2wc0 Citations

Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme.

J Biol Chem 284 14177-88 (2009)
Cited: 52 times
EuropePMC logo PMID: 19321446

Abstract

Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.

Articles - 2wc0 mentioned but not cited (1)

  1. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. Manolopoulou M, Guo Q, Malito E, Schilling AB, Tang WJ. J Biol Chem 284 14177-14188 (2009)


Reviews citing this publication (7)

  1. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus. Tang WJ. Trends Endocrinol Metab 27 24-34 (2016)
  2. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Crit Rev Biochem Mol Biol 52 554-582 (2017)
  3. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. J Alzheimers Dis 48 891-917 (2015)
  4. Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. González-Casimiro CM, Merino B, Casanueva-Álvarez E, Postigo-Casado T, Cámara-Torres P, Fernández-Díaz CM, Leissring MA, Cózar-Castellano I, Perdomo G. Biomedicines 9 86 (2021)
  5. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Wei Z, Koya J, Reznik SE. Front Neurosci 15 687157 (2021)
  6. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Cells 11 1228 (2022)
  7. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Pharm Res 39 611-629 (2022)

Articles citing this publication (44)

  1. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Maianti JP, McFedries A, Foda ZH, Kleiner RE, Du XQ, Leissring MA, Tang WJ, Charron MJ, Seeliger MA, Saghatelian A, Liu DR. Nature 511 94-98 (2014)
  2. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. Ren M, Guo Q, Guo L, Lenz M, Qian F, Koenen RR, Xu H, Schilling AB, Weber C, Ye RD, Dinner AR, Tang WJ. EMBO J 29 3952-3966 (2010)
  3. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. Leissring MA, Malito E, Hedouin S, Reinstatler L, Sahara T, Abdul-Hay SO, Choudhry S, Maharvi GM, Fauq AH, Huzarska M, May PS, Choi S, Logan TP, Turk BE, Cantley LC, Manolopoulou M, Tang WJ, Stein RL, Cuny GD, Selkoe DJ. PLoS One 5 e10504 (2010)
  4. Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. Guo Q, Manolopoulou M, Bian Y, Schilling AB, Tang WJ. J Mol Biol 395 430-443 (2010)
  5. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Deprez-Poulain R, Hennuyer N, Bosc D, Liang WG, Enée E, Marechal X, Charton J, Totobenazara J, Berte G, Jahklal J, Verdelet T, Dumont J, Dassonneville S, Woitrain E, Gauriot M, Paquet C, Duplan I, Hermant P, Cantrelle FX, Sevin E, Culot M, Landry V, Herledan A, Piveteau C, Lippens G, Leroux F, Tang WJ, van Endert P, Staels B, Deprez B. Nat Commun 6 8250 (2015)
  6. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. Ralat LA, Guo Q, Ren M, Funke T, Dickey DM, Potter LR, Tang WJ. J Biol Chem 286 4670-4679 (2011)
  7. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. McCord LA, Liang WG, Dowdell E, Kalas V, Hoey RJ, Koide A, Koide S, Tang WJ. Proc Natl Acad Sci U S A 110 13827-13832 (2013)
  8. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. de Tullio MB, Castelletto V, Hamley IW, Martino Adami PV, Morelli L, Castaño EM. PLoS One 8 e59113 (2013)
  9. Preparation of Selenoinsulin as a Long-Lasting Insulin Analogue. Arai K, Takei T, Okumura M, Watanabe S, Amagai Y, Asahina Y, Moroder L, Hojo H, Inaba K, Iwaoka M. Angew Chem Int Ed Engl 56 5522-5526 (2017)
  10. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. Ralat LA, Ren M, Schilling AB, Tang WJ. J Biol Chem 284 34005-34018 (2009)
  11. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo. Durham TB, Toth JL, Klimkowski VJ, Cao JX, Siesky AM, Alexander-Chacko J, Wu GY, Dixon JT, McGee JE, Wang Y, Guo SY, Cavitt RN, Schindler J, Thibodeaux SJ, Calvert NA, Coghlan MJ, Sindelar DK, Christe M, Kiselyov VV, Michael MD, Sloop KW. J Biol Chem 290 20044-20059 (2015)
  12. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. Zhang Z, Liang WG, Bailey LJ, Tan YZ, Wei H, Wang A, Farcasanu M, Woods VA, McCord LA, Lee D, Shang W, Deprez-Poulain R, Deprez B, Liu DR, Koide A, Koide S, Kossiakoff AA, Li S, Carragher B, Potter CS, Tang WJ. Elife 7 e33572 (2018)
  13. Ubiquitin is a novel substrate for human insulin-degrading enzyme. Ralat LA, Kalas V, Zheng Z, Goldman RD, Sosnick TR, Tang WJ. J Mol Biol 406 454-466 (2011)
  14. Identification of the allosteric regulatory site of insulysin. Noinaj N, Bhasin SK, Song ES, Scoggin KE, Juliano MA, Juliano L, Hersh LB, Rodgers DW. PLoS One 6 e20864 (2011)
  15. Formation of insulin fragments by insulin-degrading enzyme: the role of zinc(II) and cystine bridges. Bellia F, Pietropaolo A, Grasso G. J Mass Spectrom 48 135-140 (2013)
  16. Molecular basis of substrate recognition and degradation by human presequence protease. King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Structure 22 996-1007 (2014)
  17. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R. Eur J Med Chem 79 184-193 (2014)
  18. Degradation of Alzheimer's Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. Sahoo BR, Panda PK, Liang W, Tang WJ, Ahuja R, Ramamoorthy A. J Mol Biol 433 166993 (2021)
  19. Inositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes. Song ES, Jang H, Guo HF, Juliano MA, Juliano L, Morris AJ, Galperin E, Rodgers DW, Hersh LB. Proc Natl Acad Sci U S A 114 E2826-E2835 (2017)
  20. Insulin-Degrading Enzyme: Paradoxes and Possibilities. Leissring MA. Cells 10 2445 (2021)
  21. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH. Grasso G, Satriano C, Milardi D. Biophys Chem 203-204 33-40 (2015)
  22. FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. Grinter R, Hay ID, Song J, Wang J, Teng D, Dhanesakaran V, Wilksch JJ, Davies MR, Littler D, Beckham SA, Henderson IR, Strugnell RA, Dougan G, Lithgow T. PLoS Biol 16 e2006026 (2018)
  23. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme. Grasso G, Mielczarek P, Niedziolka M, Silberring J. Int J Mol Sci 15 16787-16799 (2014)
  24. Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism. Song ES, Rodgers DW, Hersh LB. J Biol Chem 286 13852-13858 (2011)
  25. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin. Tundo GR, Di Muzio E, Ciaccio C, Sbardella D, Di Pierro D, Polticelli F, Coletta M, Marini S. FEBS J 283 3755-3770 (2016)
  26. Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. Maruyama Y, Chuma A, Mikami B, Hashimoto W, Murata K. J Mol Biol 407 180-192 (2011)
  27. Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. Charton J, Gauriot M, Totobenazara J, Hennuyer N, Dumont J, Bosc D, Marechal X, Elbakali J, Herledan A, Wen X, Ronco C, Ronco C, Gras-Masse H, Heninot A, Pottiez V, Landry V, Staels B, Liang WG, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R. Eur J Med Chem 90 547-567 (2015)
  28. An Extended Polyanion Activation Surface in Insulin Degrading Enzyme. Song ES, Ozbil M, Zhang T, Sheetz M, Lee D, Tran D, Li S, Prabhakar R, Hersh LB, Rodgers DW. PLoS One 10 e0133114 (2015)
  29. Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening. Leroux F, Bosc D, Beghyn T, Hermant P, Warenghem S, Landry V, Pottiez V, Guillaume V, Charton J, Herledan A, Urata S, Liang W, Sheng L, Tang WJ, Deprez B, Deprez-Poulain R. Eur J Med Chem 179 557-566 (2019)
  30. Resveratrol Sustains Insulin-Degrading Enzyme Activity toward Aβ42. Krasinski CA, Ivancic VA, Zheng Q, Spratt DE, Lazo ND. ACS Omega 3 13275-13282 (2018)
  31. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner. Hahn F, Schmalen A, Setz C, Friedrich M, Schlößer S, Kölle J, Spranger R, Rauch P, Fraedrich K, Reif T, Karius-Fischer J, Balasubramanyam A, Henklein P, Fossen T, Schubert U. PLoS One 12 e0174254 (2017)
  32. Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin-degrading enzyme. Ivancic VA, Krasinski CA, Zheng Q, Meservier RJ, Spratt DE, Lazo ND. Biosci Rep 38 BSR20181416 (2018)
  33. Cysteine 904 is required for maximal insulin degrading enzyme activity and polyanion activation. Song ES, Melikishvili M, Fried MG, Juliano MA, Juliano L, Rodgers DW, Hersh LB. PLoS One 7 e46790 (2012)
  34. Differential Effects of Polyphenols on Insulin Proteolysis by the Insulin-Degrading Enzyme. Zheng Q, Kebede MT, Lee B, Krasinski CA, Islam S, Wurfl LA, Kemeh MM, Ivancic VA, Jakobsche CE, Spratt DE, Lazo ND. Antioxidants (Basel) 10 1342 (2021)
  35. From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Giannopoulou AF, Velentzas AD, Anagnostopoulos AK, Agalou A, Papandreou NC, Katarachia SA, Koumoundourou DG, Konstantakou EG, Pantazopoulou VI, Delis A, Michailidi MT, Valakos D, Chatzopoulos D, Syntichaki P, Iconomidou VA, Tsitsilonis OE, Papassideri IS, Voutsinas GE, Hatzopoulos P, Thanos D, Beis D, Anastasiadou E, Tsangaris GT, Stravopodis DJ. Cancers (Basel) 13 2024 (2021)
  36. Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation. Lai R, Tang WJ, Li H. J Chem Inf Model 58 1926-1934 (2018)
  37. Hydroxypyridinethione Inhibitors of Human Insulin-Degrading Enzyme. Adamek RN, Suire CN, Stokes RW, Brizuela MK, Cohen SM, Leissring MA. ChemMedChem 16 1775-1787 (2021)
  38. Mechanisms of peptide hydrolysis by aspartyl and metalloproteases. Paul TJ, Barman A, Ozbil M, Bora RP, Zhang T, Sharma G, Hoffmann Z, Prabhakar R. Phys Chem Chem Phys 18 24790-24801 (2016)
  39. Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights the Distinction between External and Internal Diselenide Bridges. Dhayalan B, Chen YS, Phillips NB, Swain M, Rege NK, Mirsalehi A, Jarosinski M, Ismail-Beigi F, Metanis N, Weiss MA. Chemistry 26 4695-4700 (2020)
  40. In vitro degradation of insulin-like peptide 3 by insulin-degrading enzyme. Zhang WJ, Luo X, Guo ZY. Protein J 29 93-98 (2010)
  41. Insulin-Degrading Enzyme Interacts with Mitochondrial Ribosomes and Respiratory Chain Proteins. Yilmaz A, Guerrera C, Waeckel-Énée E, Lipecka J, Bertocci B, van Endert P. Biomolecules 13 890 (2023)
  42. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Commun Chem 6 258 (2023)
  43. Exchange Broadening Underlies the Enhancement of IDE-Dependent Degradation of Insulin by Anionic Membranes. Zheng Q, Lee B, Kebede MT, Ivancic VA, Kemeh MM, Brito HL, Spratt DE, Lazo ND. ACS Omega 7 24757-24765 (2022)
  44. Exploring the Structural Rearrangements of the Human Insulin-Degrading Enzyme through Molecular Dynamics Simulations. Ghoula M, Janel N, Camproux AC, Moroy G. Int J Mol Sci 23 1746 (2022)