2npd Citations

An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance.

J Biol Chem 281 39492-8 (2006)
Related entries: 2nmr, 2nop, 2now, 2npc, 2npe, 2npg, 2npj, 2npk

Cited: 52 times
EuropePMC logo PMID: 17040913

Abstract

Amt proteins constitute a class of ubiquitous integral membrane proteins that mediate movement of ammonium across cell membranes. They are homotrimers, in which each subunit contains a narrow pore through which substrate transport occurs. Two conserved histidine residues in the pore have been proposed to be necessary for ammonia conductance. By analyzing 14 engineered polar and non-polar variants of these histidines, in Escherichia coli AmtB, we show that both histidines are absolutely required for optimum substrate conductance. Crystal structures of variants confirm that substitution of the histidine residues does not affect AmtB structure. In a subgroup of Amt proteins, found only in fungi, one of the histidines is replaced by glutamate. The equivalent substitution in E. coli AmtB is partially active, and the structure of this variant suggests that the glutamate side chain can make similar interactions to those made by histidine.

Articles - 2npd mentioned but not cited (2)

  1. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. Brito TL, Campos AB, Bastiaan von Meijenfeldt FA, Daniel JP, Ribeiro GB, Silva GGZ, Wilke DV, de Moraes DT, Dutilh BE, Meirelles PM, Trindade-Silva AE. PLoS One 13 e0200437 (2018)
  2. Molecular modeling of 2-nitropropane dioxygenase domain of Mycobacterium tuberculosis H37Rv and docking of herbal ligands. Ramesh KV, Akhila BN, Deshmukh S. Indian J Biochem Biophys 48 164-169 (2011)


Reviews citing this publication (10)

  1. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. van Heeswijk WC, Westerhoff HV, Boogerd FC. Microbiol Mol Biol Rev 77 628-695 (2013)
  2. Molecular mechanisms of ammonium transport and accumulation in plants. Ludewig U, Neuhäuser B, Dynowski M. FEBS Lett 581 2301-2308 (2007)
  3. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q Rev Biophys 43 65-158 (2010)
  4. Modeling and simulation of ion channels. Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Chem Rev 112 6250-6284 (2012)
  5. The Amt/Mep/Rh family of ammonium transport proteins. Andrade SL, Einsle O. Mol Membr Biol 24 357-365 (2007)
  6. Structural and mechanistic aspects of Amt/Rh proteins. Javelle A, Lupo D, Li XD, Merrick M, Chami M, Ripoche P, Winkler FK. J Struct Biol 158 472-481 (2007)
  7. The Rh protein family: gene evolution, membrane biology, and disease association. Huang CH, Ye M. Cell Mol Life Sci 67 1203-1218 (2010)
  8. Switching substrate specificity of AMT/MEP/ Rh proteins. Neuhäuser B, Dynowski M, Ludewig U. Channels (Austin) 8 496-502 (2014)
  9. Nutrient and Stress Sensing in Pathogenic Yeasts. Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Front Microbiol 10 442 (2019)
  10. Biological ammonium transporters from the Amt/Mep/Rh superfamily: mechanism, energetics, and technical limitations. Williamson G, Bizior A, Harris T, Pritchard L, Hoskisson PA, Javelle A. Biosci Rep 44 BSR20211209 (2024)

Articles citing this publication (40)

  1. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. Biochim Biophys Acta 1804 996-1010 (2010)
  2. The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Conroy MJ, Durand A, Lupo D, Li XD, Bullough PA, Winkler FK, Merrick M. Proc Natl Acad Sci U S A 104 1213-1218 (2007)
  3. Function of human Rh based on structure of RhCG at 2.1 A. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM. Proc Natl Acad Sci U S A 107 9638-9643 (2010)
  4. The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler FK. Proc Natl Acad Sci U S A 104 19303-19308 (2007)
  5. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N. Fungal Genet Biol 48 1044-1055 (2011)
  6. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler FK. Proc Natl Acad Sci U S A 105 5040-5045 (2008)
  7. Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. Radchenko MV, Thornton J, Merrick M. J Biol Chem 285 31037-31045 (2010)
  8. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. Boeckstaens M, André B, Marini AM. J Biol Chem 283 21362-21370 (2008)
  9. Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. McDonald TR, Dietrich FS, Lutzoni F. Mol Biol Evol 29 51-60 (2012)
  10. The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Fong RN, Kim KS, Yoshihara C, Inwood WB, Kustu S. Proc Natl Acad Sci U S A 104 18706-18711 (2007)
  11. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. Mol Biol Cell 19 3028-3039 (2008)
  12. Mechanism of formate-nitrite transporters by dielectric shift of substrate acidity. Wiechert M, Beitz E. EMBO J 36 949-958 (2017)
  13. Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Rutherford JC, Lin X, Nielsen K, Heitman J. Eukaryot Cell 7 237-246 (2008)
  14. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Monier A, Chambouvet A, Milner DS, Attah V, Terrado R, Lovejoy C, Moreau H, Santoro AE, Derelle É, Richards TA. Proc Natl Acad Sci U S A 114 E7489-E7498 (2017)
  15. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins. Wacker T, Garcia-Celma JJ, Lewe P, Andrade SL. Proc Natl Acad Sci U S A 111 9995-10000 (2014)
  16. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, Rutherford JC. Nat Commun 7 11337 (2016)
  17. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH. Søgaard R, Alsterfjord M, Macaulay N, Zeuthen T. Pflugers Arch 458 733-743 (2009)
  18. High affinity ammonium transporters: molecular mechanism of action. Pantoja O. Front Plant Sci 3 34 (2012)
  19. Role of nitrogen-metabolism genes expressed during pathogenicity of the alkalinizing Colletotrichum gloeosporioides and their differential expression in acidifying pathogens. Miyara I, Shnaiderman C, Meng X, Vargas WA, Diaz-Minguez JM, Sherman A, Thon M, Prusky D. Mol Plant Microbe Interact 25 1251-1263 (2012)
  20. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. McDonald TR, Mueller O, Dietrich FS, Lutzoni F. BMC Genomics 14 225 (2013)
  21. The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced. Hall JA, Kustu S. Proc Natl Acad Sci U S A 108 13270-13274 (2011)
  22. Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Zidi-Yahiaoui N, Callebaut I, Genetet S, Le Van Kim C, Cartron JP, Colin Y, Ripoche P, Mouro-Chanteloup I. Am J Physiol Cell Physiol 297 C537-47 (2009)
  23. The molecular basis of K+ exclusion by the Escherichia coli ammonium channel AmtB. Hall JA, Yan D. J Biol Chem 288 14080-14086 (2013)
  24. Uncoupling of ionic currents from substrate transport in the plant ammonium transporter AtAMT1;2. Neuhäuser B, Ludewig U. J Biol Chem 289 11650-11655 (2014)
  25. A two-lane mechanism for selective biological ammonium transport. Williamson G, Tamburrino G, Bizior A, Boeckstaens M, Dias Mirandela G, Bage MG, Pisliakov A, Ives CM, Terras E, Hoskisson PA, Marini AM, Zachariae U, Javelle A. Elife 9 e57183 (2020)
  26. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction. Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, Merrick M. PLoS One 8 e62745 (2013)
  27. Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I, Merrick M, Matassi G. J Bacteriol 189 9090-9100 (2007)
  28. Ammonia-induced formation of an AmtB-GlnK complex is not sufficient for nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. Tremblay PL, Hallenbeck PC. J Bacteriol 190 1588-1594 (2008)
  29. Genetic evidence for an essential oscillation of transmembrane-spanning segment 5 in the Escherichia coli ammonium channel AmtB. Inwood WB, Hall JA, Kim KS, Fong R, Kustu S. Genetics 183 1341-1355 (2009)
  30. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Dabas N, Schneider S, Morschhäuser J. Eukaryot Cell 8 147-160 (2009)
  31. A twin histidine motif is the core structure for high-affinity substrate selection in plant ammonium transporters. Ganz P, Ijato T, Porras-Murrilo R, Stührwohldt N, Ludewig U, Neuhäuser B. J Biol Chem 295 3362-3370 (2020)
  32. Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor. Brito AS, Neuhäuser B, Wintjens R, Marini AM, Boeckstaens M. PLoS Genet 16 e1008634 (2020)
  33. Ammonium transceptors: Novel regulators of fungal development. van den Berg B, Lister S, Rutherford JC. PLoS Pathog 15 e1008059 (2019)
  34. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK. J Comp Physiol B 188 765-777 (2018)
  35. Functional Characterization of the Arabidopsis Ammonium Transporter AtAMT1;3 With the Emphasis on Structural Determinants of Substrate Binding and Permeation Properties. Hao DL, Yang SY, Liu SX, Zhou JY, Huang YN, Véry AA, Sentenac H, Su YH. Front Plant Sci 11 571 (2020)
  36. Properties of Cavities in Biological Structures-A Survey of the Protein Data Bank. Chwastyk M, Panek EA, Malinowski J, Jaskólski M, Cieplak M. Front Mol Biosci 7 591381 (2020)
  37. Coexistence of Ammonium Transporter and Channel Mechanisms in Amt-Mep-Rh Twin-His Variants Impairs the Filamentation Signaling Capacity of Fungal Mep2 Transceptors. Williamson G, Brito AS, Bizior A, Tamburrino G, Dias Mirandela G, Harris T, Hoskisson PA, Zachariae U, Marini AM, Boeckstaens M, Javelle A. mBio 13 e0291321 (2022)
  38. Is the E. coli Homolog of the Formate/Nitrite Transporter Family an Anion Channel? A Computational Study. Mukherjee M, Gupta A, Sankararamakrishnan R. Biophys J 118 846-860 (2020)
  39. Prokaryotic ammonium transporters: what has three decades of research revealed? Bizior A, Williamson G, Harris T, Hoskisson PA, Javelle A. Microbiology (Reading) 169 (2023)
  40. The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. Chutrakul C, Panchanawaporn S, Vorapreeda T, Jeennor S, Anantayanon J, Laoteng K. Int J Mol Sci 23 7567 (2022)