2v1y Citations

Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.

Abstract

Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.

Reviews - 2v1y mentioned but not cited (1)

  1. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim Biophys Acta 1804 533-540 (2010)

Articles - 2v1y mentioned but not cited (13)



Reviews citing this publication (91)

  1. Targeting the phosphoinositide 3-kinase pathway in cancer. Liu P, Cheng H, Roberts TM, Zhao JJ. Nat Rev Drug Discov 8 627-644 (2009)
  2. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Engelman JA. Nat Rev Cancer 9 550-562 (2009)
  3. The PI3K Pathway in Human Disease. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. Cell 170 605-635 (2017)
  4. PI3K pathway alterations in cancer: variations on a theme. Yuan TL, Cantley LC. Oncogene 27 5497-5510 (2008)
  5. The emerging mechanisms of isoform-specific PI3K signalling. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B, Bilanges B. Nat Rev Mol Cell Biol 11 329-341 (2010)
  6. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol Rev 93 1019-1137 (2013)
  7. The PI3K pathway as drug target in human cancer. Courtney KD, Corcoran RB, Engelman JA. J Clin Oncol 28 1075-1083 (2010)
  8. Lipid signalling in disease. Wymann MP, Schneiter R. Nat Rev Mol Cell Biol 9 162-176 (2008)
  9. PTEN and the PI3-kinase pathway in cancer. Chalhoub N, Baker SJ. Annu Rev Pathol 4 127-150 (2009)
  10. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Thorpe LM, Yuzugullu H, Zhao JJ. Nat Rev Cancer 15 7-24 (2015)
  11. PI3K/AKT signaling pathway and cancer: an updated review. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. Ann Med 46 372-383 (2014)
  12. Class I PI3K in oncogenic cellular transformation. Zhao L, Vogt PK. Oncogene 27 5486-5496 (2008)
  13. Signaling by the phosphoinositide 3-kinase family in immune cells. Okkenhaug K. Annu Rev Immunol 31 675-704 (2013)
  14. Emerging common themes in regulation of PIKKs and PI3Ks. Lempiäinen H, Halazonetis TD. EMBO J 28 3067-3073 (2009)
  15. Fine tuning the immune response with PI3K. Fruman DA, Bismuth G. Immunol Rev 228 253-272 (2009)
  16. PI3K and AKT: Unfaithful Partners in Cancer. Faes S, Dormond O. Int J Mol Sci 16 21138-21152 (2015)
  17. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Sci Signal 4 re2 (2011)
  18. The PTEN⁻PI3K Axis in Cancer. Papa A, Pandolfi PP. Biomolecules 9 E153 (2019)
  19. PTEN and PI3K/AKT in non-small-cell lung cancer. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. Pharmacogenomics 16 1843-1862 (2015)
  20. PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Ligresti G, Militello L, Steelman LS, Cavallaro A, Basile F, Nicoletti F, Stivala F, McCubrey JA, Libra M. Cell Cycle 8 1352-1358 (2009)
  21. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. Cancers (Basel) 13 3949 (2021)
  22. Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Hanker AB, Kaklamani V, Arteaga CL. Cancer Discov 9 482-491 (2019)
  23. PI3K mutations in breast cancer: prognostic and therapeutic implications. Mukohara T. Breast Cancer (Dove Med Press) 7 111-123 (2015)
  24. Synergy in activating class I PI3Ks. Burke JE, Williams RL. Trends Biochem Sci 40 88-100 (2015)
  25. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Araki K, Miyoshi Y. Breast Cancer 25 392-401 (2018)
  26. Targeting PI3 kinase in cancer. Bauer TM, Patel MR, Infante JR. Pharmacol Ther 146 53-60 (2015)
  27. PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Zardavas D, Phillips WA, Loi S. Breast Cancer Res 16 201 (2014)
  28. Should individual PI3 kinase isoforms be targeted in cancer? Jia S, Roberts TM, Zhao JJ. Curr Opin Cell Biol 21 199-208 (2009)
  29. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Zhang J, Roberts TM, Shivdasani RA. Gastroenterology 141 50-61 (2011)
  30. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Mukohara T. Cancer Sci 102 1-8 (2011)
  31. Phosphatidylinositol 3-kinase: the oncoprotein. Vogt PK, Hart JR, Gymnopoulos M, Jiang H, Kang S, Bader AG, Zhao L, Denley A. Curr Top Microbiol Immunol 347 79-104 (2010)
  32. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Sugiyama MG, Fairn GD, Antonescu CN. Front Cell Dev Biol 7 70 (2019)
  33. Retroviral oncogenes: a historical primer. Vogt PK. Nat Rev Cancer 12 639-648 (2012)
  34. Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Mellor P, Furber LA, Nyarko JN, Anderson DH. Biochem J 441 23-37 (2012)
  35. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. Mol Cancer Res 13 1265-1273 (2015)
  36. PI3K: from the bench to the clinic and back. Vanhaesebroeck B, Vogt PK, Rommel C. Curr Top Microbiol Immunol 347 1-19 (2010)
  37. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr Top Microbiol Immunol 346 87-114 (2010)
  38. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Huang CH, Mandelker D, Gabelli SB, Amzel LM. Cell Cycle 7 1151-1156 (2008)
  39. PI 3-kinase and cancer: changing accents. Vogt PK, Gymnopoulos M, Hart JR. Curr Opin Genet Dev 19 12-17 (2009)
  40. Structural comparisons of class I phosphoinositide 3-kinases. Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB, Vogelstein B. Nat Rev Cancer 8 665-669 (2008)
  41. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Janmey PA, Bucki R, Radhakrishnan R. Biochem Biophys Res Commun 506 307-314 (2018)
  42. Activating mutations of TOR (target of rapamycin). Hardt M, Chantaravisoot N, Tamanoi F. Genes Cells 16 141-151 (2011)
  43. Calmodulin and PI3K Signaling in KRAS Cancers. Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Trends Cancer 3 214-224 (2017)
  44. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Niu Z, Jin R, Zhang Y, Li H. Signal Transduct Target Ther 7 353 (2022)
  45. Taming the PI3K team to hold inflammation and cancer at bay. Hirsch E, Ciraolo E, Ghigo A, Costa C. Pharmacol Ther 118 192-205 (2008)
  46. The structural basis of PI3K cancer mutations: from mechanism to therapy. Liu S, Knapp S, Ahmed AA. Cancer Res 74 641-646 (2014)
  47. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). Jung K, Kang H, Mehra R. Cancers Head Neck 3 3 (2018)
  48. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Maira SM, Voliva C, Garcia-Echeverria C. Expert Opin Ther Targets 12 223-238 (2008)
  49. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL, Burke JE. Front Immunol 9 575 (2018)
  50. New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Hoffman A, Lazar AJ, Pollock RE, Lev D. Drug Resist Updat 14 52-66 (2011)
  51. Twice upon a time: PI3K's secret double life exposed. Hirsch E, Braccini L, Ciraolo E, Morello F, Perino A. Trends Biochem Sci 34 244-248 (2009)
  52. The PIK3CA gene as a mutated target for cancer therapy. Gustin JP, Cosgrove DP, Park BH. Curr Cancer Drug Targets 8 733-740 (2008)
  53. A beta version of life: p110β takes center stage. Dbouk HA, Backer JM. Oncotarget 1 729-733 (2010)
  54. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Biophys Rev 10 1263-1282 (2018)
  55. Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Roop RP, Ma CX. Future Oncol 8 273-292 (2012)
  56. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Cheung LW, Mills GB. Pharmacogenomics 17 297-307 (2016)
  57. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Dirican E, Akkiprik M, Özer A. Tumour Biol 37 7033-7045 (2016)
  58. Prognostic and clinical impact of PIK3CA mutation in gastric cancer: pyrosequencing technology and literature review. Harada K, Baba Y, Shigaki H, Ishimoto T, Miyake K, Kosumi K, Tokunaga R, Izumi D, Ohuchi M, Nakamura K, Kiyozumi Y, Kurashige J, Iwatsuki M, Miyamoto Y, Sakamoto Y, Yoshida N, Watanabe M, Baba H. BMC Cancer 16 400 (2016)
  59. Integrative Structure Modeling: Overview and Assessment. Braitbard M, Schneidman-Duhovny D, Kalisman N. Annu Rev Biochem 88 113-135 (2019)
  60. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Zhang M, Jang H, Nussinov R. Cancer Res 81 237-247 (2021)
  61. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Salamon RS, Backer JM. Bioessays 35 602-611 (2013)
  62. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue. Stratikopoulos EE, Parsons RE. Clin Cancer Res 22 2605-2610 (2016)
  63. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Bresnick AR, Backer JM. Endocrinology 160 536-555 (2019)
  64. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Nussinov R, Zhang M, Tsai CJ, Jang H. Mol Cancer Res 19 543-548 (2021)
  65. The Importance of Being PI3K in the RAS Signaling Network. Cuesta C, Arévalo-Alameda C, Castellano E. Genes (Basel) 12 1094 (2021)
  66. Neomorphic mutations create therapeutic challenges in cancer. Takiar V, Ip CK, Gao M, Mills GB, Cheung LW. Oncogene 36 1607-1618 (2017)
  67. Structural effects of oncogenic PI3Kα mutations. Gabelli SB, Huang CH, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Curr Top Microbiol Immunol 347 43-53 (2010)
  68. Approaches and limitations of phosphatidylinositol-3-kinase pathway activation status as a predictive biomarker in the clinical development of targeted therapy. Coughlin CM, Johnston DS, Strahs A, Burczynski ME, Bacus S, Hill J, Feingold JM, Zacharchuk C, Berkenblit A. Breast Cancer Res Treat 124 1-11 (2010)
  69. PI3K inhibitors as novel cancer therapies: implications for cardiovascular medicine. McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. J Card Fail 19 268-282 (2013)
  70. Class IA phosphoinositide 3-kinase isoforms and human tumorigenesis: implications for cancer drug discovery and development. Wee S, Lengauer C, Wiederschain D. Curr Opin Oncol 20 77-82 (2008)
  71. Impact of p85α Alterations in Cancer. Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Biomolecules 9 E29 (2019)
  72. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Akbay EA, Kim J. Transl Lung Cancer Res 7 464-486 (2018)
  73. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer. Lee MJ, Jin N, Grandis JR, Johnson DE. Biochim Biophys Acta Mol Cell Res 1867 118679 (2020)
  74. Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. Dbouk HA, Backer JM. Trends Pharmacol Sci 34 149-153 (2013)
  75. Signalling via class IA PI3Ks. Stephens L, Hawkins P. Adv Enzyme Regul 51 27-36 (2011)
  76. Targeting the protein-protein interaction between IRS1 and mutant p110α for cancer therapy. Hao Y, Zhao S, Wang Z. Toxicol Pathol 42 140-147 (2014)
  77. Structure, function and inhibition of the phosphoinositide 3-kinase p110α enzyme. Flanagan JU, Shepherd PR. Biochem Soc Trans 42 120-124 (2014)
  78. The impact of heterogeneity in phosphoinositide 3-kinase pathway in human cancer and possible therapeutic treatments. Wang W, Lv J, Wang L, Wang X, Ye L. Semin Cell Dev Biol 64 116-124 (2017)
  79. Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein-Barr Virus Infection. Liu X, Deng Y, Huang Y, Ye J, Xie S, He Q, Chen Y, Lin Y, Liang R, Wei J, Li Y, Zhang J. Curr Oncol 29 6035-6052 (2022)
  80. Phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as therapeutic targets in breast cancer. Dirican E, Akkiprik M. Tumour Biol 39 1010428317695529 (2017)
  81. Potential role of PI3K inhibitors in the treatment of breast cancer. Carvalho S, Schmitt F, Schmitt F. Future Oncol 6 1251-1263 (2010)
  82. Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment. Castel P, Toska E, Zumsteg ZS, Carmona FJ, Elkabets M, Bosch A, Scaltriti M. Mol Cell Oncol 1 e963447 (2014)
  83. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. J Transl Med 21 774 (2023)
  84. The mutational profiles and corresponding therapeutic implications of PI3K mutations in cancer. VanLandingham NK, Nazarenko A, Grandis JR, Johnson DE. Adv Biol Regul 87 100934 (2023)
  85. Capitalizing on tumor genotyping: towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase. Gabelli SB, Duong-Ly KC, Brower ET, Amzel LM. Adv Enzyme Regul 51 273-279 (2011)
  86. Signaling pathways, microenvironment, and targeted treatments in Langerhans cell histiocytosis. Gao XM, Li J, Cao XX. Cell Commun Signal 20 195 (2022)
  87. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Rodgers SJ, Mitchell CA, Ooms LM. Biochem Soc Trans 51 1459-1472 (2023)
  88. Understanding PI3K/Akt/mTOR signaling in squamous cell carcinoma: mutated PIK3CA as an example. Zheng S, He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X. Mol Biomed 5 13 (2024)
  89. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Göttig L, Schreiner S. Tumour Virus Res 17 200277 (2024)
  90. Leveraging altered lipid metabolism in treating B cell malignancies. Lee J, Mani A, Shin MJ, Krauss RM. Prog Lipid Res 95 101288 (2024)
  91. Structural and mechanistic insights provided by single particle cryo-EM analysis of phosphoinositide 3-kinase (PI3Kα). Vogt PK, Hart JR, Yang S, Zhou Q, Yang D, Wang MW. Biochim Biophys Acta Rev Cancer 1878 188947 (2023)

Articles citing this publication (167)