2jdk Citations

X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives.

ChemMedChem 2 1328-38 (2007)
Related entries: 1gzt, 2jdh

Cited: 31 times
EuropePMC logo PMID: 17623286

Abstract

Pseudomonas aeruginosa is an opportunistic bacterium showing increasing resistance to antibiotics and consequently represents elevated threatening problems in hospital environments, particularly for cystic fibrosis patients. The use of glycomimetics as an anti-adhesive strategy against microorganisms may complement the use of antibiotics. PA-IIL lectin (LecB) from P. aeruginosa constitutes an appealing target for antibacterial agents, as it has been proposed to play a key role in binding to airway epithelia and/or to be involved in biofilm formation. The lectin has an unusually high affinity for L-fucose and related oligosaccharides. In the work presented herein, the disaccharide alphaFuc1-4GlcNAc is used as a scaffold toward the synthesis of a series of glycomimetic derivatives. Microcalorimetry and structural studies indicate that several of the derivatives are potent inhibitors of the lectin, with affinity in the same range as the best known natural ligand, Lewis a, and could represent interesting leads for the development of future antibacterial compounds.

Articles - 2jdk mentioned but not cited (1)

  1. Properties of Cavities in Biological Structures-A Survey of the Protein Data Bank. Chwastyk M, Panek EA, Malinowski J, Jaskólski M, Cieplak M. Front Mol Biosci 7 591381 (2020)


Reviews citing this publication (7)

  1. From carbohydrate leads to glycomimetic drugs. Ernst B, Magnani JL. Nat Rev Drug Discov 8 661-677 (2009)
  2. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Chemistry 21 10616-10628 (2015)
  3. Strategies for the Development of Glycomimetic Drug Candidates. Hevey R. Pharmaceuticals (Basel) 12 E55 (2019)
  4. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Expert Rev Respir Med 7 553-576 (2013)
  5. Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions With Glycan-Binding Proteins. Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D. Front Microbiol 10 2909 (2019)
  6. Glycomimetics for the inhibition and modulation of lectins. Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Chem Soc Rev 52 3663-3740 (2023)
  7. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. Wojtczak K, Byrne JP. ChemMedChem 17 e202200081 (2022)

Articles citing this publication (23)

  1. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K. Infect Immun 77 2065-2075 (2009)
  2. Microbial recognition of human cell surface glycoconjugates. Imberty A, Varrot A. Curr Opin Struct Biol 18 567-576 (2008)
  3. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Johansson EM, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels KM, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger KE, Darbre T, Reymond JL. Chem Biol 15 1249-1257 (2008)
  4. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Imberty A, Chabre YM, Roy R. Chemistry 14 7490-7499 (2008)
  5. Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Cecioni S, Lalor R, Blanchard B, Praly JP, Imberty A, Matthews SE, Vidal S. Chemistry 15 13232-13240 (2009)
  6. A simple strategy for the creation of a recombinant lectin microarray. Hsu KL, Gildersleeve JC, Mahal LK. Mol Biosyst 4 654-662 (2008)
  7. Structural basis for norovirus inhibition and fucose mimicry by citrate. Hansman GS, Shahzad-Ul-Hussan S, McLellan JS, Chuang GY, Georgiev I, Shimoike T, Katayama K, Bewley CA, Kwong PD. J Virol 86 284-292 (2012)
  8. Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa. Rodrigue J, Ganne G, Blanchard B, Saucier C, Giguère D, Shiao TC, Varrot A, Imberty A, Roy R. Org Biomol Chem 11 6906-6918 (2013)
  9. Glycopeptide dendrimers with high affinity for the fucose-binding lectin LecB from Pseudomonas aeruginosa. Kolomiets E, Swiderska MA, Kadam RU, Johansson EM, Jaeger KE, Darbre T, Reymond JL. ChemMedChem 4 562-569 (2009)
  10. Synthesis of stable and selective inhibitors of human galectins-1 and -3. Giguère D, Bonin MA, Cloutier P, Patnam R, St-Pierre C, Sato S, Roy R. Bioorg Med Chem 16 7811-7823 (2008)
  11. Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Marotte K, Préville C, Sabin C, Moumé-Pymbock M, Imberty A, Roy R. Org Biomol Chem 5 2953-2961 (2007)
  12. CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Soomro ZH, Cecioni S, Blanchard H, Praly JP, Imberty A, Vidal S, Matthews SE. Org Biomol Chem 9 6587-6597 (2011)
  13. The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing. Thuenauer R, Landi A, Trefzer A, Altmann S, Wehrum S, Eierhoff T, Diedrich B, Dengjel J, Nyström A, Imberty A, Römer W. mBio 11 e03260-19 (2020)
  14. Crystal structure of the GerBC component of a Bacillus subtilis spore germinant receptor. Li Y, Setlow B, Setlow P, Hao B. J Mol Biol 402 8-16 (2010)
  15. Unraveling the structural and chemical features of biological short hydrogen bonds. Zhou S, Wang L. Chem Sci 10 7734-7745 (2019)
  16. Cinnamide Derivatives of d-Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa. Sommer R, Hauck D, Varrot A, Wagner S, Audfray A, Prestel A, Möller HM, Imberty A, Titz A. ChemistryOpen 4 756-767 (2015)
  17. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears. Kautto L, Nguyen-Khuong T, Everest-Dass A, Leong A, Zhao Z, Willcox MDP, Packer NH, Peterson R. Exp Eye Res 145 278-288 (2016)
  18. Quantitative analysis (K(d) and IC(50)) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA Direct Immobilization (DDI). Goudot A, Pourceau G, Meyer A, Gehin T, Vidal S, Vasseur JJ, Morvan F, Souteyrand E, Chevolot Y. Biosens Bioelectron 40 153-160 (2013)
  19. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials. Grishin AV, Krivozubov MS, Karyagina AS, Gintsburg AL. Acta Naturae 7 29-41 (2015)
  20. A convergent strategy for the synthesis of type-1 elongated mucin cores 1-3 and the corresponding glycopeptides. Pett C, Westerlind U. Chemistry 20 7287-7299 (2014)
  21. The iodosulfonamidation of peracetylated glycals revisited: access to 1,2-di-nitrogenated sugars. Gautier FM, Djedaïni-Pilard F, Grandjean C. Carbohydr Res 346 577-587 (2011)
  22. Chemical features and machine learning assisted predictions of protein-ligand short hydrogen bonds. Zhou S, Liu Y, Wang S, Wang L. Sci Rep 13 13741 (2023)
  23. LC-MS/MS determination of pyocyanin-N-acetyl cysteine adduct: application for understanding Pseudomonas aeruginosa virulence factor neutralization. Farouk F, Shebl RI. Anal Sci 40 891-905 (2024)


Related citations provided by authors (1)

  1. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients.. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A Nat Struct Biol 9 918-21 (2002)