis of initial RNA polymerase II transcription. Cheung AC, Sainsbury S, Cramer P. EMBO J 30 4755-4763 (2011)
  18. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Schärer OD, Grollman AP. Nucleic Acids Res 40 2494-2505 (2012)
  19. Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Lorenzen K, Vannini A, Cramer P, Heck AJ. Structure 15 1237-1245 (2007)
  20. The molecular mechanism of transcription-coupled DNA repair. Savery NJ. Trends Microbiol 15 326-333 (2007)
  21. Initiation of transcription-coupled repair characterized at single-molecule resolution. Howan K, Smith AJ, Westblade LF, Joly N, Grange W, Zorman S, Darst SA, Savery NJ, Strick TR. Nature 490 431-434 (2012)
  22. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. Marietta C, Brooks PJ. EMBO Rep 8 388-393 (2007)
  23. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD. Nucleic Acids Res 37 804-814 (2009)
  24. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Liu B, Zuo Y, Steitz TA. Proc Natl Acad Sci U S A 113 4051-4056 (2016)
  25. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. Damsma GE, Cramer P. J Biol Chem 284 31658-31663 (2009)
  26. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Andrade-Lima LC, Veloso A, Paulsen MT, Menck CF, Ljungman M. Nucleic Acids Res 43 2744-2756 (2015)
  27. Chromatin restoration following nucleotide excision repair involves the incorporation of ubiquitinated H2A at damaged genomic sites. Zhu Q, Wani G, Arab HH, El-Mahdy MA, Ray A, Wani AA. DNA Repair (Amst) 8 262-273 (2009)
  28. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Li W, Giles C, Li S. Nucleic Acids Res 42 7069-7083 (2014)
  29. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. J Mol Biol 381 540-549 (2008)
  30. Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Le TT, Yang Y, Tan C, Suhanovsky MM, Fulbright RM, Inman JT, Li M, Lee J, Perelman S, Roberts JW, Deaconescu AM, Wang MD. Cell 172 344-357.e15 (2018)
  31. Stalled transcription complexes promote DNA repair at a distance. Haines NM, Kim YI, Smith AJ, Savery NJ. Proc Natl Acad Sci U S A 111 4037-4042 (2014)
  32. The 3' processing factor CstF functions in the DNA repair response. Mirkin N, Fonseca D, Mohammed S, Cevher MA, Manley JL, Kleiman FE. Nucleic Acids Res 36 1792-1804 (2008)
  33. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. Dengl S, Cramer P. J Biol Chem 284 21270-21279 (2009)
  34. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. J Biol Chem 287 6562-6572 (2012)
  35. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Walmacq C, Wang L, Chong J, Scibelli K, Lubkowska L, Gnatt A, Brooks PJ, Wang D, Kashlev M. Proc Natl Acad Sci U S A 112 E410-9 (2015)
  36. Von Hippel-Lindau-coupled and transcription-coupled nucleotide excision repair-dependent degradation of RNA polymerase II in response to trabectedin. Aune GJ, Takagi K, Sordet O, Guirouilh-Barbat J, Antony S, Bohr VA, Pommier Y. Clin Cancer Res 14 6449-6455 (2008)
  37. Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Paul D, Mu H, Zhao H, Ouerfelli O, Jeffrey PD, Broyde S, Min JH. Nucleic Acids Res 47 6015-6028 (2019)
  38. Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Wang J, Cao H, You C, Yuan B, Bahde R, Gupta S, Nishigori C, Niedernhofer LJ, Brooks PJ, Wang Y. Nucleic Acids Res 40 7368-7374 (2012)
  39. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Wang W, Walmacq C, Chong J, Kashlev M, Wang D. Proc Natl Acad Sci U S A 115 E2538-E2545 (2018)
  40. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA, Ferdinand JR, Gaul L, Tadross JA, Arends MJ, O'Rahilly S, Crossan GP, Clatworthy MR, Patel KJ. Nature 600 158-163 (2021)
  41. Dissociation of CAK from core TFIIH reveals a functional link between XP-G/CS and the TFIIH disassembly state. Arab HH, Wani G, Ray A, Shah ZI, Zhu Q, Wani AA. PLoS One 5 e11007 (2010)
  42. Depletion of poly(ADP-ribose) polymerase-1 reduces host cell reactivation of a UV-damaged adenovirus-encoded reporter gene in human dermal fibroblasts. Ghodgaonkar MM, Zacal N, Kassam S, Rainbow AJ, Shah GM. DNA Repair (Amst) 7 617-632 (2008)
  43. Novel diazirine-containing DNA photoaffinity probes for the investigation of DNA-protein-interactions. Winnacker M, Breeger S, Strasser R, Carell T. Chembiochem 10 109-118 (2009)
  44. Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A, Burns JA, Broyde S, Scicchitano DA. Nucleic Acids Res 36 6459-6471 (2008)
  45. Structural basis for transcription complex disruption by the Mfd translocase. Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Elife 10 e62117 (2021)
  46. Structural basis of human transcription-DNA repair coupling. Kokic G, Wagner FR, Chernev A, Urlaub H, Cramer P. Nature 598 368-372 (2021)
  47. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Latypov VF, Tubbs JL, Watson AJ, Marriott AS, McGown G, Thorncroft M, Wilkinson OJ, Senthong P, Butt A, Arvai AS, Millington CL, Povey AC, Williams DM, Santibanez-Koref MF, Tainer JA, Margison GP. Mol Cell 47 50-60 (2012)
  48. Structure-function studies of the RNA polymerase II elongation complex. Brueckner F, Armache KJ, Cheung A, Damsma GE, Kettenberger H, Lehmann E, Sydow J, Cramer P. Acta Crystallogr D Biol Crystallogr 65 112-120 (2009)
  49. The atypical CDK activator Spy1 regulates the intrinsic DNA damage response and is dependent upon p53 to inhibit apoptosis. McAndrew CW, Gastwirt RF, Donoghue DJ. Cell Cycle 8 66-75 (2009)
  50. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Xu L, Wang W, Wu J, Shin JH, Wang P, Unarta IC, Chong J, Wang Y, Wang D. Proc Natl Acad Sci U S A 114 E7082-E7091 (2017)
  51. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription. Nadkarni A, Burns JA, Gandolfi A, Chowdhury MA, Cartularo L, Berens C, Geacintov NE, Scicchitano DA. J Biol Chem 291 848-861 (2016)
  52. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Xu L, Wang W, Gotte D, Yang F, Hare AA, Welch TR, Li BC, Shin JH, Chong J, Strathern JN, Dervan PB, Wang D. Proc Natl Acad Sci U S A 113 12426-12431 (2016)
  53. Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. Sanz-Murillo M, Xu J, Belogurov GA, Calvo O, Gil-Carton D, Moreno-Morcillo M, Wang D, Fernández-Tornero C. Proc Natl Acad Sci U S A 115 8972-8977 (2018)
  54. A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. van den Heuvel D, Spruijt CG, González-Prieto R, Kragten A, Paulsen MT, Zhou D, Wu H, Apelt K, van der Weegen Y, Yang K, Dijk M, Daxinger L, Marteijn JA, Vertegaal ACO, Ljungman M, Vermeulen M, Luijsterburg MS. Nat Commun 12 1342 (2021)
  55. ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. van der Weegen Y, de Lint K, van den Heuvel D, Nakazawa Y, Mevissen TET, van Schie JJM, San Martin Alonso M, Boer DEC, González-Prieto R, Narayanan IV, Klaassen NHM, Wondergem AP, Roohollahi K, Dorsman JC, Hara Y, Vertegaal ACO, de Lange J, Walter JC, Noordermeer SM, Ljungman M, Ogi T, Wolthuis RMF, Luijsterburg MS. Nat Cell Biol 23 595-607 (2021)
  56. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Wienholz F, Zhou D, Turkyilmaz Y, Schwertman P, Tresini M, Pines A, van Toorn M, Bezstarosti K, Demmers JAA, Marteijn JA. Nucleic Acids Res 47 4011-4025 (2019)
  57. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Li W, Selvam K, Ko T, Li S. Nucleic Acids Res 42 13242-13253 (2014)
  58. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Nucleic Acids Res 44 1298-1308 (2016)
  59. Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data. Meyer PA, Ye P, Suh MH, Zhang M, Fu J. J Biol Chem 284 12933-12939 (2009)
  60. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. DNA Repair (Amst) 7 1276-1288 (2008)
  61. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A, Goodenough AK, Guengerich FP, Broyde S, Scicchitano DA. J Mol Biol 375 353-366 (2008)
  62. A molecular basis for damage recognition in eukaryotic nucleotide excision repair. Schärer OD. Chembiochem 9 21-23 (2008)
  63. Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver. Yang Y, Liu Z, Selby CP, Sancar A. J Biol Chem 294 11960-11968 (2019)
  64. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. Lahiri I, Xu J, Han BG, Oh J, Wang D, DiMaio F, Leschziner AE. J Struct Biol 207 270-278 (2019)
  65. Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin. Liu X, Farnung L, Wigge C, Cramer P. J Biol Chem 293 7189-7194 (2018)
  66. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Steurer B, Janssens RC, Geijer ME, Aprile-Garcia F, Geverts B, Theil AF, Hummel B, van Royen ME, Evers B, Bernards R, Houtsmuller AB, Sawarkar R, Marteijn J. Nat Commun 13 3624 (2022)
  67. Nucleotide excision repair in Trypanosoma brucei: specialization of transcription-coupled repair due to multigenic transcription. Machado CR, Vieira-da-Rocha JP, Mendes IC, Rajão MA, Marcello L, Bitar M, Drummond MG, Grynberg P, Oliveira DA, Marques C, Van Houten B, McCulloch R. Mol Microbiol 92 756-776 (2014)
  68. Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Takahashi TS, Sato Y, Yamagata A, Goto-Ito S, Saijo M, Fukai S. Nucleic Acids Res 47 3784-3794 (2019)
  69. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae. Koch MR, House NCM, Cosetta CM, Jong RM, Salomon CG, Joyce CE, Philips EA, Su XA, Freudenreich CH. Genetics 208 963-976 (2018)
  70. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. Biochemistry 56 3008-3018 (2017)
  71. Analysis of RNA polymerase II ubiquitylation and proteasomal degradation. Tufegdzic Vidakovic A, Harreman M, Dirac-Svejstrup AB, Boeing S, Roy A, Encheva V, Neumann M, Wilson M, Snijders AP, Svejstrup JQ. Methods 159-160 146-156 (2019)
  72. RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications. Shin JH, Xu L, Wang D. Transcription 7 57-62 (2016)
  73. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage. Tresini M, Marteijn JA, Vermeulen W. RNA Biol 13 272-278 (2016)
  74. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair. Zhu Q, Wani G, Sharma N, Wani A. DNA Repair (Amst) 11 942-950 (2012)
  75. Mechanism of RNA polymerase II stalling by DNA alkylation. Malvezzi S, Farnung L, Aloisi CMN, Angelov T, Cramer P, Sturla SJ. Proc Natl Acad Sci U S A 114 12172-12177 (2017)
  76. Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†). Rumora AE, Kolodziejczak KM, Malhowski Wagner A, Núñez ME. Biochemistry 47 13026-13035 (2008)
  77. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. Nat Commun 12 3835 (2021)
  78. Genome-wide surveillance of transcription errors in response to genotoxic stress. Fritsch C, Gout JF, Haroon S, Towheed A, Chung C, LaGosh J, McGann E, Zhang X, Song Y, Simpson S, Danthi PS, Benayoun BA, Wallace D, Thomas K, Lynch M, Vermulst M. Proc Natl Acad Sci U S A 118 e2004077118 (2021)
  79. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair. An J, Yang T, Huang Y, Liu F, Sun J, Wang Y, Xu Q, Wu D, Zhou P. BMC Biochem 12 2 (2011)
  80. Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase. Ganesan AK, Smith AJ, Savery NJ, Zamos P, Hanawalt PC. DNA Repair (Amst) 6 1434-1440 (2007)
  81. Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Oh J, Shin J, Unarta IC, Wang W, Feldman AW, Karadeema RJ, Xu L, Xu J, Chong J, Krishnamurthy R, Huang X, Romesberg FE, Wang D. Nat Chem Biol 17 906-914 (2021)
  82. Gre-family factors modulate DNA damage sensing by Deinococcus radiodurans RNA polymerase. Agapov A, Esyunina D, Kulbachinskiy A. RNA Biol 16 1711-1720 (2019)
  83. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Yan C, Dodd T, Yu J, Leung B, Xu J, Oh J, Wang D, Ivanov I. Nat Commun 12 7001 (2021)
  84. Rad26, the transcription-coupled repair factor in yeast, is required for removal of stalled RNA polymerase-II following UV irradiation. Ghosh-Roy S, Das D, Chowdhury D, Smerdon MJ, Chaudhuri RN. PLoS One 8 e72090 (2013)
  85. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Sonohara Y, Iwai S, Kuraoka I. Genes Environ 37 8 (2015)
  86. The relationship between UV-irradiance, photoprotective compounds and DNA damage in two intertidal invertebrates with contrasting mobility characteristics. Cubillos VM, Burritt DJ, Lamare MD, Peake BM. J Photochem Photobiol B 149 280-288 (2015)
  87. Base pair opening in a deoxynucleotide duplex containing a cis-syn thymine cyclobutane dimer lesion. Wenke BB, Huiting LN, Frankel EB, Lane BF, Núñez ME. Biochemistry 52 9275-9285 (2013)
  88. Human HMGN1 and HMGN2 are not required for transcription-coupled DNA repair. Apelt K, Zoutendijk I, Gout DY, Wondergem AP, van den Heuvel D, Luijsterburg MS. Sci Rep 10 4332 (2020)
  89. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Tiwari V, Kulikowicz T, Wilson DM, Bohr VA. Nucleic Acids Res 49 6331-6346 (2021)
  90. Shedding UV light on alternative splicing. Marengo MS, Garcia-Blanco MA. Cell 137 600-602 (2009)
  91. Spironolactone-induced XPB degradation requires TFIIH integrity and ubiquitin-selective segregase VCP/p97. Chauhan AK, Li P, Sun Y, Wani G, Zhu Q, Wani AA. Cell Cycle 20 81-95 (2021)
  92. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. Ding B, Ruggiero C, Chen X, Li S. DNA Repair (Amst) 6 1661-1669 (2007)
  93. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Oh J, Jia T, Xu J, Chong J, Dervan PB, Wang D. Proc Natl Acad Sci U S A 119 e2114065119 (2022)
  94. Understanding the Molecular Basis of RNA Polymerase II Transcription. Zhang S, Wang D. Isr J Chem 53 (2013)
  95. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Yu J, Yan C, Dodd T, Tsai CL, Tainer JA, Tsutakawa SE, Ivanov I. Nat Commun 14 2758 (2023)
  96. Importance of Angomonas deanei KAP4 for kDNA arrangement, cell division and maintenance of the host-bacterium relationship. Gonçalves CS, Catta-Preta CMC, Repolês B, Mottram JC, De Souza W, Machado CR, Motta MCM. Sci Rep 11 9210 (2021)
  97. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase. Agapov A, Ignatov A, Turtola M, Belogurov G, Esyunina D, Kulbachinskiy A. J Biol Chem 295 9583-9595 (2020)
  98. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. Cramer P. J Mol Biol 429 2603-2610 (2017)
  99. The Paf1 complex is required for RNA polymerase II removal in response to DNA damage. Chen F, Liu B, Zhou H, Long J. Proc Natl Acad Sci U S A 119 e2207332119 (2022)
  100. Accumulation of 8-oxodG within the human mitochondrial genome positively associates with transcription. Scala G, Ambrosio S, Menna M, Gorini F, Caiazza C, Cooke MS, Majello B, Amente S. NAR Genom Bioinform 5 lqad100 (2023)
  101. Effect of base sequence context on the conformational heterogeneity of aristolactam-I adducted DNA: structural and energetic insights into sequence-dependent repair and mutagenicity. Kathuria P, Sharma P, Wetmore SD. Toxicol Res (Camb) 5 197-209 (2016)
  102. Requirement of transcription-coupled nucleotide excision repair for the removal of a specific type of oxidatively induced DNA damage. Sarmini L, Meabed M, Emmanouil E, Atsaves G, Robeska E, Karwowski BT, Campalans A, Gimisis T, Khobta A. Nucleic Acids Res 51 4982-4994 (2023)
  103. Rescue of DNA damage-stalled RNA Pol II: histone H2B in action. Mao P, Smerdon MJ. RNA Dis 1 e422. (2014)
  104. The radical cationic repair pathway of cyclobutane pyrimidine dimer: the effect of sugar-phosphate backbone. Ebrahimi A, Habibi-Khorassani M, Shahraki A. Photochem Photobiol 89 74-82 (2013)