2vv2 Citations

Structural basis for the activation of PPARgamma by oxidized fatty acids.

Nat Struct Mol Biol 15 924-31 (2008)
Related entries: 2vsr, 2vst, 2vv0, 2vv1, 2vv3, 2vv4

Cited: 249 times
EuropePMC logo PMID: 19172745

Abstract

The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) has important roles in adipogenesis and immune response as well as roles in both lipid and carbohydrate metabolism. Although synthetic agonists for PPARgamma are widely used as insulin sensitizers, the identity of the natural ligand(s) for PPARgamma is still not clear. Suggested natural ligands include 15-deoxy-delta12,14-prostaglandin J2 and oxidized fatty acids such as 9-HODE and 13-HODE. Crystal structures of PPARgamma have revealed the mode of recognition for synthetic compounds. Here we report structures of PPARgamma bound to oxidized fatty acids that are likely to be natural ligands for this receptor. These structures reveal that the receptor can (i) simultaneously bind two fatty acids and (ii) couple covalently with conjugated oxo fatty acids. Thermal stability and gene expression analyses suggest that such covalent ligands are particularly effective activators of PPARgamma and thus may serve as potent and biologically relevant ligands.

Articles - 2vv2 mentioned but not cited (4)

  1. Structural basis for the activation of PPARgamma by oxidized fatty acids. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. Nat Struct Mol Biol 15 924-931 (2008)
  2. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist. Goto T, Nagai H, Egawa K, Kim YI, Kato S, Taimatsu A, Sakamoto T, Ebisu S, Hohsaka T, Miyagawa H, Murakami S, Takahashi N, Takahashi N, Kawada T. Biochem J 438 111-119 (2011)
  3. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  4. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J Comput Aided Mol Des 29 421-439 (2015)


Reviews citing this publication (82)

  1. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Varga T, Czimmerer Z, Nagy L. Biochim Biophys Acta 1812 1007-1022 (2011)
  2. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Serhan CN. Am J Pathol 177 1576-1591 (2010)
  3. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Biochem Pharmacol 92 73-89 (2014)
  4. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Huang P, Chandra V, Rastinejad F. Annu Rev Physiol 72 247-272 (2010)
  5. Formation and signaling actions of electrophilic lipids. Schopfer FJ, Cipollina C, Freeman BA. Chem Rev 111 5997-6021 (2011)
  6. Metabolic Reprogramming in Glioma. Strickland M, Stoll EA. Front Cell Dev Biol 5 43 (2017)
  7. Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial Dysfunction in Neurodegeneration. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Front Neurosci 12 466 (2018)
  8. Mechanisms of gene regulation by fatty acids. Georgiadi A, Kersten S. Adv Nutr 3 127-134 (2012)
  9. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Nagy L, Szanto A, Szatmari I, Széles L. Physiol Rev 92 739-789 (2012)
  10. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Korbecki J, Bobiński R, Dutka M. Inflamm Res 68 443-458 (2019)
  11. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Apostolova N, Victor VM. Antioxid Redox Signal 22 686-729 (2015)
  12. Nutraceuticals: A paradigm of proactive medicine. Santini A, Tenore GC, Novellino E. Eur J Pharm Sci 96 53-61 (2017)
  13. Role of lipids in the metabolism and activation of immune cells. Hubler MJ, Kennedy AJ. J Nutr Biochem 34 1-7 (2016)
  14. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Singh NK, Rao GN. Prog Lipid Res 73 28-45 (2019)
  15. The cross talk between microbiota and the immune system: metabolites take center stage. Shapiro H, Thaiss CA, Levy M, Elinav E. Curr Opin Immunol 30 54-62 (2014)
  16. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Choi JM, Bothwell AL. Mol Cells 33 217-222 (2012)
  17. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Martin H. Mutat Res 690 57-63 (2010)
  18. PPARγ signaling and emerging opportunities for improved therapeutics. Wang S, Dougherty EJ, Danner RL. Pharmacol Res 111 76-85 (2016)
  19. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Delmastro-Greenwood M, Freeman BA, Wendell SG. Annu Rev Physiol 76 79-105 (2014)
  20. PPARs and adipocyte function. Christodoulides C, Vidal-Puig A. Mol Cell Endocrinol 318 61-68 (2010)
  21. Redox signaling in inflammation: interactions of endogenous electrophiles and mitochondria in cardiovascular disease. Koenitzer JR, Freeman BA. Ann N Y Acad Sci 1203 45-52 (2010)
  22. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Kim KR, Oh DK. Biotechnol Adv 31 1473-1485 (2013)
  23. Docosahexaenoic acid neurolipidomics. Niemoller TD, Bazan NG. Prostaglandins Other Lipid Mediat 91 85-89 (2010)
  24. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM. J Proteomics 92 110-131 (2013)
  25. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. Biol Rev Camb Philos Soc 92 2046-2069 (2017)
  26. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Zhang F, Kong D, Lu Y, Zheng S. Cell Mol Life Sci 70 259-276 (2013)
  27. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. Vangaveti VN, Jansen H, Kennedy RL, Malabu UH. Eur J Pharmacol 785 70-76 (2016)
  28. Docosahexaenoic acid: one molecule diverse functions. Hashimoto M, Hossain S, Al Mamun A, Matsuzaki K, Arai H. Crit Rev Biotechnol 37 579-597 (2017)
  29. Obesogens. Grün F. Curr Opin Endocrinol Diabetes Obes 17 453-459 (2010)
  30. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Zhang F, Lu Y, Zheng S. Cell Signal 24 596-605 (2012)
  31. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Martin H. Mutat Res 669 1-7 (2009)
  32. Lipoxidation in cardiovascular diseases. Gianazza E, Brioschi M, Brioschi M, Fernandez AM, Banfi C. Redox Biol 23 101119 (2019)
  33. Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment. Khoo NK, Freeman BA. Curr Opin Pharmacol 10 179-184 (2010)
  34. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: a natural approach to complement pharmacotherapy in the management of diabetes. Lacroix IM, Li-Chan EC. Mol Nutr Food Res 58 61-78 (2014)
  35. A structural perspective on nuclear receptors as targets of environmental compounds. Delfosse V, Maire AL, Balaguer P, Bourguet W. Acta Pharmacol Sin 36 88-101 (2015)
  36. Covalent inhibitors: an opportunity for rational target selectivity. Lagoutte R, Patouret R, Winssinger N. Curr Opin Chem Biol 39 54-63 (2017)
  37. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Elsherbiny ME, Emara M, Godbout R. Prog Lipid Res 52 562-570 (2013)
  38. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Engevik MA, Versalovic J. Microbiol Spectr 5 (2017)
  39. Fatty Acid Metabolism, Bone Marrow Adipocytes, and AML. Tabe Y, Konopleva M, Andreeff M. Front Oncol 10 155 (2020)
  40. Oxidized Lipids in Persistent Pain States. Osthues T, Sisignano M. Front Pharmacol 10 1147 (2019)
  41. Targeting Peroxisome Proliferator-Activated Receptors Using Thiazolidinediones: Strategy for Design of Novel Antidiabetic Drugs. Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W, Alhazmi HA. Int J Med Chem 2017 1069718 (2017)
  42. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. Prog Lipid Res 61 149-162 (2016)
  43. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Front Neurosci 13 907 (2019)
  44. Relationship Between Metabolic Syndrome and Bone Health - An Evaluation of Epidemiological Studies and Mechanisms Involved. Chin KY, Wong SK, Ekeuku SO, Pang KL. Diabetes Metab Syndr Obes 13 3667-3690 (2020)
  45. Saponins as modulators of nuclear receptors. Zhang T, Zhong S, Li T, Zhang J. Crit Rev Food Sci Nutr 60 94-107 (2020)
  46. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, Andò S, Bonofiglio D. Cancers (Basel) 12 E2623 (2020)
  47. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis. Sharma A, Flora SJS. Oxid Med Cell Longev 2021 9074206 (2021)
  48. Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Hundertmark J, Krenkel O, Tacke F. Front Immunol 9 2418 (2018)
  49. Hepatic Macrophage as a Key Player in Fatty Liver Disease. Xu L, Liu W, Bai F, Xu Y, Liang X, Ma C, Gao L. Front Immunol 12 708978 (2021)
  50. Nuclear receptors in transgenerational epigenetic inheritance. Ozgyin L, Erdős E, Bojcsuk D, Balint BL. Prog Biophys Mol Biol 118 34-43 (2015)
  51. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Int J Mol Sci 22 1001 (2021)
  52. The Molecular Brakes of Adipose Tissue Lipolysis. Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. Front Physiol 13 826314 (2022)
  53. The impact of dietary fatty acids on macrophage cholesterol homeostasis. Afonso Mda S, Castilho G, Lavrador MS, Passarelli M, Nakandakare ER, Lottenberg SA, Lottenberg AM. J Nutr Biochem 25 95-103 (2014)
  54. The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation. Narala VR, Subramani PA, Narasimha VR, Shaik FB, Panati K. Int Immunopharmacol 23 283-287 (2014)
  55. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Karki P, Birukov KG. Cells 9 E981 (2020)
  56. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Malinina L, Patel DJ, Brown RE. Annu Rev Biochem 86 609-636 (2017)
  57. The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer. Mao F, Wang M, Wang J, Xu WR. Inflamm Res 64 661-669 (2015)
  58. Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. Cipollina C. Biomed Res Int 2015 501792 (2015)
  59. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Neurotox Res 36 583-601 (2019)
  60. Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs? Roy J, Le Guennec JY, Galano JM, Thireau J, Bultel-Poncé V, Demion M, Oger C, Lee JC, Durand T. Biochimie 120 56-61 (2016)
  61. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Keijer J, Bekkenkamp-Grovenstein M, Venema D, Dommels YE. Biochim Biophys Acta 1807 697-706 (2011)
  62. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Mannan A, Garg N, Singh TG, Kang HK. Neurochem Res 46 2800-2831 (2021)
  63. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. Metabolites 11 807 (2021)
  64. Protection of nitro-fatty acid against kidney diseases. Wang W, Li C, Yang T. Am J Physiol Renal Physiol 310 F697-F704 (2016)
  65. Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Hassan FU, Nadeem A, Li Z, Javed M, Liu Q, Azhar J, Rehman MS, Cui K, Rehman SU. Int J Mol Sci 22 12463 (2021)
  66. The Regulation of Lipokines by Environmental Factors. Hernández-Saavedra D, Stanford KI. Nutrients 11 E2422 (2019)
  67. Protein Lipoxidation: Basic Concepts and Emerging Roles. Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. Antioxidants (Basel) 10 295 (2021)
  68. Symposium review: Lipids as regulators of conceptus development: Implications for metabolic regulation of reproduction in dairy cattle. Ribeiro ES. J Dairy Sci 101 3630-3641 (2018)
  69. The Skin Epilipidome in Stress, Aging, and Inflammation. Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. Front Endocrinol (Lausanne) 11 607076 (2020)
  70. Cancer metabolism and intervention therapy. Zhao H, Li Y. Mol Biomed 2 5 (2021)
  71. Cellular responses to excess fatty acids: focus on ubiquitin regulatory X domain-containing protein 8. Kim H, Ye J. Curr Opin Lipidol 25 118-124 (2014)
  72. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Basak S, Duttaroy AK. Reprod Sci 30 408-427 (2023)
  73. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)
  74. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Cambiaggi L, Chakravarty A, Noureddine N, Hersberger M. Int J Mol Sci 24 6110 (2023)
  75. Lipid signaling in the atherogenesis context. Smirnov AN. Biochemistry (Mosc) 75 793-810 (2010)
  76. PPARγ and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Woll AW, Quelle FW, Sigmund CD. Physiol Genomics 49 653-658 (2017)
  77. Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells. Barvitenko N, Skverchinskaya E, Lawen A, Matteucci E, Saldanha C, Uras G, Manca A, Aslam M, Pantaleo A. Antioxidants (Basel) 10 904 (2021)
  78. Electrophile Modulation of Inflammation: A Two-Hit Approach. O'Brien J, Wendell SG. Metabolites 10 E453 (2020)
  79. Physiological Convergence and Antagonism Between GR and PPARγ in Inflammation and Metabolism. Dacic M, Shibu G, Rogatsky I. Adv Exp Med Biol 1390 123-141 (2022)
  80. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. Tabe Y, Konopleva M. Cancer Drug Resist 6 138-150 (2023)
  81. Structural Biology Inspired Development of a Series of Human Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands: From Agonist to Antagonist. Miyachi H. Int J Mol Sci 24 3940 (2023)
  82. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. Brain Sci 13 1367 (2023)

Articles citing this publication (163)