2p6p Citations

Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin.

J Mol Biol 372 67-76 (2007)
Cited: 53 times
EuropePMC logo PMID: 17640665

Abstract

The glycosyltransferase UrdGT2 from Streptomyces fradiae catalyzes the formation of a glycosidic C-C bond between a polyketide aglycone and D-olivose. The enyzme was expressed in Escherichia coli, purified and crystallized. Its structure was established by X-ray diffraction at 1.9 A resolution. It is the first structure of a C-glycosyltransferase. UrdGT2 belongs to the structural family GT-B of the glycosyltransferases and is likely to form a C(2)-symmetric dimer in solution. The binding structures of donor and acceptor substrates in five structurally homologous enzymes provided a clear and consistent guide for the substrate-binding structure in UrdGT2. The modeled substrate locations suggest the deeply buried Asp137 as the activator for C-C bond formation and explain the reaction. The putative model can be used to design mutations that change the substrate specificity. Such mutants are of great interest in overcoming the increasing danger of antibiotic resistance.

Reviews - 2p6p mentioned but not cited (4)

  1. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Kaur D, Guerin ME, Skovierová H, Brennan PJ, Jackson M. Adv Appl Microbiol 69 23-78 (2009)
  2. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Chang A, Singh S, Phillips GN, Thorson JS. Curr. Opin. Biotechnol. 22 800-808 (2011)
  3. Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases. Fujiwara R, Yokoi T, Nakajima M. Front Pharmacol 7 388 (2016)
  4. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Dong D, Ako R, Hu M, Wu B. Xenobiotica 42 808-820 (2012)

Articles - 2p6p mentioned but not cited (7)

  1. Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. Zhang C, Bitto E, Goff RD, Singh S, Bingman CA, Griffith BR, Albermann C, Phillips GN, Thorson JS. Chem. Biol. 15 842-853 (2008)
  2. Structure of the glycosyltransferase EryCIII in complex with its activating P450 homologue EryCII. Moncrieffe MC, Fernandez MJ, Spiteller D, Matsumura H, Gay NJ, Luisi BF, Leadlay PF. J. Mol. Biol. 415 92-101 (2012)
  3. Crystal structure of SsfS6, the putative C-glycosyltransferase involved in SF2575 biosynthesis. Wang F, Zhou M, Singh S, Yennamalli RM, Bingman CA, Thorson JS, Phillips GN. Proteins 81 1277-1282 (2013)
  4. Structural studies of the spinosyn rhamnosyltransferase, SpnG. Isiorho EA, Liu HW, Keatinge-Clay AT. Biochemistry 51 1213-1222 (2012)
  5. Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Angew. Chem. Int. Ed. Engl. 54 2811-2815 (2015)
  6. Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens. Höglund C, Sneitz N, Radominska-Pandya A, Laakonen L, Finel M. Steroids 76 1465-1473 (2011)
  7. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species. Gong L, Xiao Y, Liu Q, Li S, Zhang C, Liu J. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 136-139 (2011)


Reviews citing this publication (12)

  1. Natural-product sugar biosynthesis and enzymatic glycodiversification. Thibodeaux CJ, Melançon CE, Liu HW. Angew. Chem. Int. Ed. Engl. 47 9814-9859 (2008)
  2. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Osmani SA, Bak S, Møller BL. Phytochemistry 70 325-347 (2009)
  3. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. Nat Prod Rep 29 264-325 (2012)
  4. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Sattely ES, Fischbach MA, Walsh CT. Nat Prod Rep 25 757-793 (2008)
  5. Biosynthesis of aromatic polyketides in bacteria. Das A, Khosla C. Acc. Chem. Res. 42 631-639 (2009)
  6. Structure, mechanism and engineering of plant natural product glycosyltransferases. Wang X. FEBS Lett. 583 3303-3309 (2009)
  7. The impact of enzyme engineering upon natural product glycodiversification. Williams GJ, Gantt RW, Thorson JS. Curr Opin Chem Biol 12 556-564 (2008)
  8. Glycosyltransferases: mechanisms and applications in natural product development. Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Chem Soc Rev 44 8350-8374 (2015)
  9. A bacterial glycosyltransferase gene toolbox: generation and applications. Erb A, Weiss H, Härle J, Bechthold A. Phytochemistry 70 1812-1821 (2009)
  10. Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation. Metsä-Ketelä M, Oja T, Taguchi T, Okamoto S, Ichinose K. Curr Opin Chem Biol 17 562-570 (2013)
  11. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Int J Mol Sci 20 (2019)
  12. Michael additions in polyketide biosynthesis. Miyanaga A. Nat Prod Rep 36 531-547 (2019)

Articles citing this publication (30)

  1. Natural products version 2.0: connecting genes to molecules. Walsh CT, Fischbach MA. J. Am. Chem. Soc. 132 2469-2493 (2010)
  2. The C-glycosylation of flavonoids in cereals. Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R. J. Biol. Chem. 284 17926-17934 (2009)
  3. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R. Proc. Natl. Acad. Sci. U.S.A. 104 20238-20243 (2007)
  4. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X. J. Mol. Biol. 392 1292-1302 (2009)
  5. Engineering a function into a glycosyltransferase. Krauth C, Fedoryshyn M, Schleberger C, Luzhetskyy A, Bechthold A. Chem. Biol. 16 28-35 (2009)
  6. Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis. Lin LY, Rakic B, Chiu CP, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NC. J. Biol. Chem. 286 37237-37248 (2011)
  7. Moromycins A and B, isolation and structure elucidation of C-glycosylangucycline-type antibiotics from Streptomyces sp. KY002. Abdelfattah MS, Kharel MK, Hitron JA, Baig I, Rohr J. J. Nat. Prod. 71 1569-1573 (2008)
  8. Switching between O- and C-glycosyltransferase through exchange of active-site motifs. Gutmann A, Nidetzky B. Angew. Chem. Int. Ed. Engl. 51 12879-12883 (2012)
  9. Functional characterization and substrate specificity of spinosyn rhamnosyltransferase by in vitro reconstitution of spinosyn biosynthetic enzymes. Chen YL, Chen YH, Lin YC, Tsai KC, Chiu HT. J. Biol. Chem. 284 7352-7363 (2009)
  10. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Nagatomo Y, Usui S, Ito T, Kato A, Shimosaka M, Taguchi G. Plant J. 80 437-448 (2014)
  11. Heterologous expression and manipulation of three tetracycline biosynthetic pathways. Wang P, Kim W, Pickens LB, Gao X, Tang Y. Angew. Chem. Int. Ed. Engl. 51 11136-11140 (2012)
  12. Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana. Weis M, Lim EK, Bruce NC, Bowles DJ. Biochimie 90 830-834 (2008)
  13. Biosynthetic pathway toward carbohydrate-like moieties of alnumycins contains unusual steps for C-C bond formation and cleavage. Oja T, Klika KD, Appassamy L, Sinkkonen J, Mäntsälä P, Niemi J, Metsä-Ketelä M. Proc. Natl. Acad. Sci. U.S.A. 109 6024-6029 (2012)
  14. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Front Microbiol 7 182 (2016)
  15. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). Hirade Y, Kotoku N, Terasaka K, Saijo-Hamano Y, Fukumoto A, Mizukami H. FEBS Lett. 589 1778-1786 (2015)
  16. Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis. Ramos A, Olano C, Braña AF, Méndez C, Salas JA. J. Bacteriol. 191 2871-2875 (2009)
  17. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. Claesson M, Siitonen V, Dobritzsch D, Metsä-Ketelä M, Schneider G. FEBS J. 279 3251-3263 (2012)
  18. Structural basis for C-ribosylation in the alnumycin A biosynthetic pathway. Oja T, Niiranen L, Sandalova T, Klika KD, Niemi J, Mäntsälä P, Schneider G, Metsä-Ketelä M. Proc. Natl. Acad. Sci. U.S.A. 110 1291-1296 (2013)
  19. Structural studies of the spinosyn forosaminyltransferase, SpnP. Isiorho EA, Jeon BS, Kim NH, Liu HW, Keatinge-Clay AT. Biochemistry 53 4292-4301 (2014)
  20. Differences in the substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis. Erb A, Krauth C, Luzhetskyy A, Bechthold A. Appl. Microbiol. Biotechnol. 83 1067-1076 (2009)
  21. Pseudouridine monophosphate glycosidase: a new glycosidase mechanism. Huang S, Mahanta N, Begley TP, Ealick SE. Biochemistry 51 9245-9255 (2012)
  22. The C-glycosyltransferase IroB from pathogenic Escherichia coli: identification of residues required for efficient catalysis. Foshag D, Campbell C, Pawelek PD. Biochim. Biophys. Acta 1844 1619-1630 (2014)
  23. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. Wang X, Li C, Zhou C, Li J, Zhang Y. Plant J. 90 535-546 (2017)
  24. In vivo investigation of the substrate recognition capability and activity affecting amino acid residues of glycosyltransferase FscMI in the biosynthesis of candicidin. Lei X, Kong L, Zhang C, Liu Q, Yao F, Zhang W, Deng Z, You D. Mol Biosyst 9 422-430 (2013)
  25. Elucidation of the glycosylation steps during biosynthesis of antitumor macrolides PM100117 and PM100118 and engineering for novel derivatives. Salcedo RG, Olano C, Fernández R, Braña AF, Méndez C, de la Calle F, Salas JA. Microb. Cell Fact. 15 187 (2016)
  26. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica. Chen D, Sun L, Chen R, Xie K, Yang L, Dai J. Chemistry 22 5873-5877 (2016)
  27. Integrated Metabolomic, Molecular Networking, and Genome Mining Analyses Uncover Novel Angucyclines From Streptomyces sp. RO-S4 Strain Isolated From Bejaia Bay, Algeria. Ouchene R, Stien D, Segret J, Kecha M, Rodrigues AMS, Veckerlé C, Suzuki MT. Front Microbiol 13 906161 (2022)
  28. OleD Loki as a Catalyst for Hydroxamate Glycosylation. Hughes RR, Shaaban KA, Ponomareva LV, Horn J, Zhang C, Zhan CG, Voss SR, Leggas M, Thorson JS. Chembiochem 21 952-957 (2020)
  29. OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation. Hughes RR, Shaaban KA, Zhang J, Cao H, Phillips GN, Thorson JS. Chembiochem 18 363-367 (2017)
  30. Structural mechanism of a dual-functional enzyme DgpA/B/C as both a C-glycoside cleaving enzyme and an O- to C-glycoside isomerase. He P, Wang S, Li S, Liu S, Zhou S, Wang J, Tao J, Wang D, Wang R, Ma W. Acta Pharm Sin B 13 246-255 (2023)