2v1y Citations

Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.

Abstract

Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.

Reviews - 2v1y mentioned but not cited (1)

  1. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim. Biophys. Acta 1804 533-540 (2010)

Articles - 2v1y mentioned but not cited (12)

  1. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Burke JE, Williams RL. Adv Biol Regul 53 97-110 (2013)
  2. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, Taylor BS, Schultz N, Sander C. Genome Med 9 4 (2017)
  3. Genetic dynamic analysis of the influenza A H5N1 NS1 gene in China. Wei K, Chen Y, Lin Y, Pan Y. PLoS ONE 9 e101384 (2014)
  4. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer. LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu H, Chait BT, Singer RH, Sali A, Brenowitz M, Bresnick AR, Backer JM. J. Biol. Chem. 290 30390-30405 (2015)
  5. Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods. Ohue M, Matsuzaki Y, Shimoda T, Ishida T, Akiyama Y. BMC Proc 7 S6 (2013)
  6. The structure of p85ni in class IA phosphoinositide 3-kinase exhibits interdomain disorder. Sen KI, Wu H, Backer JM, Gerfen GJ. Biochemistry 49 2159-2166 (2010)
  7. Structure-Guided Functional Annotation of the Influenza A Virus NS1 Protein Reveals Dynamic Evolution of the p85β-Binding Site during Circulation in Humans. Lopes AM, Domingues P, Zell R, Hale BG. J. Virol. 91 (2017)
  8. Structure of the iSH2 domain of human phosphatidylinositol 3-kinase p85β subunit reveals conformational plasticity in the interhelical turn region. Schauder C, Ma LC, Krug RM, Montelione GT, Guan R. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 1567-1571 (2010)
  9. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Liu X, Yang S, Hart JR, Xu Y, Zou X, Zhang H, Zhou Q, Xia T, Zhang Y, Yang D, Wang MW, Vogt PK. Proc Natl Acad Sci U S A 118 e2109327118 (2021)
  10. Integrated network pharmacology, bioinformatics, and molecular docking to explore the mechanisms of berberine regulating autophagy in breast cancer. Huang B, Wen G, Li R, Wu M, Zou Z. Medicine (Baltimore) 102 e35070 (2023)
  11. Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Kumar S, Clarke D, Gerstein MB. Proc. Natl. Acad. Sci. U.S.A. 116 18962-18970 (2019)
  12. PAT: predictor for structured units and its application for the optimization of target molecules for the generation of synthetic antibodies. Jeon J, Arnold R, Singh F, Teyra J, Braun T, Kim PM. BMC Bioinformatics 17 150 (2016)


Reviews citing this publication (88)

  1. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Engelman JA. Nat. Rev. Cancer 9 550-562 (2009)
  2. Targeting the phosphoinositide 3-kinase pathway in cancer. Liu P, Cheng H, Roberts TM, Zhao JJ. Nat Rev Drug Discov 8 627-644 (2009)
  3. PI3K pathway alterations in cancer: variations on a theme. Yuan TL, Cantley LC. Oncogene 27 5497-5510 (2008)
  4. The emerging mechanisms of isoform-specific PI3K signalling. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B, Bilanges B. Nat. Rev. Mol. Cell Biol. 11 329-341 (2010)
  5. The PI3K pathway as drug target in human cancer. Courtney KD, Corcoran RB, Engelman JA. J. Clin. Oncol. 28 1075-1083 (2010)
  6. Lipid signalling in disease. Wymann MP, Schneiter R. Nat. Rev. Mol. Cell Biol. 9 162-176 (2008)
  7. PTEN and the PI3-kinase pathway in cancer. Chalhoub N, Baker SJ. Annu Rev Pathol 4 127-150 (2009)
  8. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol. Rev. 93 1019-1137 (2013)
  9. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Thorpe LM, Yuzugullu H, Zhao JJ. Nat. Rev. Cancer 15 7-24 (2015)
  10. Class I PI3K in oncogenic cellular transformation. Zhao L, Vogt PK. Oncogene 27 5486-5496 (2008)
  11. PI3K/AKT signaling pathway and cancer: an updated review. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. Ann. Med. 46 372-383 (2014)
  12. Emerging common themes in regulation of PIKKs and PI3Ks. Lempiäinen H, Halazonetis TD. EMBO J. 28 3067-3073 (2009)
  13. Signaling by the phosphoinositide 3-kinase family in immune cells. Okkenhaug K. Annu. Rev. Immunol. 31 675-704 (2013)
  14. Fine tuning the immune response with PI3K. Fruman DA, Bismuth G. Immunol. Rev. 228 253-272 (2009)
  15. The PI3K Pathway in Human Disease. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. Cell 170 605-635 (2017)
  16. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Sci Signal 4 re2 (2011)
  17. PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Ligresti G, Militello L, Steelman LS, Cavallaro A, Basile F, Nicoletti F, Stivala F, McCubrey JA, Libra M. Cell Cycle 8 1352-1358 (2009)
  18. Should individual PI3 kinase isoforms be targeted in cancer? Jia S, Roberts TM, Zhao JJ. Curr. Opin. Cell Biol. 21 199-208 (2009)
  19. PI3K and AKT: Unfaithful Partners in Cancer. Faes S, Dormond O. Int J Mol Sci 16 21138-21152 (2015)
  20. PI 3-kinase and cancer: changing accents. Vogt PK, Gymnopoulos M, Hart JR. Curr. Opin. Genet. Dev. 19 12-17 (2009)
  21. Targeting PI3 kinase in cancer. Bauer TM, Patel MR, Infante JR. Pharmacol. Ther. 146 53-60 (2015)
  22. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Mukohara T. Cancer Sci. 102 1-8 (2011)
  23. Phosphatidylinositol 3-kinase: the oncoprotein. Vogt PK, Hart JR, Gymnopoulos M, Jiang H, Kang S, Bader AG, Zhao L, Denley A. Curr. Top. Microbiol. Immunol. 347 79-104 (2010)
  24. Activating mutations of TOR (target of rapamycin). Hardt M, Chantaravisoot N, Tamanoi F. Genes Cells 16 141-151 (2011)
  25. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Huang CH, Mandelker D, Gabelli SB, Amzel LM. Cell Cycle 7 1151-1156 (2008)
  26. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Zhang J, Roberts TM, Shivdasani RA. Gastroenterology 141 50-61 (2011)
  27. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr. Top. Microbiol. Immunol. 346 87-114 (2010)
  28. Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Mellor P, Furber LA, Nyarko JN, Anderson DH. Biochem. J. 441 23-37 (2012)
  29. PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Zardavas D, Phillips WA, Loi S. Breast Cancer Res. 16 201 (2014)
  30. Retroviral oncogenes: a historical primer. Vogt PK. Nat. Rev. Cancer 12 639-648 (2012)
  31. PI3K: from the bench to the clinic and back. Vanhaesebroeck B, Vogt PK, Rommel C. Curr. Top. Microbiol. Immunol. 347 1-19 (2010)
  32. Synergy in activating class I PI3Ks. Burke JE, Williams RL. Trends Biochem. Sci. 40 88-100 (2015)
  33. Structural comparisons of class I phosphoinositide 3-kinases. Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB, Vogelstein B. Nat. Rev. Cancer 8 665-669 (2008)
  34. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. Mol. Cancer Res. 13 1265-1273 (2015)
  35. PTEN and PI3K/AKT in non-small-cell lung cancer. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. Pharmacogenomics 16 1843-1862 (2015)
  36. Taming the PI3K team to hold inflammation and cancer at bay. Hirsch E, Ciraolo E, Ghigo A, Costa C. Pharmacol. Ther. 118 192-205 (2008)
  37. Twice upon a time: PI3K's secret double life exposed. Hirsch E, Braccini L, Ciraolo E, Morello F, Perino A. Trends Biochem. Sci. 34 244-248 (2009)
  38. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Maira SM, Voliva C, Garcia-Echeverria C. Expert Opin. Ther. Targets 12 223-238 (2008)
  39. New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Hoffman A, Lazar AJ, Pollock RE, Lev D. Drug Resist. Updat. 14 52-66 (2011)
  40. PI3K mutations in breast cancer: prognostic and therapeutic implications. Mukohara T. Breast Cancer (Dove Med Press) 7 111-123 (2015)
  41. A beta version of life: p110β takes center stage. Dbouk HA, Backer JM. Oncotarget 1 729-733 (2010)
  42. The PIK3CA gene as a mutated target for cancer therapy. Gustin JP, Cosgrove DP, Park BH. Curr Cancer Drug Targets 8 733-740 (2008)
  43. Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Roop RP, Ma CX. Future Oncol 8 273-292 (2012)
  44. Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Hanker AB, Kaklamani V, Arteaga CL. Cancer Discov 9 482-491 (2019)
  45. The structural basis of PI3K cancer mutations: from mechanism to therapy. Liu S, Knapp S, Ahmed AA. Cancer Res. 74 641-646 (2014)
  46. Calmodulin and PI3K Signaling in KRAS Cancers. Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Trends Cancer 3 214-224 (2017)
  47. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Salamon RS, Backer JM. Bioessays 35 602-611 (2013)
  48. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Dirican E, Akkiprik M, Özer A. Tumour Biol. 37 7033-7045 (2016)
  49. Prognostic and clinical impact of PIK3CA mutation in gastric cancer: pyrosequencing technology and literature review. Harada K, Baba Y, Shigaki H, Ishimoto T, Miyake K, Kosumi K, Tokunaga R, Izumi D, Ohuchi M, Nakamura K, Kiyozumi Y, Kurashige J, Iwatsuki M, Miyamoto Y, Sakamoto Y, Yoshida N, Watanabe M, Baba H. BMC Cancer 16 400 (2016)
  50. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. Cancers (Basel) 13 3949 (2021)
  51. Class IA phosphoinositide 3-kinase isoforms and human tumorigenesis: implications for cancer drug discovery and development. Wee S, Lengauer C, Wiederschain D. Curr Opin Oncol 20 77-82 (2008)
  52. Neomorphic mutations create therapeutic challenges in cancer. Takiar V, Ip CK, Gao M, Mills GB, Cheung LW. Oncogene 36 1607-1618 (2017)
  53. PI3K inhibitors as novel cancer therapies: implications for cardiovascular medicine. McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. J. Card. Fail. 19 268-282 (2013)
  54. Structural effects of oncogenic PI3Kα mutations. Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Curr. Top. Microbiol. Immunol. 347 43-53 (2010)
  55. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue. Stratikopoulos EE, Parsons RE. Clin. Cancer Res. 22 2605-2610 (2016)
  56. Approaches and limitations of phosphatidylinositol-3-kinase pathway activation status as a predictive biomarker in the clinical development of targeted therapy. Coughlin CM, Johnston DS, Strahs A, Burczynski ME, Bacus S, Hill J, Feingold JM, Zacharchuk C, Berkenblit A. Breast Cancer Res. Treat. 124 1-11 (2010)
  57. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Nussinov R, Zhang M, Tsai CJ, Jang H. Mol Cancer Res 19 543-548 (2021)
  58. Signalling via class IA PI3Ks. Stephens L, Hawkins P. Adv. Enzyme Regul. 51 27-36 (2011)
  59. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Cheung LW, Mills GB. Pharmacogenomics 17 297-307 (2016)
  60. Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. Dbouk HA, Backer JM. Trends Pharmacol. Sci. 34 149-153 (2013)
  61. Integrative Structure Modeling: Overview and Assessment. Braitbard M, Schneidman-Duhovny D, Kalisman N. Annu Rev Biochem 88 113-135 (2019)
  62. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Araki K, Miyoshi Y. Breast Cancer 25 392-401 (2018)
  63. The impact of heterogeneity in phosphoinositide 3-kinase pathway in human cancer and possible therapeutic treatments. Wang W, Lv J, Wang L, Wang X, Ye L. Semin. Cell Dev. Biol. 64 116-124 (2017)
  64. Structure, function and inhibition of the phosphoinositide 3-kinase p110α enzyme. Flanagan JU, Shepherd PR. Biochem. Soc. Trans. 42 120-124 (2014)
  65. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer. Lee MJ, Jin N, Grandis JR, Johnson DE. Biochim Biophys Acta Mol Cell Res 1867 118679 (2020)
  66. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Biophys Rev 10 1263-1282 (2018)
  67. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL, Burke JE. Front Immunol 9 575 (2018)
  68. Potential role of PI3K inhibitors in the treatment of breast cancer. Carvalho S, Schmitt F, Schmitt F. Future Oncol 6 1251-1263 (2010)
  69. Targeting the protein-protein interaction between IRS1 and mutant p110α for cancer therapy. Hao Y, Zhao S, Wang Z. Toxicol Pathol 42 140-147 (2014)
  70. Capitalizing on tumor genotyping: towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase. Gabelli SB, Duong-Ly KC, Brower ET, Amzel LM. Adv. Enzyme Regul. 51 273-279 (2011)
  71. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Bresnick AR, Backer JM. Endocrinology 160 536-555 (2019)
  72. Phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as therapeutic targets in breast cancer. Dirican E, Akkiprik M. Tumour Biol. 39 1010428317695529 (2017)
  73. The Importance of Being PI3K in the RAS Signaling Network. Cuesta C, Arévalo-Alameda C, Castellano E. Genes (Basel) 12 1094 (2021)
  74. The PTEN⁻PI3K Axis in Cancer. Papa A, Pandolfi PP. Biomolecules 9 (2019)
  75. Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein-Barr Virus Infection. Liu X, Deng Y, Huang Y, Ye J, Xie S, He Q, Chen Y, Lin Y, Liang R, Wei J, Li Y, Zhang J. Curr Oncol 29 6035-6052 (2022)
  76. Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment. Castel P, Toska E, Zumsteg ZS, Carmona FJ, Elkabets M, Bosch A, Scaltriti M. Mol Cell Oncol 1 e963447 (2014)
  77. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Janmey PA, Bucki R, Radhakrishnan R. Biochem. Biophys. Res. Commun. 506 307-314 (2018)
  78. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Sugiyama MG, Fairn GD, Antonescu CN. Front Cell Dev Biol 7 70 (2019)
  79. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Akbay EA, Kim J. Transl Lung Cancer Res 7 464-486 (2018)
  80. Impact of p85α Alterations in Cancer. Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Biomolecules 9 (2019)
  81. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Zhang M, Jang H, Nussinov R. Cancer Res 81 237-247 (2021)
  82. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. J Transl Med 21 774 (2023)
  83. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Niu Z, Jin R, Zhang Y, Li H. Signal Transduct Target Ther 7 353 (2022)
  84. Signaling pathways, microenvironment, and targeted treatments in Langerhans cell histiocytosis. Gao XM, Li J, Cao XX. Cell Commun Signal 20 195 (2022)
  85. Structural and mechanistic insights provided by single particle cryo-EM analysis of phosphoinositide 3-kinase (PI3Kα). Vogt PK, Hart JR, Yang S, Zhou Q, Yang D, Wang MW. Biochim Biophys Acta Rev Cancer 1878 188947 (2023)
  86. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). Jung K, Kang H, Mehra R. Cancers Head Neck 3 3 (2018)
  87. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Rodgers SJ, Mitchell CA, Ooms LM. Biochem Soc Trans 51 1459-1472 (2023)
  88. The mutational profiles and corresponding therapeutic implications of PI3K mutations in cancer. VanLandingham NK, Nazarenko A, Grandis JR, Johnson DE. Adv Biol Regul 87 100934 (2023)

Articles citing this publication (165)

  1. Letter Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z. Nat. Cell Biol. 11 468-476 (2009)
  2. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel CH, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell TJ, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver SJ, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root DE, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S. Nat. Genet. 42 715-721 (2010)
  3. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, Baselga J. Cancer Res. 68 9221-9230 (2008)
  4. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM. Science 318 1744-1748 (2007)
  5. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Zhao L, Vogt PK. Proc. Natl. Acad. Sci. U.S.A. 105 2652-2657 (2008)
  6. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman KK, Lorenzo M, Li H, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker JS, de Sauvage FJ, Backer JM, Seshagiri S. Cancer Cell 16 463-474 (2009)
  7. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM. Proc. Natl. Acad. Sci. U.S.A. 106 16996-17001 (2009)
  8. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Rudd ML, Price JC, Fogoros S, Godwin AK, Sgroi DC, Merino MJ, Bell DW. Clin. Cancer Res. 17 1331-1340 (2011)
  9. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, Zakowski MF, Rusch V, Sima CS, Ladanyi M, Kris MG. Mol. Cancer Ther. 11 485-491 (2012)
  10. Annotating cancer variants and anti-cancer therapeutics in reactome. Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D'Eustachio P, Stein L. Cancers (Basel) 4 1180-1211 (2012)
  11. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. Proc. Natl. Acad. Sci. U.S.A. 109 15259-15264 (2012)
  12. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer. Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. Cancer Res. 71 4061-4067 (2011)
  13. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL. Nat. Chem. Biol. 6 117-124 (2010)
  14. A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Jamieson S, Flanagan JU, Kolekar S, Buchanan C, Kendall JD, Lee WJ, Rewcastle GW, Denny WA, Singh R, Dickson J, Baguley BC, Shepherd PR. Biochem. J. 438 53-62 (2011)
  15. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL. Mol. Cell 41 567-578 (2011)
  16. The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Taniguchi CM, Winnay J, Kondo T, Bronson RT, Guimaraes AR, Alemán JO, Luo J, Stephanopoulos G, Weissleder R, Cantley LC, Kahn CR. Cancer Res. 70 5305-5315 (2010)
  17. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, Simko JP, Waldman FM, Pieper RO, Parsa AT. Oncogene 28 306-312 (2009)
  18. Oncogenic signaling of class I PI3K isoforms. Denley A, Kang S, Karst U, Vogt PK. Oncogene 27 2561-2574 (2008)
  19. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Rios JJ, Paria N, Burns DK, Israel BA, Cornelia R, Wise CA, Ezaki M. Hum. Mol. Genet. 22 444-451 (2013)
  20. H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation by heregulin production and activation of HER3. Chakrabarty A, Rexer BN, Wang SE, Cook RS, Engelman JA, Arteaga CL. Oncogene 29 5193-5203 (2010)
  21. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Weber GL, Parat MO, Binder ZA, Gallia GL, Riggins GJ. Oncotarget 2 833-849 (2011)
  22. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. Rosty C, Young JP, Walsh MD, Clendenning M, Sanderson K, Walters RJ, Parry S, Jenkins MA, Win AK, Southey MC, Hopper JL, Giles GG, Williamson EJ, English DR, Buchanan DD. PLoS ONE 8 e65479 (2013)
  23. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Sun M, Hillmann P, Hofmann BT, Hart JR, Vogt PK. Proc. Natl. Acad. Sci. U.S.A. 107 15547-15552 (2010)
  24. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley LC. Proc. Natl. Acad. Sci. U.S.A. 105 9739-9744 (2008)
  25. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Hale BG, Kerry PS, Jackson D, Precious BL, Gray A, Killip MJ, Randall RE, Russell RJ. Proc. Natl. Acad. Sci. U.S.A. 107 1954-1959 (2010)
  26. Differential enhancement of breast cancer cell motility and metastasis by helical and kinase domain mutations of class IA phosphoinositide 3-kinase. Pang H, Flinn R, Patsialou A, Wyckoff J, Roussos ET, Wu H, Pozzuto M, Goswami S, Condeelis JS, Bresnick AR, Segall JE, Backer JM. Cancer Res. 69 8868-8876 (2009)
  27. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Zhao L, Vogt PK. Cell Cycle 9 596-600 (2010)
  28. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, Le Merrer M, Le Luyer B, Héron D, Mathieu-Dramard M, Bitoun P, Petit JM, Odent S, Amiel J, Picot D, Carmignac V, Thevenon J, Callier P, Laville M, Reznik Y, Fagour C, Nunes ML, Capeau J, Lascols O, Huet F, Faivre L, Vigouroux C, Rivière JB. Am. J. Hum. Genet. 93 141-149 (2013)
  29. Targeting PI3K in Cancer: Any Good News? Martini M, Ciraolo E, Gulluni F, Hirsch E. Front Oncol 3 108 (2013)
  30. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Burke JE, Vadas O, Berndt A, Finegan T, Perisic O, Williams RL. Structure 19 1127-1137 (2011)
  31. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS, Sen KI, Janakiraman V, Seshagiri S, Gerfen GJ, Girvin ME, Backer JM. Proc. Natl. Acad. Sci. U.S.A. 106 20258-20263 (2009)
  32. The PIK3CA E542K and E545K mutations promote glycolysis and proliferation via induction of the β-catenin/SIRT3 signaling pathway in cervical cancer. Jiang W, He T, Liu S, Zheng Y, Xiang L, Pei X, Wang Z, Yang H. J Hematol Oncol 11 139 (2018)
  33. Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Vadas O, Dbouk HA, Shymanets A, Perisic O, Burke JE, Abi Saab WF, Khalil BD, Harteneck C, Bresnick AR, Nürnberg B, Backer JM, Williams RL. Proc. Natl. Acad. Sci. U.S.A. 110 18862-18867 (2013)
  34. Mutational characterization of individual breast tumors: TP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes. Boyault S, Drouet Y, Navarro C, Bachelot T, Lasset C, Treilleux I, Tabone E, Puisieux A, Wang Q. Breast Cancer Res. Treat. 132 29-39 (2012)
  35. Gain of interaction with IRS1 by p110α-helical domain mutants is crucial for their oncogenic functions. Hao Y, Wang C, Cao B, Hirsch BM, Song J, Markowitz SD, Ewing RM, Sedwick D, Liu L, Zheng W, Wang Z. Cancer Cell 23 583-593 (2013)
  36. Disulfiram treatment facilitates phosphoinositide 3-kinase inhibition in human breast cancer cells in vitro and in vivo. Zhang H, Chen D, Ringler J, Chen W, Cui QC, Ethier SP, Dou QP, Wu G. Cancer Res. 70 3996-4004 (2010)
  37. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Kumar A, Redondo-Muñoz J, Perez-García V, Cortes I, Chagoyen M, Carrera AC. Mol. Cell. Biol. 31 2122-2133 (2011)
  38. Phosphoinositide 3-kinases p110alpha and p110beta regulate cell cycle entry, exhibiting distinct activation kinetics in G1 phase. Marqués M, Kumar A, Cortés I, Gonzalez-García A, Hernández C, Moreno-Ortiz MC, Carrera AC. Mol. Cell. Biol. 28 2803-2814 (2008)
  39. A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Dbouk HA, Pang H, Fiser A, Backer JM. Proc. Natl. Acad. Sci. U.S.A. 107 19897-19902 (2010)
  40. Activation of ATR and related PIKKs. Mordes DA, Cortez D. Cell Cycle 7 2809-2812 (2008)
  41. Functional differences between two classes of oncogenic mutation in the PIK3CA gene. Chaussade C, Cho K, Mawson C, Rewcastle GW, Shepherd PR. Biochem. Biophys. Res. Commun. 381 577-581 (2009)
  42. Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85alpha Src homology-2 domains. Lee JY, Chiu YH, Asara J, Cantley LC. Proc. Natl. Acad. Sci. U.S.A. 108 14157-14162 (2011)
  43. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, Chong Z, Appadurai V, Dogruluk A, Eterovic AK, Bonnen PE, Creighton CJ, Chen K, Mills GB, Scott KL. Cancer Res. 75 5341-5354 (2015)
  44. Mechanism of influenza A virus NS1 protein interaction with the p85beta, but not the p85alpha, subunit of phosphatidylinositol 3-kinase (PI3K) and up-regulation of PI3K activity. Li Y, Anderson DH, Liu Q, Zhou Y. J Biol Chem 283 23397-23409 (2008)
  45. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Hon WC, Berndt A, Williams RL. Oncogene 31 3655-3666 (2012)
  46. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Demicco EG, Torres KE, Ghadimi MP, Colombo C, Bolshakov S, Hoffman A, Peng T, Bovée JV, Wang WL, Lev D, Lazar AJ. Mod. Pathol. 25 212-221 (2012)
  47. A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3-kinase/v-akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma. Korkolopoulou P, Levidou G, Trigka EA, Prekete N, Karlou M, Thymara I, Sakellariou S, Fragkou P, Isaiadis D, Pavlopoulos P, Patsouris E, Saetta AA. BJU Int. 110 E1237-48 (2012)
  48. Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Lasker K, Sali A, Wolfson HJ. Proteins 78 3205-3211 (2010)
  49. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations. Araya CL, Cenik C, Reuter JA, Kiss G, Pande VS, Snyder MP, Greenleaf WJ. Nat. Genet. 48 117-125 (2016)
  50. PI3-kinase p110α mediates β1 integrin-induced Akt activation and membrane protrusion during cell attachment and initial spreading. Zeller KS, Idevall-Hagren O, Stefansson A, Velling T, Jackson SP, Downward J, Tengholm A, Johansson S. Cell. Signal. 22 1838-1848 (2010)
  51. A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer: correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features. Trigka EA, Levidou G, Saetta AA, Chatziandreou I, Tomos P, Thalassinos N, Anastasiou N, Spartalis E, Kavantzas N, Patsouris E, Korkolopoulou P. Oncol. Rep. 30 623-636 (2013)
  52. Characteristics and prevalence of KRAS, BRAF, and PIK3CA mutations in colorectal cancer by high-resolution melting analysis in Taiwanese population. Hsieh LL, Er TK, Chen CC, Hsieh JS, Chang JG, Liu TC. Clin. Chim. Acta 413 1605-1611 (2012)
  53. Initiating breast cancer by PIK3CA mutation. Miller TW. Breast Cancer Res. 14 301 (2012)
  54. ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Krig SR, Miller JK, Frietze S, Beckett LA, Neve RM, Farnham PJ, Yaswen PI, Sweeney CA. Oncogene 29 5500-5510 (2010)
  55. Common PIK3CA mutants and a novel 3' UTR mutation are associated with increased sensitivity to saracatinib. Arcaroli JJ, Quackenbush KS, Powell RW, Pitts TM, Spreafico A, Varella-Garcia M, Bemis L, Tan AC, Reinemann JM, Touban BM, Dasari A, Eckhardt SG, Messersmith WA. Clin. Cancer Res. 18 2704-2714 (2012)
  56. RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Song KW, Edgar KA, Hanan EJ, Hafner M, Oeh J, Merchant M, Sampath D, Nannini MA, Hong R, Phu L, Forrest WF, Stawiski E, Schmidt S, Endres N, Guan J, Wallin JJ, Cheong J, Plise EG, Lewis Phillips GD, Salphati L, Heffron TP, Olivero AG, Malek S, Staben ST, Kirkpatrick DS, Dey A, Friedman LS. Cancer Discov 12 204-219 (2022)
  57. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. Kasaian K, Wiseman SM, Thiessen N, Mungall KL, Corbett RD, Qian JQ, Nip KM, He A, Tse K, Chuah E, Varhol RJ, Pandoh P, McDonald H, Zeng T, Tam A, Schein J, Birol I, Mungall AJ, Moore RA, Zhao Y, Hirst M, Marra MA, Walker BA, Jones SJ. J. Pathol. 230 249-260 (2013)
  58. Protein domain-level landscape of cancer-type-specific somatic mutations. Yang F, Petsalaki E, Rolland T, Hill DE, Vidal M, Roth FP. PLoS Comput. Biol. 11 e1004147 (2015)
  59. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M. Sci Signal 10 (2017)
  60. PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541. Hägerstrand D, Lindh MB, Peña C, Garcia-Echeverria C, Nistér M, Hofmann F, Ostman A. Neuro-oncology 12 967-975 (2010)
  61. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Dornan GL, Siempelkamp BD, Jenkins ML, Vadas O, Lucas CL, Burke JE. Proc. Natl. Acad. Sci. U.S.A. 114 1982-1987 (2017)
  62. Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence. Riaz A, Ilan N, Vlodavsky I, Li JP, Johansson S. J. Biol. Chem. 288 12366-12375 (2013)
  63. High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer. Guedes JG, Veiga I, Rocha P, Pinto P, Pinto C, Pinheiro M, Peixoto A, Fragoso M, Raimundo A, Ferreira P, Machado M, Sousa N, Lopes P, Araújo A, Macedo J, Alves F, Coutinho C, Henrique R, Santos LL, Teixeira MR, Teixeira MR. BMC Cancer 13 169 (2013)
  64. An immunohistochemical perspective of PPAR beta and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Ahmed N, Riley C, Quinn MA. Br. J. Cancer 98 1415-1424 (2008)
  65. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Kuo CT, Thompson AM, Gallina ME, Ye F, Johnson ES, Sun W, Zhao M, Yu J, Wu IC, Fujimoto B, DuFort CC, Carlson MA, Hingorani SR, Paguirigan AL, Radich JP, Chiu DT. Nat Commun 7 11468 (2016)
  66. PIK3CA kinase domain mutation identifies a subgroup of stage III colon cancer patients with poor prognosis. Fariña Sarasqueta A, Zeestraten EC, van Wezel T, van Lijnschoten G, van Eijk R, Dekker JW, Kuppen PJ, Goossens-Beumer IJ, Lemmens VE, van de Velde CJ, Rutten HJ, Morreau H, van den Brule AJ. Cell Oncol (Dordr) 34 523-531 (2011)
  67. Regulation of the PI3K pathway through a p85α monomer-homodimer equilibrium. Cheung LW, Walkiewicz KW, Besong TM, Guo H, Hawke DH, Arold ST, Mills GB. Elife 4 e06866 (2015)
  68. Combination of a MEK inhibitor at sub-MTD with a PI3K/mTOR inhibitor significantly suppresses growth of lung adenocarcinoma tumors in Kras(G12D-LSL) mice. Simmons BH, Lee JH, Lalwani K, Giddabasappa A, Snider BA, Wong A, Lappin PB, Eswaraka J, Kan JL, Christensen JG, Shojaei F. Cancer Chemother. Pharmacol. 70 213-220 (2012)
  69. Genome Analysis of Latin American Cervical Cancer: Frequent Activation of the PIK3CA Pathway. Lou H, Villagran G, Boland JF, Im KM, Polo S, Zhou W, Odey U, Juárez-Torres E, Medina-Martínez I, Roman-Basaure E, Mitchell J, Roberson D, Sawitzke J, Garland L, Rodríguez-Herrera M, Wells D, Troyer J, Pinto FC, Bass S, Zhang X, Castillo M, Gold B, Morales H, Yeager M, Berumen J, Alvirez E, Gharzouzi E, Dean M. Clin. Cancer Res. 21 5360-5370 (2015)
  70. PI3K regulatory subunits lose control in cancer. Berenjeno IM, Vanhaesebroeck B. Cancer Cell 16 449-450 (2009)
  71. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature. Chen SJ, Liu H, Liao CT, Huang PJ, Huang Y, Hsu A, Tang P, Chang YS, Chen HC, Yen TC. Oncotarget 6 18066-18080 (2015)
  72. p85α mediates p53 K370 acetylation by p300 and regulates its promoter-specific transactivity in the cellular UVB response. Song L, Gao M, Dong W, Hu M, Li J, Shi X, Hao Y, Li Y, Huang C. Oncogene 30 1360-1371 (2011)
  73. Letter Adult testicular dysgenesis of Inhba conditional knockout mice may also be caused by disruption of cross-talk between Leydig cells and germ cells. Sun Z, Li Z, Zhang Y. Proc. Natl. Acad. Sci. U.S.A. 107 E135; author reply E136 (2010)
  74. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Dickstein RJ, Nitti G, Dinney CP, Davies BR, Kamat AM, McConkey DJ. Cancer Biol. Ther. 13 1325-1338 (2012)
  75. Letter Common cancer-associated PIK3CA activating mutations rarely occur in Langerhans cell histiocytosis. Héritier S, Saffroy R, Radosevic-Robin N, Pothin Y, Pacquement H, Peuchmaur M, Lemoine A, Haroche J, Donadieu J, Emile JF. Blood 125 2448-2449 (2015)
  76. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects. Gabelli SB, Echeverria I, Alexander M, Duong-Ly KC, Chaves-Moreira D, Brower ET, Vogelstein B, Amzel LM. Biophys Rev 6 89-95 (2014)
  77. Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression, or signaling. Young CD, Pfefferle AD, Owens P, Kuba MG, Rexer BN, Balko JM, Sánchez V, Cheng H, Perou CM, Zhao JJ, Cook RS, Arteaga CL. Cancer Res. 73 4075-4085 (2013)
  78. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Roy A, Skibo J, Kalume F, Ni J, Rankin S, Lu Y, Dobyns WB, Mills GB, Zhao JJ, Baker SJ, Millen KJ. Elife 4 (2015)
  79. PKCβ phosphorylates PI3Kγ to activate it and release it from GPCR control. Walser R, Burke JE, Gogvadze E, Bohnacker T, Zhang X, Hess D, Küenzi P, Leitges M, Hirsch E, Williams RL, Laffargue M, Wymann MP. PLoS Biol. 11 e1001587 (2013)
  80. The p101 subunit of PI3Kγ restores activation by Gβ mutants deficient in stimulating p110γ. Shymanets A, Ahmadian MR, Kössmeier KT, Wetzker R, Harteneck C, Nürnberg B. Biochem. J. 441 851-858 (2012)
  81. Autoinhibition and phosphorylation-induced activation of phospholipase C-γ isozymes. Hajicek N, Charpentier TH, Rush JR, Harden TK, Sondek J. Biochemistry 52 4810-4819 (2013)
  82. Mutational and immunohistochemical study of the PI3K/Akt pathway in papillary thyroid carcinoma in Greece. Sozopoulos E, Litsiou H, Voutsinas G, Mitsiades N, Anagnostakis N, Tseva T, Patsouris E, Tseleni-Balafouta S. Endocr. Pathol. 21 90-100 (2010)
  83. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α. Echeverria I, Liu Y, Gabelli SB, Amzel LM. FEBS J. 282 3528-3542 (2015)
  84. Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Zhang M, Jang H, Gaponenko V, Nussinov R. Biophys. J. 113 1956-1967 (2017)
  85. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Breitkopf SB, Yang X, Begley MJ, Kulkarni M, Chiu YH, Turke AB, Lauriol J, Yuan M, Qi J, Engelman JA, Hong P, Kontaridis MI, Cantley LC, Perrimon N, Asara JM. Sci Rep 6 20471 (2016)
  86. Inability of NS1 protein from an H5N1 influenza virus to activate PI3K/Akt signaling pathway correlates to the enhanced virus replication upon PI3K inhibition. Li W, Wang G, Zhang H, Shen Y, Dai J, Wu L, Zhou J, Jiang Z, Li K. Vet. Res. 43 36 (2012)
  87. Phosphatidylinositol 3-kinase-dependent activation of mammalian protein kinase B/Akt in Saccharomyces cerevisiae, an in vivo model for the functional study of Akt mutations. Rodríguez-Escudero I, Andrés-Pons A, Pulido R, Molina M, Cid VJ. J. Biol. Chem. 284 13373-13383 (2009)
  88. Structural basis of nSH2 regulation and lipid binding in PI3Kα. Miller MS, Schmidt-Kittler O, Bolduc DM, Brower ET, Chaves-Moreira D, Allaire M, Kinzler KW, Jennings IG, Thompson PE, Cole PA, Amzel LM, Vogelstein B, Gabelli SB. Oncotarget 5 5198-5208 (2014)
  89. Using tandem mass spectrometry in targeted mode to identify activators of class IA PI3K in cancer. Yang X, Turke AB, Qi J, Song Y, Rexer BN, Miller TW, Jänne PA, Arteaga CL, Cantley LC, Engelman JA, Asara JM. Cancer Res. 71 5965-5975 (2011)
  90. Characterization of PI3K class IA isoforms with regulatory subunit p55alpha using a scintillation proximity assay. Van Aller GS, Carson JD, Fernandes C, Lehr R, Sinnamon RH, Kirkpatrick RB, Tummino PJ, Luo L. Anal. Biochem. 383 311-315 (2008)
  91. ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection. An Y, Yumerefendi H, Mas PJ, Chesneau A, Hart DJ. J. Struct. Biol. 175 189-197 (2011)
  92. Hypoxia reduces placental mTOR activation in a hypoxia-induced model of intrauterine growth restriction (IUGR). Kimball R, Wayment M, Merrill D, Wahlquist T, Reynolds PR, Arroyo JA. Physiol Rep 3 (2015)
  93. Identification of mutations in distinct regions of p85 alpha in urothelial cancer. Ross RL, Burns JE, Taylor CF, Mellor P, Anderson DH, Knowles MA. PLoS ONE 8 e84411 (2013)
  94. In silico modeling of the cryptic E2∼ubiquitin-binding site of E6-associated protein (E6AP)/UBE3A reveals the mechanism of polyubiquitin chain assembly. Ronchi VP, Kim ED, Summa CM, Klein JM, Haas AL. J. Biol. Chem. 292 18006-18023 (2017)
  95. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma. Bisht S, Ahmad F, Sawaimoon S, Bhatia S, Das BR. Med. Oncol. 31 124 (2014)
  96. Phosphatidylinositol 3-kinase and Rab5 GTPase inversely regulate the Smad anchor for receptor activation (SARA) protein independently of transforming growth factor-β1. Runyan CE, Liu Z, Schnaper HW. J. Biol. Chem. 287 35815-35824 (2012)
  97. The E545K mutation of PIK3CA promotes gallbladder carcinoma progression through enhanced binding to EGFR. Zhao S, Cao Y, Liu SB, Wang XA, Bao RF, Shu YJ, Hu YP, Zhang YJ, Jiang L, Zhang F, Liang HB, Li HF, Ma Q, Xu Y, Wang Z, Zhang YC, Chen L, Zhou J, Liu YB. J. Exp. Clin. Cancer Res. 35 97 (2016)
  98. The structural basis for Ras activation of PI3Kα lipid kinase. Zhang M, Jang H, Nussinov R. Phys Chem Chem Phys 21 12021-12028 (2019)
  99. A caged phosphopeptide-based approach for photochemical activation of kinases in living cells. Kawakami T, Cheng H, Hashiro S, Nomura Y, Tsukiji S, Furuta T, Nagamune T. Chembiochem 9 1583-1586 (2008)
  100. A functional variant at miR-520a binding site in PIK3CA alters susceptibility to colorectal cancer in a Chinese Han population. Ding L, Jiang Z, Chen Q, Qin R, Fang Y, Li H. Biomed Res Int 2015 373252 (2015)
  101. Biomarker-driven trial in metastatic pancreas cancer: feasibility in a multicenter study of saracatinib, an oral Src inhibitor, in previously treated pancreatic cancer. Arcaroli J, Quackenbush K, Dasari A, Powell R, McManus M, Tan AC, Foster NR, Picus J, Wright J, Nallapareddy S, Erlichman C, Hidalgo M, Messersmith WA. Cancer Med 1 207-217 (2012)
  102. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Oncotarget 7 53074-53101 (2016)
  103. Network Pharmacology Reveals Polyphyllin II as One Hit of Nano Chinese Medicine Monomers against Nasopharyngeal Carcinoma. Yang MZ, Zhang BB, Huang JC, Bai XY, Liang ZQ, Yi X, Xu N, Huang YJ, Jiao AJ. Bioinorg Chem Appl 2021 9959634 (2021)
  104. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Hu H, Zhu J, Zhong Y, Geng R, Ji Y, Guan Q, Hong C, Wei Y, Min N, Qi A, Zhang Y, Li X. Ann Transl Med 9 410 (2021)
  105. Phosphatidylinositol-3-kinase α catalytic subunit gene somatic mutations in bronchopulmonary neuroendocrine tumours. Capodanno A, Boldrini L, Alì G, Pelliccioni S, Mussi A, Fontanini G. Oncol. Rep. 28 1559-1566 (2012)
  106. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity. Layton MJ, Saad M, Church NL, Pearson RB, Mitchell CA, Phillips WA. BMC Biochem. 13 30 (2012)
  107. Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. Lv X, Ying H, Ma X, Qiu N, Wu P, Yang B, Hu Y. Eur J Med Chem 99 36-50 (2015)
  108. Expression and purification of PI3 kinase alpha and development of an ATP depletion and an alphascreen PI3 kinase activity assay. Boldyreff B, Rasmussen TL, Jensen HH, Cloutier A, Beaudet L, Roby P, Issinger OG. J Biomol Screen 13 1035-1040 (2008)
  109. PIK3CA gene mutations in breast carcinoma in Malaysian patients. Ching-Shian Leong V, Jabal MF, Leong PP, Abdullah MA, Gul YA, Seow HF. Cancer Genet. Cytogenet. 187 74-79 (2008)
  110. Phosphoinositide 3-kinase targeting by the beta galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death. Wells V, Mallucci L. Breast Cancer Res. 11 R2 (2009)
  111. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kα. Liu X, Zhou Q, Hart JR, Xu Y, Yang S, Yang D, Vogt PK, Wang MW. Proc Natl Acad Sci U S A 119 e2215621119 (2022)
  112. PIK3CA C-terminal frameshift mutations are novel oncogenic events that sensitize tumors to PI3K-α inhibition. Spangle JM, Von T, Pavlick DC, Khotimsky A, Zhao JJ, Roberts TM. Proc Natl Acad Sci U S A 117 24427-24433 (2020)
  113. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. J. Physiol. (Lond.) 595 5875-5893 (2017)
  114. Allosteric Activation of PI3Kα Results in Dynamic Access to Catalytically Competent Conformations. Chakrabarti M, Gabelli SB, Amzel LM. Structure 28 465-474.e5 (2020)
  115. Analysis of PIK3CA mutations and PI3K pathway proteins in advanced gastric cancer. Ito C, Nishizuka SS, Ishida K, Uesugi N, Sugai T, Tamura G, Koeda K, Sasaki A. J. Surg. Res. 212 195-204 (2017)
  116. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Wang G, Zhang M, Jang H, Lu S, Lin S, Chen G, Nussinov R, Zhang J, Gaponenko V. Biochemistry 57 1917-1928 (2018)
  117. Patient-derived mutations within the N-terminal domains of p85α impact PTEN or Rab5 binding and regulation. Mellor P, Marshall JDS, Ruan X, Whitecross DE, Ross RL, Knowles MA, Moore SA, Anderson DH. Sci Rep 8 7108 (2018)
  118. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. J Biol Chem 296 100538 (2021)
  119. Identifying protein domains by global analysis of soluble fragment data. Bulloch EM, Kingston RL. Anal. Biochem. 465 53-62 (2014)
  120. Insights into the pathological mechanisms of p85α mutations using a yeast-based phosphatidylinositol 3-kinase model. Oliver MD, Fernández-Acero T, Luna S, Rodríguez-Escudero I, Molina M, Pulido R, Cid VJ. Biosci. Rep. 37 (2017)
  121. Ligand-Based Drug Design: Synthesis and Biological Evaluation of Substituted Benzoin Derivatives as Potential Antitumor Agents. Sabbah DA, Ibrahim AH, Talib WH, Alqaisi KM, Sweidan K, Bardaweel SK, Sheikha GA, Zhong HA, Al-Shalabi E, Khalaf RA, Mubarak MS. Med Chem 15 417-429 (2019)
  122. Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus. Jenkins ML, Ranga-Prasad H, Parson MAH, Harris NJ, Rathinaswamy MK, Burke JE. Nat Commun 14 181 (2023)
  123. PI3K-AKT signaling pathway is involved in hypoxia/thermal-induced immunosuppression of small abalone Haliotis diversicolor. Sun Y, Zhang X, Wang G, Lin S, Zeng X, Wang Y, Zhang Z. Fish Shellfish Immunol. 59 492-508 (2016)
  124. PI3King the right partner: unique interactions and signaling by p110β. Dbouk HA. Postdoc J 3 71-87 (2015)
  125. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  126. Prognostic significance of PIK3CA mutation in stage IIB to IVA cervical cancers treated by concurrent chemoradiotherapy with weekly cisplatin. Lachkar B, Minaguchi T, Akiyama A, Liu S, Zhang S, Xu C, Shikama A, Tasaka N, Sakurai M, Nakao S, Ochi H, Yoshikawa H, Satoh T. Medicine (Baltimore) 97 e11392 (2018)
  127. The present and future of PI3K inhibitors for cancer therapy. Castel P, Toska E, Engelman JA, Scaltriti M. Nat Cancer 2 587-597 (2021)
  128. p110α Hot Spot Mutations E545K and H1047R Exert Metabolic Reprogramming Independently of p110α Kinase Activity. Chaudhari A, Krumlinde D, Lundqvist A, Akyürek LM, Bandaru S, Skålén K, Ståhlman M, Borén J, Wettergren Y, Ejeskär K, Rotter Sopasakis V. Mol. Cell. Biol. 35 3258-3273 (2015)
  129. Research Support, Non-U.S. Gov't Allosteric activation of PI3Kα by oncogenic mutations. Burke JE, Perisic O, Williams RL. Oncotarget 4 180-181 (2013)
  130. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MAH, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheeky E, Hansen SD, Yip CK, Burke JE. Elife 12 RP88058 (2023)
  131. Bioinformatics and In silico approaches to identify novel biomarkers and key pathways for cancers that are linked to the progression of female infertility: A comprehensive approach for drug discovery. Hossain MA, Sohel M, Rahman MH, Hasan MI, Khan MS, Amin MA, Islam MZ, Peng S. PLoS One 18 e0265746 (2023)
  132. Cancer-associated mutations in the p85α N-terminal SH2 domain activate a spectrum of receptor tyrosine kinases. Li X, Lau AYT, Ng ASN, Aldehaiman A, Zhou Y, Ng PKS, Arold ST, Cheung LWT. Proc Natl Acad Sci U S A 118 e2101751118 (2021)
  133. Connecting with an old partner in a new way. Burke JE, Williams RL. Cancer Cell 23 559-561 (2013)
  134. Evading inhibitory constraints--destabilizing p110α/p85α interactions. Sheridan C. FEBS J. 282 3525-3527 (2015)
  135. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Sudhan DR, Guerrero-Zotano A, Won H, González Ericsson P, Servetto A, Huerta-Rosario M, Ye D, Lee KM, Formisano L, Guo Y, Liu Q, Kinch LN, Red Brewer M, Dugger T, Koch J, Wick MJ, Cutler RE, Lalani AS, Bryce R, Auerbach A, Hanker AB, Arteaga CL. Cancer Cell 37 183-199.e5 (2020)
  136. Insight into the PTEN - p85α interaction and lipid binding properties of the p85α BH domain. Marshall JDS, Mellor P, Ruan X, Whitecross DE, Moore SA, Anderson DH. Oncotarget 9 36975-36992 (2018)
  137. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Leontiadou H, Galdadas I, Athanasiou C, Cournia Z. Sci Rep 8 15544 (2018)
  138. Molecular spectrum of PIK3CA gene mutations in patients with nonsmall-cell lung cancer in Turkey. Ekinci S, Ilgin-Ruhi H, Dogan M, Gursoy S, Dizbay-Sak S, Demirkazik A, Tukun A. Genet Test Mol Biomarkers 19 353-358 (2015)
  139. Nanobodies and chemical cross-links advance the structural and functional analysis of PI3Kα. Hart JR, Liu X, Pan C, Liang A, Ueno L, Xu Y, Quezada A, Zou X, Yang S, Zhou Q, Schoonooghe S, Hassanzadeh-Ghassabeh G, Xia T, Shui W, Yang D, Vogt PK, Wang MW. Proc Natl Acad Sci U S A 119 e2210769119 (2022)
  140. Reciprocal regulation among TRPV1 channels and phosphoinositide 3-kinase in response to nerve growth factor. Stratiievska A, Nelson S, Senning EN, Lautz JD, Smith SE, Gordon SE. Elife 7 (2018)
  141. Somatic mutation of PIK3R1 gene is rare in common human cancers. Park SW, Kang MR, Eom HS, Han JY, Ahn CH, Kim SS, Lee SH, Yoo NJ. Acta Oncol 49 125-127 (2010)
  142. Structural Biology in the Multi-Omics Era. McCafferty CL, Verbeke EJ, Marcotte EM, Taylor DW. J Chem Inf Model 60 2424-2429 (2020)
  143. Research Support, Non-U.S. Gov't PIK3CA mutation inhibition in hormone receptor-positive breast cancer: time has come. De Mattos-Arruda L. ESMO Open 5 (2020)
  144. A full-proteome, interaction-specific characterization of mutational hotspots across human cancers. Chen S, Liu Y, Zhang Y, Wierbowski SD, Lipkin SM, Wei X, Yu H. Genome Res 32 135-149 (2022)
  145. A synthetic peptide hijacks the catalytic subunit of class I PI3K to suppress the growth of cancer cells. Guo W, You X, Wang X, Wang L, Chen Y. Cancer Lett. 405 1-9 (2017)
  146. Class I PI3K Biology. Aytenfisu TY, Campbell HM, Chakrabarti M, Amzel LM, Gabelli SB. Curr Top Microbiol Immunol 436 3-49 (2022)
  147. Combination of TNF-α and graphene oxide-loaded BEZ235 to enhance apoptosis of PIK3CA mutant colorectal cancer cells. Cao Y, Chong Y, Shen H, Zhang M, Huang J, Zhu Y, Zhang Z. J Mater Chem B 1 5602-5610 (2013)
  148. Driver genes exome sequencing reveals distinct variants in African Americans with colorectal neoplasia. Ashktorab H, Azimi H, Varma S, Lee EL, Laiyemo AO, Nickerson ML, Brim H. Oncotarget 10 2607-2624 (2019)
  149. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. BMC Genomics 23 168 (2022)
  150. Frequency of PIK3CA mutations in different subsites of head and neck squamous cell carcinoma in southern Thailand. Dechaphunkul A, Thongwatchara P, Thongsuksai P, Dechaphunkul T, Geater SL. J Pathol Transl Med 56 126-133 (2022)
  151. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. Ibadurrahman W, Hanif N, Hermawan A. J Genet Eng Biotechnol 20 66 (2022)
  152. Genes with mutation significance were highly associated with the clinical pattern of patients with breast cancer. Ding WJ, Zeng T, Wang LJ, Lei HB, Ge W, Wang Z. Oncotarget 8 98094-98102 (2017)
  153. Identification of Entry Factors Involved in Hepatitis C Virus Infection Based on Host-Mimicking Short Linear Motifs. Chiang AW, Wu WY, Wang T, Hwang MJ. PLoS Comput. Biol. 13 e1005368 (2017)
  154. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Mol Carcinog 61 677-689 (2022)
  155. Mutation-Associated Phenotypic Heterogeneity in Novel and Canonical PIK3CA Helical and Kinase Domain Mutants. Ghodsinia AA, Lego JMT, Garcia RL. Cells 9 (2020)
  156. NMDA Receptor-Arc Signaling Is Required for Memory Updating and Is Disrupted in Alzheimer's Disease. Yang L, Liu W, Shi L, Wu J, Zhang W, Chuang YA, Redding-Ochoa J, Kirkwood A, Savonenko AV, Worley PF. Biol Psychiatry 94 706-720 (2023)
  157. Nuclear translocation of p85β promotes tumorigenesis of PIK3CA helical domain mutant cancer. Hao Y, He B, Wu L, Li Y, Wang C, Wang T, Sun L, Zhang Y, Zhan Y, Zhao Y, Markowitz S, Veigl M, Conlon RA, Wang Z. Nat Commun 13 1974 (2022)
  158. PIK3CA Gene Mutations in HNSCC: Systematic Review and Correlations with HPV Status and Patient Survival. Cochicho D, Esteves S, Rito M, Silva F, Martins L, Montalvão P, Cunha M, Magalhães M, Gil da Costa RM, Felix A. Cancers (Basel) 14 1286 (2022)
  159. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Tsolakos N, Durrant TN, Chessa T, Suire SM, Oxley D, Kulkarni S, Downward J, Perisic O, Williams RL, Stephens L, Hawkins PT. Proc. Natl. Acad. Sci. U.S.A. 115 12176-12181 (2018)
  160. Sensitivity to targeted therapy differs between HER2-amplified breast cancer cells harboring kinase and helical domain mutations in PIK3CA. Garay JP, Smith R, Devlin K, Hollern DP, Liby T, Liu M, Boddapati S, Watson SS, Esch A, Zheng T, Thompson W, Babcock D, Kwon S, Chin K, Heiser L, Gray JW, Korkola JE. Breast Cancer Res 23 81 (2021)
  161. Suppression of cell migration by phospholipase C-related catalytically inactive protein-dependent modulation of PI3K signalling. Asano S, Taniguchi Y, Yamawaki Y, Gao J, Harada K, Takeuchi H, Hirata M, Kanematsu T. Sci Rep 7 5408 (2017)
  162. The kinetics of folding of the NSH2 domain from p85. Visconti L, Malagrinò F, Toto A, Gianni S. Sci Rep 9 4058 (2019)
  163. Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. Jin N, Keam B, Cho J, Lee MJ, Kim HR, Torosyan H, Jura N, Ng PK, Mills GB, Li H, Zeng Y, Barbash Z, Tarcic G, Kang H, Bauman JE, Kim MO, VanLandingham NK, Swaney DL, Krogan NJ, Johnson DE, Grandis JR. J Clin Invest 131 e150335 (2021)
  164. Treating non-small cell lung cancer by targeting the PI3K signaling pathway. Jiang L, Zhang J, Xu Y, Xu H, Wang M. Chin Med J (Engl) 135 1272-1284 (2022)
  165. UNBS5162 inhibits colon cancer growth via suppression of PI3K/Akt signaling pathway. Zhang F, Lv HZ, Liu JM, Ye XY, Wang CC. Med Sci (Paris) 34 Focus issue F1 99-104 (2018)