2wzh Citations

Visualizing the reaction coordinate of an O-GlcNAc hydrolase.

J Am Chem Soc 132 1807-9 (2010)
Related entries: 2wzi, 2x0h

Cited: 44 times
EuropePMC logo PMID: 20067256

Abstract

N-Acetylglucosamine beta-O-linked to serine and threonine residues of nucleocytoplasmic proteins (O-GlcNAc) has been linked to neurodegeneration, cellular stress response, and transcriptional regulation. Removal of O-GlcNAc is catalyzed by O-GlcNAcase (OGA) using a substrate-assisted catalytic mechanism. Here we define the reaction coordinate using chemical approaches and directly observe both a Michaelis complex and the oxazoline intermediate.

Reviews citing this publication (13)

  1. O-GlcNAc signalling: implications for cancer cell biology. Slawson C, Hart GW. Nat Rev Cancer 11 678-684 (2011)
  2. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG. FEBS J 280 3028-3049 (2013)
  3. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Vocadlo DJ. Curr Opin Chem Biol 16 488-497 (2012)
  4. Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation. Sauve AA, Youn DY. Curr Opin Chem Biol 16 535-543 (2012)
  5. Glycoside hydrolases: catalytic base/nucleophile diversity. Vuong TV, Wilson DB. Biotechnol Bioeng 107 195-205 (2010)
  6. Chemical approaches to study O-GlcNAcylation. Banerjee PS, Hart GW, Cho JW. Chem Soc Rev 42 4345-4357 (2013)
  7. O-GlcNAcase: promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? Alonso J, Schimpl M, van Aalten DM. J Biol Chem 289 34433-34439 (2014)
  8. Deciphering the Functions of Protein O-GlcNAcylation with Chemistry. Worth M, Li H, Jiang J. ACS Chem Biol 12 326-335 (2017)
  9. Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers. Sousa SF, Fernandes PA, Ramos MJ. Phys Chem Chem Phys 14 12431-12441 (2012)
  10. Chemical tools to explore nutrient-driven O-GlcNAc cycling. Kim EJ, Bond MR, Love DC, Hanover JA. Crit Rev Biochem Mol Biol 49 327-342 (2014)
  11. Development of inhibitors as research tools for carbohydrate-processing enzymes. Gloster TM. Biochem Soc Trans 40 913-928 (2012)
  12. Computer Simulation to Rationalize "Rational" Engineering of Glycoside Hydrolases and Glycosyltransferases. Coines J, Cuxart I, Teze D, Rovira C. J Phys Chem B 126 802-812 (2022)
  13. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. Kim EJ. Chembiochem 18 1462-1472 (2017)

Articles citing this publication (31)

  1. Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, Davies GJ. Proc Natl Acad Sci U S A 109 781-786 (2012)
  2. Nutrient-driven O-GlcNAc cycling - think globally but act locally. Harwood KR, Hanover JA. J Cell Sci 127 1857-1867 (2014)
  3. Structural and functional insight into human O-GlcNAcase. Roth C, Chan S, Offen WA, Hemsworth GR, Willems LI, King DT, Varghese V, Britton R, Vocadlo DJ, Davies GJ. Nat Chem Biol 13 610-612 (2017)
  4. Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode. Li B, Li H, Lu L, Jiang J. Nat Struct Mol Biol 24 362-369 (2017)
  5. Structural insights into the substrate binding adaptability and specificity of human O-GlcNAcase. Li B, Li H, Hu CW, Jiang J. Nat Commun 8 666 (2017)
  6. Structure of a complete four-domain chitinase from Moritella marina, a marine psychrophilic bacterium. Malecki PH, Malecki PH, Raczynska JE, Vorgias CE, Rypniewski W. Acta Crystallogr D Biol Crystallogr 69 821-829 (2013)
  7. Selective trihydroxyazepane NagZ inhibitors increase sensitivity of Pseudomonas aeruginosa to β-lactams. Mondon M, Hur S, Vadlamani G, Rodrigues P, Tsybina P, Oliver A, Mark BL, Vocadlo DJ, Blériot Y. Chem Commun (Camb) 49 10983-10985 (2013)
  8. Gaining insight into the inhibition of glycoside hydrolase family 20 exo-β-N-acetylhexosaminidases using a structural approach. Sumida T, Stubbs KA, Ito M, Yokoyama S. Org Biomol Chem 10 2607-2612 (2012)
  9. Tail tubular protein A: a dual-function tail protein of Klebsiella pneumoniae bacteriophage KP32. Pyra A, Brzozowska E, Pawlik K, Gamian A, Dauter M, Dauter Z. Sci Rep 7 2223 (2017)
  10. Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum. Chen X, Xu L, Jin L, Sun B, Gu G, Lu L, Xiao M. Appl Environ Microbiol 82 5642-5652 (2016)
  11. Metabolism of vertebrate amino sugars with N-glycolyl groups: intracellular β-O-linked N-glycolylglucosamine (GlcNGc), UDP-GlcNGc, and the biochemical and structural rationale for the substrate tolerance of β-O-linked β-N-acetylglucosaminidase. Macauley MS, Chan J, Zandberg WF, He Y, Whitworth GE, Stubbs KA, Yuzwa SA, Bennet AJ, Varki A, Davies GJ, Vocadlo DJ. J Biol Chem 287 28882-28897 (2012)
  12. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Mayes HB, Knott BC, Crowley MF, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT. Chem Sci 7 5955-5968 (2016)
  13. Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. He Y, Bubb AK, Stubbs KA, Gloster TM, Davies GJ. Amino Acids 40 829-839 (2011)
  14. Structural and mechanistic insights into a Bacteroides vulgatus retaining N-acetyl-β-galactosaminidase that uses neighbouring group participation. Roth C, Petricevic M, John A, Goddard-Borger ED, Davies GJ, Williams SJ. Chem Commun (Camb) 52 11096-11099 (2016)
  15. Computational evidence for the substrate-assisted catalytic mechanism of O-GlcNAcase. A DFT investigation. Bottoni A, Pietro Miscione G, Calvaresi M. Phys Chem Chem Phys 13 9568-9577 (2011)
  16. Dilution of dipolar interactions in a spin-labeled, multimeric metalloenzyme for DEER studies. Aitha M, Richmond TK, Hu Z, Hetrick A, Reese R, Gunther A, McCarrick R, Bennett B, Crowder MW. J Inorg Biochem 136 40-46 (2014)
  17. OGA inhibition by GlcNAc-selenazoline. Kim EJ, Love DC, Darout E, Abdo M, Rempel B, Withers SG, Rablen PR, Hanover JA, Knapp S. Bioorg Med Chem 18 7058-7064 (2010)
  18. Oxazoline or Oxazolinium Ion? The Protonation State and Conformation of the Reaction Intermediate of Chitinase Enzymes Revisited. Coines J, Alfonso-Prieto M, Biarnés X, Planas A, Rovira C. Chemistry 24 19258-19265 (2018)
  19. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies. Landström J, Bergström M, Hamark C, Ohlson S, Widmalm G. Org Biomol Chem 10 3019-3032 (2012)
  20. Development of tools to study lacto-N-biosidase: an important enzyme involved in the breakdown of human milk oligosaccharides. Hattie M, Debowski AW, Stubbs KA. Chembiochem 13 1128-1131 (2012)
  21. First steps towards conformationally selective artificial lectins: the chair-boat discrimination by molecularly imprinted polymers. de Talancé VL, Massinon O, Baati R, Wagner A, Vincent SP. Chem Commun (Camb) 48 10684-10686 (2012)
  22. Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis. Hattie M, Ito T, Debowski AW, Arakawa T, Katayama T, Yamamoto K, Fushinobu S, Stubbs KA. Chem Commun (Camb) 51 15008-15011 (2015)
  23. Additive-controlled stereoselective glycosylations of 2,3-oxazolidinone protected glucosamine or galactosamine thioglycoside donors with phenols based on preactivation protocol. Qin Q, Xiong DC, Ye XS. Carbohydr Res 403 104-114 (2015)
  24. Enzymatic Hydrolysis of Human Milk Oligosaccharides. The Molecular Mechanism of Bifidobacterium Bifidum Lacto-N-biosidase. Cuxart I, Coines J, Esquivias O, Faijes M, Planas A, Biarnés X, Rovira C. ACS Catal 12 4737-4743 (2022)
  25. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state. Wheatley RW, Huber RE. Biochem Cell Biol 93 531-540 (2015)
  26. Simple synthesis of conformationally fixed glycosamine analogues by beckmann rearrangement at the carbohydrate ring. Umbreen S, Linker T. Chemistry 21 7340-7344 (2015)
  27. Structural insights of two novel N-acetyl-glucosaminidase enzymes through in silico methods. ŞahutoĞlu AS, Duman H, Frese SA, Karav S. Turk J Chem 44 1703-1712 (2020)
  28. Synthetic and Crystallographic Insight into Exploiting sp2 Hybridization in the Development of α-l-Fucosidase Inhibitors. Coyle T, Wu L, Debowski AW, Davies GJ, Stubbs KA. Chembiochem 20 1365-1368 (2019)
  29. Development of an indicator for the direct visualization of radical intermediates in organic reactions. Yao Q, Li CJ. Chem Commun (Camb) 53 11225-11228 (2017)
  30. Human O-GlcNAcase Uses a Preactivated Boat-skew Substrate Conformation for Catalysis. Evidence from X-ray Crystallography and QM/MM Metadynamics. Calvelo M, Males A, Alteen MG, Willems LI, Vocadlo DJ, Davies GJ, Rovira C. ACS Catal 13 13672-13678 (2023)
  31. Influence of substitution at the 5α-Position on the side chain conformation of glucopyranosides. Rajasekaran P, Pirrone MG, Crich D. Carbohydr Res 500 108254 (2021)