3ayz Citations

Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase.

Nature 479 253-6 (2011)
Related entries: 3ayx, 5y34

Cited: 114 times
EuropePMC logo PMID: 22002607

Abstract

Membrane-bound respiratory [NiFe]-hydrogenase (MBH), a H(2)-uptake enzyme found in the periplasmic space of bacteria, catalyses the oxidation of dihydrogen: H(2) → 2H(+) + 2e(-) (ref. 1). In contrast to the well-studied O(2)-sensitive [NiFe]-hydrogenases (referred to as the standard enzymes), MBH has an O(2)-tolerant H(2) oxidation activity; however, the mechanism of O(2) tolerance is unclear. Here we report the crystal structures of Hydrogenovibrio marinus MBH in three different redox conditions at resolutions between 1.18 and 1.32 Å. We find that the proximal iron-sulphur (Fe-S) cluster of MBH has a [4Fe-3S] structure coordinated by six cysteine residues--in contrast to the [4Fe-4S] cubane structure coordinated by four cysteine residues found in the proximal Fe-S cluster of the standard enzymes--and that an amide nitrogen of the polypeptide backbone is deprotonated and additionally coordinates the cluster when chemically oxidized, thus stabilizing the superoxidized state of the cluster. The structure of MBH is very similar to that of the O(2)-sensitive standard enzymes except for the proximal Fe-S cluster. Our results give a reasonable explanation why the O(2) tolerance of MBH is attributable to the unique proximal Fe-S cluster; we propose that the cluster is not only a component of the electron transfer for the catalytic cycle, but that it also donates two electrons and one proton crucial for the appropriate reduction of O(2) in preventing the formation of an unready, inactive state of the enzyme.

Reviews - 3ayz mentioned but not cited (1)

  1. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem Rev 114 4366-4469 (2014)

Articles - 3ayz mentioned but not cited (1)

  1. New iron-sulfur clusters help hydrogenases tolerate oxygen. Grubel K, Holland PL. Angew Chem Int Ed Engl 51 3308-3310 (2012)


Reviews citing this publication (24)

  1. Mitochondrial complex I. Hirst J. Annu Rev Biochem 82 551-575 (2013)
  2. Heme Synthesis and Acquisition in Bacterial Pathogens. Choby JE, Skaar EP. J Mol Biol 428 3408-3428 (2016)
  3. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Shafaat HS, Rüdiger O, Ogata H, Lubitz W. Biochim Biophys Acta 1827 986-1002 (2013)
  4. Structure, function and biosynthesis of O₂-tolerant hydrogenases. Fritsch J, Lenz O, Friedrich B. Nat Rev Microbiol 11 106-114 (2013)
  5. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. Lee SC, Lo W, Holm RH. Chem Rev 114 3579-3600 (2014)
  6. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Hirst J, Roessler MM. Biochim Biophys Acta 1857 872-883 (2016)
  7. Structural Enzymology of Nitrogenase Enzymes. Einsle O, Rees DC. Chem Rev 120 4969-5004 (2020)
  8. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Taylor MC, Berney M, Conrad R, Cook GM. Appl Environ Microbiol 81 1190-1199 (2015)
  9. Structure and function of [NiFe] hydrogenases. Ogata H, Lubitz W, Higuchi Y. J Biochem 160 251-258 (2016)
  10. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Benoit SL, Maier RJ, Sawers RG, Greening C. Microbiol Mol Biol Rev 84 e00092-19 (2020)
  11. Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Saini V, Farhana A, Glasgow JN, Steyn AJ. Curr Opin Chem Biol 16 45-53 (2012)
  12. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. Ash PA, Hidalgo R, Vincent KA. ACS Catal 7 2471-2485 (2017)
  13. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. Esmieu C, Raleiras P, Berggren G. Sustain Energy Fuels 2 724-750 (2018)
  14. Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Imlay JA, Sethu R, Rohaun SK. Free Radic Biol Med 140 4-13 (2019)
  15. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H. Angew Chem Int Ed Engl 58 18710-18714 (2019)
  16. Redox-Sensing Iron-Sulfur Cluster Regulators. Crack JC, Le Brun NE. Antioxid Redox Signal 29 1809-1829 (2018)
  17. Artificial photosynthesis: understanding water splitting in nature. Cox N, Pantazis DA, Neese F, Lubitz W. Interface Focus 5 20150009 (2015)
  18. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases. Flanagan LA, Parkin A. Biochem Soc Trans 44 315-328 (2016)
  19. Studies on hydrogenase. Yagi T, Higuchi Y. Proc Jpn Acad Ser B Phys Biol Sci 89 16-33 (2013)
  20. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Chem Rev 122 11900-11973 (2022)
  21. Microbial oxidation of atmospheric trace gases. Greening C, Grinter R. Nat Rev Microbiol 20 513-528 (2022)
  22. De novo design of functional proteins: Toward artificial hydrogenases. Faiella M, Roy A, Sommer D, Ghirlanda G. Biopolymers 100 558-571 (2013)
  23. The roles of chalcogenides in O2 protection of H2ase active sites. Yang X, Darensbourg MY. Chem Sci 11 9366-9377 (2020)
  24. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. Huang W, Zulkifli MYB, Chai M, Lin R, Wang J, Chen Y, Chen V, Hou J. Exploration (Beijing) 3 20220145 (2023)

Articles citing this publication (88)

  1. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. ISME J 10 761-777 (2016)
  2. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Ogata H, Nishikawa K, Lubitz W. Nature 520 571-574 (2015)
  3. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC. Proc Natl Acad Sci U S A 109 5305-5310 (2012)
  4. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES, Cook GM, Greening C, Stott MB. ISME J 11 2599-2610 (2017)
  5. Structure of an Ancient Respiratory System. Yu H, Wu CH, Schut GJ, Haja DK, Zhao G, Peters JW, Adams MWW, Li H. Cell 173 1636-1649.e16 (2018)
  6. Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC. Structure 21 184-190 (2013)
  7. De novo modeling of the F(420)-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Mills DJ, Vitt S, Strauss M, Shima S, Vonck J. Elife 2 e00218 (2013)
  8. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. Greene BL, Joseph CA, Maroney MJ, Dyer RB. J Am Chem Soc 134 11108-11111 (2012)
  9. Reversible [4Fe-3S] cluster morphing in an O(2)-tolerant [NiFe] hydrogenase. Frielingsdorf S, Fritsch J, Schmidt A, Hammer M, Löwenstein J, Siebert E, Pelmenschikov V, Jaenicke T, Kalms J, Rippers Y, Lendzian F, Zebger I, Teutloff C, Kaupp M, Bittl R, Hildebrandt P, Friedrich B, Lenz O, Scheerer P. Nat Chem Biol 10 378-385 (2014)
  10. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Berney M, Greening C, Hards K, Collins D, Cook GM. Environ Microbiol 16 318-330 (2014)
  11. The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster. Fourmond V, Greco C, Sybirna K, Baffert C, Wang PH, Ezanno P, Montefiori M, Bruschi M, Meynial-Salles I, Soucaille P, Blumberger J, Bottin H, De Gioia L, Léger C. Nat Chem 6 336-342 (2014)
  12. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Wulff P, Day CC, Sargent F, Armstrong FA. Proc Natl Acad Sci U S A 111 6606-6611 (2014)
  13. O2-independent formation of the inactive states of NiFe hydrogenase. Abou Hamdan A, Burlat B, Gutiérrez-Sanz O, Liebgott PP, Baffert C, De Lacey AL, Rousset M, Guigliarelli B, Léger C, Dementin S. Nat Chem Biol 9 15-17 (2013)
  14. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom. Scott AD, Pelmenschikov V, Guo Y, Yan L, Wang H, George SJ, Dapper CH, Newton WE, Yoda Y, Tanaka Y, Cramer SP. J Am Chem Soc 136 15942-15954 (2014)
  15. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. Volbeda A, Martin L, Barbier E, Gutiérrez-Sanz O, De Lacey AL, Liebgott PP, Dementin S, Rousset M, Fontecilla-Camps JC. J Biol Inorg Chem 20 11-22 (2015)
  16. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mossbauer and EPR spectroscopy. Pandelia ME, Bykov D, Izsak R, Infossi P, Giudici-Orticoni MT, Bill E, Neese F, Lubitz W. Proc Natl Acad Sci U S A 110 483-488 (2013)
  17. The F₄₂₀-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ, Shima S, Ermler U. J Mol Biol 426 2813-2826 (2014)
  18. Rethinking the Nitrogenase Mechanism: Activating the Active Site. Buscagan TM, Rees DC. Joule 3 2662-2678 (2019)
  19. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. Owens CP, Katz FE, Carter CH, Oswald VF, Tezcan FA. J Am Chem Soc 138 10124-10127 (2016)
  20. Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum wavefunction simulations. Li Z, Guo S, Sun Q, Chan GK. Nat Chem 11 1026-1033 (2019)
  21. How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase. Bowman L, Flanagan L, Fyfe PK, Parkin A, Hunter WN, Sargent F. Biochem J 458 449-458 (2014)
  22. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site. Adamson H, Robinson M, Wright JJ, Flanagan LA, Walton J, Elton D, Gavaghan DJ, Bond AM, Roessler MM, Parkin A. J Am Chem Soc 139 10677-10686 (2017)
  23. The Acidophilic Methanotroph Methylacidimicrobium tartarophylax 4AC Grows as Autotroph on H2 Under Microoxic Conditions. Mohammadi SS, Schmitz RA, Pol A, Berben T, Jetten MSM, Op den Camp HJM. Front Microbiol 10 2352 (2019)
  24. Delivery of iron-sulfur clusters to the hydrogen-oxidizing [NiFe]-hydrogenases in Escherichia coli requires the A-type carrier proteins ErpA and IscA. Pinske C, Sawers RG. PLoS One 7 e31755 (2012)
  25. Enhanced oxygen-tolerance of the full heterotrimeric membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Radu V, Frielingsdorf S, Evans SD, Lenz O, Jeuken LJ. J Am Chem Soc 136 8512-8515 (2014)
  26. Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Volbeda A, Amara P, Iannello M, De Lacey AL, Cavazza C, Fontecilla-Camps JC. Chem Commun (Camb) 49 7061-7063 (2013)
  27. Cofactor composition and function of a H2-sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy. Roncaroli F, Bill E, Friedrich B, Lenz O, Lubitz W, Pandelia ME. Chem Sci 6 4495-4507 (2015)
  28. Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase. Wittenborn EC, Merrouch M, Ueda C, Fradale L, Léger C, Fourmond V, Pandelia ME, Dementin S, Drennan CL. Elife 7 e39451 (2018)
  29. The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping. Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. Biochem J 475 1353-1370 (2018)
  30. How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. Wulff P, Thomas C, Sargent F, Armstrong FA. J Biol Inorg Chem 21 121-134 (2016)
  31. Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage. Hansen M, Perner M. Front Microbiol 7 99 (2016)
  32. Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants. Abou Hamdan A, Liebgott PP, Fourmond V, Gutiérrez-Sanz O, De Lacey AL, Infossi P, Rousset M, Dementin S, Léger C. Proc Natl Acad Sci U S A 109 19916-19921 (2012)
  33. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport. Kalms J, Schmidt A, Frielingsdorf S, van der Linden P, von Stetten D, Lenz O, Carpentier P, Scheerer P. Angew Chem Int Ed Engl 55 5586-5590 (2016)
  34. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C. ISME J 15 3339-3356 (2021)
  35. Analysis of differences in oxygen sensitivity of Fe-S clusters. Bruska MK, Stiebritz MT, Reiher M. Dalton Trans 42 8729-8735 (2013)
  36. H2 and O2 activation--a remarkable insight into hydrogenase. Ogo S. Chem Rec 14 397-409 (2014)
  37. Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. DeRosha DE, Chilkuri VG, Van Stappen C, Bill E, Mercado BQ, DeBeer S, Neese F, Holland PL. Nat Chem 11 1019-1025 (2019)
  38. The structural plasticity of the proximal [4Fe3S] cluster is responsible for the O2 tolerance of membrane-bound [NiFe] hydrogenases. Mouesca JM, Fontecilla-Camps JC, Amara P. Angew Chem Int Ed Engl 52 2002-2006 (2013)
  39. Formation of a nitrogenase P-cluster [Fe8S7] core via reductive fusion of two all-ferric [Fe4S4] clusters. Ohki Y, Tanifuji K, Yamada N, Cramer RE, Tatsumi K. Chem Asian J 7 2222-2224 (2012)
  40. Simple ligand effects switch a hydrogenase mimic between H2 and O2 activation. Kim K, Matsumoto T, Robertson A, Nakai H, Ogo S. Chem Asian J 7 1394-1400 (2012)
  41. Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: reversible redox behavior and interactions between electron transfer centers. Riethausen J, Rüdiger O, Gärtner W, Lubitz W, Shafaat HS. Chembiochem 14 1714-1719 (2013)
  42. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Tai H, Higuchi Y, Hirota S. Dalton Trans 47 4408-4423 (2018)
  43. Dual organism design cycle reveals small subunit substitutions that improve [NiFe] hydrogenase hydrogen evolution. Yonemoto IT, Matteri CW, Nguyen TA, Smith HO, Weyman PD. J Biol Eng 7 17 (2013)
  44. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Tsai CL, Tainer JA. Methods Enzymol 599 157-196 (2018)
  45. Thiomicrospira hydrogeniphila sp. nov., an aerobic, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a seawater tank containing a block of beef tallow. Watsuji TO, Hada E, Miyazaki M, Ichimura M, Takai K. Int J Syst Evol Microbiol 66 3688-3693 (2016)
  46. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states. Volbeda A, Martin L, Liebgott PP, De Lacey AL, Fontecilla-Camps JC. Metallomics 7 710-718 (2015)
  47. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. Albareda M, Manyani H, Imperial J, Brito B, Ruiz-Argüeso T, Böck A, Palacios JM. BMC Microbiol 12 256 (2012)
  48. Novel H2-oxidizing [NiFeSe]hydrogenase from Desulfovibrio vulgaris Miyazaki F. Nonaka K, Nguyen NT, Yoon KS, Ogo S. J Biosci Bioeng 115 366-371 (2013)
  49. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. Fritsch J, Siebert E, Priebe J, Zebger I, Lendzian F, Teutloff C, Friedrich B, Lenz O. J Biol Chem 289 7982-7993 (2014)
  50. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Evans RM, Krahn N, Murphy BJ, Lee H, Armstrong FA, Söll D. Proc Natl Acad Sci U S A 118 e2100921118 (2021)
  51. The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes. Oteri F, Ciaccafava A, de Poulpiquet A, Baaden M, Lojou E, Sacquin-Mora S. Phys Chem Chem Phys 16 11318-11322 (2014)
  52. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase. Yonemoto IT, Clarkson BR, Smith HO, Weyman PD. BMC Biochem 15 10 (2014)
  53. Characterization of the [3Fe-4S](0/1+) cluster from the D14C variant of Pyrococcus furiosus ferredoxin via combined NRVS and DFT analyses. Lauterbach L, Gee LB, Pelmenschikov V, Jenney FE, Kamali S, Yoda Y, Adams MW, Cramer SP. Dalton Trans 45 7215-7219 (2016)
  54. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation. Stripp ST, Lindenstrauss U, Sawers RG, Soboh B. PLoS One 10 e0133118 (2015)
  55. Light-induced reactivation of O2-tolerant membrane-bound [Ni-Fe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus under turnover conditions. Ciaccafava A, Hamon C, Infossi P, Marchi V, Giudici-Orticoni MT, Lojou E. Phys Chem Chem Phys 15 16463-16467 (2013)
  56. Redox-dependent conformational changes of a proximal [4Fe-4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O2. Noor NDM, Matsuura H, Nishikawa K, Tai H, Hirota S, Kim J, Kang J, Tateno M, Yoon KS, Ogo S, Kubota S, Shomura Y, Higuchi Y. Chem Commun (Camb) 54 12385-12388 (2018)
  57. What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases? Dance I. Chem Sci 6 1433-1443 (2015)
  58. A [2Fe-1S] Complex That Affords Access to Bimetallic and Higher-Nuclearity Iron-Sulfur Clusters. DeRosha DE, Arnet NA, Mercado BQ, Holland PL. Inorg Chem 58 8829-8834 (2019)
  59. Draft genome sequence of Hydrogenovibrio marinus MH-110, a model organism for aerobic H2 metabolism. Jo BH, Hwang BH, Cha HJ. J Biotechnol 185 37-38 (2014)
  60. Re-engineering a NiFe hydrogenase to increase the H2 production bias while maintaining native levels of O2 tolerance. Flanagan LA, Wright JJ, Roessler MM, Moir JW, Parkin A. Chem Commun (Camb) 52 9133-9136 (2016)
  61. Reactivation from the Ni-B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster. Radu V, Frielingsdorf S, Lenz O, Jeuken LJ. Chem Commun (Camb) 52 2632-2635 (2016)
  62. Development of air-stable hydrogen evolution catalysts. Mondal B, Dey A. Chem Commun (Camb) 53 7707-7715 (2017)
  63. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey. Puggioni V, Tempel S, Latifi A. Front Genet 7 223 (2016)
  64. Letter Electronic states of the O2-tolerant [NiFe] hydrogenase proximal cluster. Mouesca JM, Amara P, Fontecilla-Camps JC. Proc Natl Acad Sci U S A 110 E2538 (2013)
  65. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature. Nguyen NT, Yatabe T, Yoon KS, Ogo S. J Biosci Bioeng 118 386-391 (2014)
  66. Structural basis for bacterial energy extraction from atmospheric hydrogen. Grinter R, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje PR, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C. Nature 615 541-547 (2023)
  67. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study. Tabrizi SG, Pelmenschikov V, Noodleman L, Kaupp M. J Chem Theory Comput 12 174-187 (2016)
  68. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site. Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M. Phys Chem Chem Phys 20 1693-1706 (2018)
  69. Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. Bowman L, Balbach J, Walton J, Sargent F, Parkin A. J Biol Inorg Chem 21 865-873 (2016)
  70. Conserved Histidine Adjacent to the Proximal Cluster Tunes the Anaerobic Reductive Activation of Escherichia coli Membrane-Bound [NiFe] Hydrogenase-1. Flanagan LA, Chidwick HS, Walton J, Moir JWB, Parkin A. ChemElectroChem 5 855-860 (2018)
  71. Freshwater Chlorobia Exhibit Metabolic Specialization among Cosmopolitan and Endemic Populations. Garcia SL, Mehrshad M, Buck M, Tsuji JM, Neufeld JD, McMahon KD, Bertilsson S, Greening C, Peura S. mSystems 6 e01196-20 (2021)
  72. Horizontal acquisition of hydrogen conversion ability and other habitat adaptations in the Hydrogenovibrio strains SP-41 and XCL-2. Gonnella G, Adam N, Perner M. BMC Genomics 20 339 (2019)
  73. Microbial hydrogen splitting in the presence of oxygen. Stein M, Kaur-Ghumaan S. Biochem Soc Trans 41 1317-1324 (2013)
  74. Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Yang X, Elrod LC, Reibenspies JH, Hall MB, Darensbourg MY. Chem Sci 10 1368-1373 (2019)
  75. Design of a gold clustering site in an engineered apo-ferritin cage. Lu C, Maity B, Peng X, Ito N, Abe S, Sheng X, Ueno T, Lu D. Commun Chem 5 39 (2022)
  76. Facile and dynamic cleavage of every iron-sulfide bond in cuboidal iron-sulfur clusters. Thompson NB, Namkoong G, Skeel BA, Suess DLM. Proc Natl Acad Sci U S A 120 e2210528120 (2023)
  77. Metagenomic Sequencing Unravels Gene Fragments with Phylogenetic Signatures of O2-Tolerant NiFe Membrane-Bound Hydrogenases in Lacustrine Sediment. Couto JM, Ijaz UZ, Phoenix VR, Schirmer M, Sloan WT. Curr Microbiol 71 296-302 (2015)
  78. Redox-sensing iron-sulfur cluster regulators. Crack JC, Le Brun NE. Antioxid Redox Signal (2017)
  79. The Fully Oxidized State of the Glutamate Coordinated O2-Tolerant [NiFe]-Hydrogenase Shows a Ni(III)/Fe(III) Open-Shell Singlet Ground State. Kumar R, Stein M. J Am Chem Soc 145 10954-10959 (2023)
  80. The oxygen reduction reaction on [NiFe] hydrogenases. Qiu S, Olsen S, MacFarlane DR, Sun C. Phys Chem Chem Phys 20 23528-23534 (2018)
  81. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study. Greco C. Dalton Trans 42 13845-13854 (2013)
  82. X-ray structural, functional and computational studies of the O2-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe-4S] cluster. Volbeda A, Mouesca JM, Darnault C, Roessler MM, Parkin A, Armstrong FA, Fontecilla-Camps JC. Chem Commun (Camb) 54 7175-7178 (2018)
  83. Complete Genome Sequence of a Mesophilic Obligately Chemolithoautotrophic Hydrogen-Oxidizing Bacterium, Hydrogenovibrio marinus MH-110. Arai H, Ishii M. Microbiol Resour Announc 8 e01132-19 (2019)
  84. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. Patel A, Mulder DW, Söll D, Krahn N. Front Catal 2 1089176 (2022)
  85. Hup-Type Hydrogenases of Purple Bacteria: Homology Modeling and Computational Assessment of Biotechnological Potential. Abdullatypov AV. Int J Mol Sci 21 E366 (2020)
  86. New insights into the oxidation process from neutron and X-ray crystal structures of an O2-sensitive [NiFe]-hydrogenase. Hiromoto T, Nishikawa K, Inoue S, Ogata H, Hori Y, Kusaka K, Hirano Y, Kurihara K, Shigeta Y, Tamada T, Higuchi Y. Chem Sci 14 9306-9315 (2023)
  87. Stepwise conversion of the Cys6[4Fe-3S] to a Cys4[4Fe-4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Schmidt A, Kalms J, Lorent C, Katz S, Frielingsdorf S, Evans RM, Fritsch J, Siebert E, Teutloff C, Armstrong FA, Zebger I, Lenz O, Scheerer P. Chem Sci 14 11105-11120 (2023)
  88. Structural and spectroscopic characterization of CO inhibition of [NiFe]-hydrogenase from Citrobacter sp. S-77. Imanishi T, Nishikawa K, Taketa M, Higuchi K, Tai H, Hirota S, Hojo H, Kawakami T, Hataguchi K, Matsumoto K, Ogata H, Higuchi Y. Acta Crystallogr F Struct Biol Commun 78 66-74 (2022)