3glr Citations

Crystal structures of human SIRT3 displaying substrate-induced conformational changes.

J Biol Chem 284 24394-405 (2009)
Related entries: 3gls, 3glt, 3glu

Cited: 119 times
EuropePMC logo PMID: 19535340

Abstract

SIRT3 is a major mitochondrial NAD(+)-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into the conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD(+). In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD(+). These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.

Reviews - 3glr mentioned but not cited (2)

  1. Sirtuin catalysis and regulation. Feldman JL, Dittenhafer-Reed KE, Denu JM. J. Biol. Chem. 287 42419-42427 (2012)
  2. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr. Pharm. Des. 19 578-613 (2013)

Articles - 3glr mentioned but not cited (15)

  1. Structure and biochemical functions of SIRT6. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. J. Biol. Chem. 286 14575-14587 (2011)
  2. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB. J. Biol. Chem. 284 24394-24405 (2009)
  3. A molecular mechanism for direct sirtuin activation by resveratrol. Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, Steegborn C. PLoS ONE 7 e49761 (2012)
  4. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD. Elife 3 (2014)
  5. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, Sivley RM, Ilkayeva OR, Stevens RD, Backos DS, Capra JA, Olsen CA, Campbell JE, Muoio DM, Grimsrud PA, Hirschey MD. Cell Metab. 25 838-855.e15 (2017)
  6. SIRT3 substrate specificity determined by peptide arrays and machine learning. Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. ACS Chem. Biol. 6 146-157 (2011)
  7. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA, Hao Q. J. Biol. Chem. 287 28307-28314 (2012)
  8. Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Moniot S, Weyand M, Steegborn C. Front Pharmacol 3 16 (2012)
  9. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Madsen AS, Andersen C, Daoud M, Anderson KA, Laursen JS, Chakladar S, Huynh FK, Colaço AR, Backos DS, Fristrup P, Hirschey MD, Olsen CA. J. Biol. Chem. 291 7128-7141 (2016)
  10. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families. Xia J, Tilahun EL, Kebede EH, Reid TE, Zhang L, Wang XS. J Chem Inf Model 55 374-388 (2015)
  11. Peptides and Pseudopeptides as SIRT6 Deacetylation Inhibitors. Kokkonen P, Rahnasto-Rilla M, Kiviranta PH, Huhtiniemi T, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M. ACS Med Chem Lett 3 969-974 (2012)
  12. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, Dexter DT, Sternberg MJ, Lam EW, Steegborn C, Fuchter MJ. J. Med. Chem. 60 1928-1945 (2017)
  13. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D, Mai A, Schutkowski M, Steegborn C. Nat Commun 8 1513 (2017)
  14. Sirtuin 6 (SIRT6) Activity Assays. Rahnasto-Rilla M, Lahtela-Kakkonen M, Moaddel R. Methods Mol. Biol. 1436 259-269 (2016)
  15. Characterizing Sirtuin 3 Deacetylase Affinity for Aldehyde Dehydrogenase 2. Harris PS, Gomez JD, Backos DS, Fritz KS. Chem. Res. Toxicol. 30 785-793 (2017)


Reviews citing this publication (44)

  1. Mammalian sirtuins: biological insights and disease relevance. Haigis MC, Sinclair DA. Annu Rev Pathol 5 253-295 (2010)
  2. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Verdin E, Hirschey MD, Finley LW, Haigis MC. Trends Biochem. Sci. 35 669-675 (2010)
  3. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Imai S, Guarente L. Trends Pharmacol. Sci. 31 212-220 (2010)
  4. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Physiol. Rev. 92 1479-1514 (2012)
  5. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Yuan H, Su L, Chen WY. Onco Targets Ther 6 1399-1416 (2013)
  6. Sirtuin 1 (SIRT1): the misunderstood HDAC. Stünkel W, Campbell RM. J Biomol Screen 16 1153-1169 (2011)
  7. Compartmentation of NAD+-dependent signalling. Koch-Nolte F, Fischer S, Haag F, Ziegler M. FEBS Lett. 585 1651-1656 (2011)
  8. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. Yao YL, Yang WM. J. Biomed. Biotechnol. 2011 146493 (2011)
  9. Structural basis for sirtuin activity and inhibition. Yuan H, Marmorstein R. J. Biol. Chem. 287 42428-42435 (2012)
  10. Sirtuins in epigenetic regulation. Jing H, Lin H. Chem. Rev. 115 2350-2375 (2015)
  11. Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation. Sauve AA, Youn DY. Curr Opin Chem Biol 16 535-543 (2012)
  12. The chemical biology of sirtuins. Chen B, Zang W, Wang J, Huang Y, He Y, Yan L, Liu J, Zheng W. Chem Soc Rev 44 5246-5264 (2015)
  13. Sirtuin 6: a review of biological effects and potential therapeutic properties. Beauharnois JM, Bolívar BE, Welch JT. Mol Biosyst 9 1789-1806 (2013)
  14. Survey of the year 2009: applications of isothermal titration calorimetry. Falconer RJ, Collins BM. J. Mol. Recognit. 24 1-16 (2011)
  15. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Gertz M, Steegborn C. Cell. Mol. Life Sci. 73 2871-2896 (2016)
  16. New assays and approaches for discovery and design of Sirtuin modulators. Schutkowski M, Fischer F, Roessler C, Steegborn C. Expert Opin Drug Discov 9 183-199 (2014)
  17. The sirtuins: Markers of metabolic health. Covington JD, Bajpeyi S. Mol Nutr Food Res 60 79-91 (2016)
  18. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  19. Cytoprotective Effect of the UCP2-SIRT3 Signaling Pathway by Decreasing Mitochondrial Oxidative Stress on Cerebral Ischemia-Reperfusion Injury. Su J, Liu J, Yan XY, Zhang Y, Zhang JJ, Zhang LC, Sun LK. Int J Mol Sci 18 (2017)
  20. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Yang L, Ma X, He Y, Yuan C, Chen Q, Li G, Chen X. Sci China Life Sci 60 249-256 (2017)
  21. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Darling AL, Uversky VN. Front Genet 9 158 (2018)
  22. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem. Rev. 118 1216-1252 (2018)
  23. Schistosome sirtuins as drug targets. Lancelot J, Cabezas-Cruz A, Caby S, Marek M, Schultz J, Romier C, Sippl W, Jung M, Pierce RJ. Future Med Chem 7 765-782 (2015)
  24. Sirtuin 3: A Janus face in cancer (Review). Xiong Y, Wang M, Zhao J, Han Y, Jia L. Int. J. Oncol. 49 2227-2235 (2016)
  25. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J. Struct. Biol. 196 534-542 (2016)
  26. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. 3 Biotech 13 29 (2023)
  27. SirT3 and p53 Deacetylation in Aging and Cancer. Chen J, Wang A, Chen Q. J. Cell. Physiol. 232 2308-2311 (2017)
  28. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Khan RI, Nirzhor SSR, Akter R. Biomolecules 8 (2018)
  29. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. Fiorentino F, Castiello C, Mai A, Rotili D. J Med Chem 65 9580-9606 (2022)
  30. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Klein MA, Denu JM. J Biol Chem 295 11021-11041 (2020)
  31. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. He X, Zeng H, Chen JX. J. Cell. Physiol. 234 2252-2265 (2019)
  32. HAT- and HDAC-Targeted Protein Acetylation in the Occurrence and Treatment of Epilepsy. Wang J, Yun F, Sui J, Liang W, Shen D, Zhang Q. Biomedicines 11 88 (2022)
  33. Mammalian Sirtuins and Their Relevance in Vascular Calcification. Pan X, Pi C, Ruan X, Zheng H, Zhang D, Liu X. Front Pharmacol 13 907835 (2022)
  34. Microvascular Rarefaction and Heart Failure With Preserved Ejection Fraction. Zeng H, Chen JX. Front Cardiovasc Med 6 15 (2019)
  35. Modulation of cellular processes by histone and non-histone protein acetylation. Shvedunova M, Akhtar A. Nat Rev Mol Cell Biol 23 329-349 (2022)
  36. Circadian NAD(P)(H) cycles in cell metabolism. Levine DC, Ramsey KM, Bass J. Semin Cell Dev Biol 126 15-26 (2022)
  37. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Cells 12 852 (2023)
  38. Emerging Therapeutic Potential of SIRT6 Modulators. Fiorentino F, Mai A, Rotili D. J Med Chem 64 9732-9758 (2021)
  39. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Wang C, Liu Y, Zhu Y, Kong C. Oncol Lett 20 11 (2020)
  40. Next-generation of selective histone deacetylase inhibitors. Yang F, Zhao N, Ge D, Chen Y. RSC Adv 9 19571-19583 (2019)
  41. Role of Sirtuin 3 in Degenerative Diseases of the Central Nervous System. Zhang H, Dai S, Yang Y, Wei J, Li X, Luo P, Jiang X. Biomolecules 13 735 (2023)
  42. SIRT3 a Major Player in Attenuation of Hepatic Ischemia-Reperfusion Injury by Reducing ROS via Its Downstream Mediators: SOD2, CYP-D, and HIF-1α. Katwal G, Baral D, Fan X, Weiyang H, Zhang X, Ling L, Xiong Y, Ye Q, Wang Y. Oxid Med Cell Longev 2018 2976957 (2018)
  43. Sirtuin-3-Mediated Cellular Metabolism Links Cardiovascular Remodeling with Hypertension. Gao J, Shen W. Biology (Basel) 12 686 (2023)
  44. Virtual Screening in the Identification of Sirtuins' Activity Modulators. Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Molecules 27 5641 (2022)

Articles citing this publication (58)

  1. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ. Mol. Cell 49 186-199 (2013)
  2. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Proc. Natl. Acad. Sci. U.S.A. 110 E2772-81 (2013)
  3. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Rauh D, Fischer F, Gertz M, Lakshminarasimhan M, Bergbrede T, Aladini F, Kambach C, Becker CF, Zerweck J, Schutkowski M, Steegborn C. Nat Commun 4 2327 (2013)
  4. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Teng YB, Jing H, Aramsangtienchai P, He B, Khan S, Hu J, Lin H, Hao Q. Sci Rep 5 8529 (2015)
  5. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Nat Commun 6 6263 (2015)
  6. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM. Genes Dev. 29 1316-1325 (2015)
  7. Structural and functional analysis of human SIRT1. Davenport AM, Huber FM, Hoelz A. J. Mol. Biol. 426 526-541 (2014)
  8. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. Moniot S, Schutkowski M, Steegborn C. J. Struct. Biol. 182 136-143 (2013)
  9. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Dai H, Case AW, Riera TV, Considine T, Lee JE, Hamuro Y, Zhao H, Jiang Y, Sweitzer SM, Pietrak B, Schwartz B, Blum CA, Disch JS, Caldwell R, Szczepankiewicz B, Oalmann C, Yee Ng P, White BH, Casaubon R, Narayan R, Koppetsch K, Bourbonais F, Wu B, Wang J, Qian D, Jiang F, Mao C, Wang M, Hu E, Wu JC, Perni RB, Vlasuk GP, Ellis JL. Nat Commun 6 7645 (2015)
  10. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. Fischer F, Gertz M, Suenkel B, Lakshminarasimhan M, Schutkowski M, Steegborn C. PLoS ONE 7 e45098 (2012)
  11. The human sirtuin family: evolutionary divergences and functions. Vassilopoulos A, Fritz KS, Petersen DR, Gius D. Hum. Genomics 5 485-496 (2011)
  12. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Yamagata K, Goto Y, Nishimasu H, Morimoto J, Ishitani R, Dohmae N, Takeda N, Nagai R, Komuro I, Suga H, Nureki O. Structure 22 345-352 (2014)
  13. Structure-based development of novel sirtuin inhibitors. Schlicker C, Boanca G, Lakshminarasimhan M, Steegborn C. Aging (Albany NY) 3 852-872 (2011)
  14. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. Guan X, Lin P, Knoll E, Chakrabarti R. PLoS ONE 9 e107729 (2014)
  15. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Nguyen GT, Schaefer S, Gertz M, Weyand M, Steegborn C. Acta Crystallogr. D Biol. Crystallogr. 69 1423-1432 (2013)
  16. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, Shao Y, Park CM, Xian M, Huang Y, Ferro A, Wang R, Moore PK, Wang H, Ji Y. Antioxid. Redox Signal. 24 329-343 (2016)
  17. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Cabezas-Cruz A, Alberdi P, Ayllón N, Valdés JJ, Pierce R, Villar M, de la Fuente J. Epigenetics 11 303-319 (2016)
  18. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Front Cell Dev Biol 8 822 (2020)
  19. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. Huhtiniemi T, Salo HS, Suuronen T, Poso A, Salminen A, Leppänen J, Jarho E, Lahtela-Kakkonen M. J. Med. Chem. 54 6456-6468 (2011)
  20. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K, Reynolds CR, Schmidtkunz K, Jung M, Chapman KL, Steegborn C, Dexter DT, Sternberg MJ, Lam EW, Fuchter MJ. ChemMedChem 10 69-82 (2015)
  21. Identification of novel SIRT3 inhibitor scaffolds by virtual screening. Salo HS, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M. Bioorg. Med. Chem. Lett. 23 2990-2995 (2013)
  22. Structure of Sir2Tm bound to a propionylated peptide. Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C. Protein Sci. 20 131-139 (2011)
  23. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2. Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M, Bruijn T, Jääskeläinen S, Poso A, Salminen A, Leppänen J, Jarho E. Bioorg. Med. Chem. 18 5616-5625 (2010)
  24. Gestational Leucylation Suppresses Embryonic T-Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. Zhang X, Liu L, Chen WC, Wang F, Cheng YR, Liu YM, Lai YF, Zhang RJ, Qiao YN, Yuan YY, Lin Y, Xu W, Cao J, Gui YH, Zhao JY. Adv Sci (Weinh) 9 e2201034 (2022)
  25. Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop. Shi Y, Zhou Y, Wang S, Zhang Y. J Phys Chem Lett 4 491-495 (2013)
  26. The sirtuins in the pathogenesis of cancer. Voelter-Mahlknecht S, Mahlknecht U. Clin Epigenetics 1 71-83 (2010)
  27. Mechanism-based affinity capture of sirtuins. Cen Y, Falco JN, Xu P, Youn DY, Sauve AA. Org. Biomol. Chem. 9 987-993 (2011)
  28. Sirtuin 3-mediated deacetylation of acyl-CoA synthetase family member 3 by protocatechuic acid attenuates non-alcoholic fatty liver disease. Sun R, Kang X, Zhao Y, Wang Z, Wang R, Fu R, Li Y, Hu Y, Wang Z, Shan W, Zhou J, Tian X, Yao J. Br J Pharmacol 177 4166-4180 (2020)
  29. A mechanism-based potent sirtuin inhibitor containing Nε-thiocarbamoyl-lysine (TuAcK). Hirsch BM, Hao Y, Li X, Wesdemiotis C, Wang Z, Zheng W. Bioorg. Med. Chem. Lett. 21 4753-4757 (2011)
  30. Nitro-fatty acids as activators of hSIRT6 deacetylase activity. Carreño M, Bresque M, Machado MR, Santos L, Durán R, Vitturi DA, Escande C, Denicola A. J Biol Chem 295 18355-18366 (2020)
  31. A new nonpeptide substrate of human sirtuin in a capillary electrophoresis-based assay. Investigation of the binding mode by docking experiments. Abromeit H, Kannan S, Sippl W, Scriba GK. Electrophoresis 33 1652-1659 (2012)
  32. Virtual screening approach of sirtuin inhibitors results in two new scaffolds. Kokkonen P, Kokkola T, Suuronen T, Poso A, Jarho E, Lahtela-Kakkonen M. Eur J Pharm Sci 76 27-32 (2015)
  33. Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Wang Y, Fung YME, Zhang W, He B, Chung MWH, Jin J, Hu J, Lin H, Hao Q. Cell Chem Biol 24 339-345 (2017)
  34. New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Soto S, Vaz E, Dell'Aversana C, Álvarez R, Altucci L, de Lera ÁR. Org. Biomol. Chem. 10 2101-2112 (2012)
  35. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. Weiser BP, Eckenhoff RG. J. Biol. Chem. 290 8559-8568 (2015)
  36. Letter Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine. Gai W, Li H, Jiang H, Long Y, Liu D. FEBS Lett. 590 3019-3028 (2016)
  37. Halistanol sulfates I and J, new SIRT1-3 inhibitory steroid sulfates from a marine sponge of the genus Halichondria. Nakamura F, Kudo N, Tomachi Y, Nakata A, Takemoto M, Ito A, Tabei H, Arai D, de Voogd N, Yoshida M, Nakao Y, Fusetani N. J. Antibiot. 71 273-278 (2018)
  38. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Rajabi N, Hansen TN, Nielsen AL, Nguyen HT, Baek M, Bolding JE, Bahlke OØ, Petersen SEG, Bartling CRO, Strømgaard K, Olsen CA. Angew Chem Int Ed Engl 61 e202115805 (2022)
  39. Quantitative insights for the design of substrate-based SIRT1 inhibitors. Kokkonen P, Mellini P, Nyrhilä O, Rahnasto-Rilla M, Suuronen T, Kiviranta P, Huhtiniemi T, Poso A, Jarho E, Lahtela-Kakkonen M. Eur J Pharm Sci 59 12-19 (2014)
  40. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2. Kudo N, Ito A, Arata M, Nakata A, Yoshida M. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (2018)
  41. Consensus QSAR modelling of SIRT1 activators using simplex representation of molecular structure. Chauhan S, Kumar A. SAR QSAR Environ Res 29 277-294 (2018)
  42. Development of Activity-Based Chemical Probes for Human Sirtuins. Graham E, Rymarchyk S, Wood M, Cen Y. ACS Chem. Biol. 13 782-792 (2018)
  43. Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme. Yu J, Haldar M, Mallik S, Srivastava DK. PLoS ONE 11 e0152467 (2016)
  44. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. Timucin AC, Basaga H. PLoS ONE 11 e0161494 (2016)
  45. Structure-Activity Relationship of Pine Nut-Derived Peptides and Their Protective Effect on Nerve-Cell Mitochondria. Lu H, Fang L, Wang X, Wu D, Liu C, Liu X, Wang J, Gao Y, Min W. Foods 11 1428 (2022)
  46. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. PLoS ONE 13 e0193602 (2018)
  47. A Novel Mechanism for SIRT1 Activators That Does Not Rely on the Chemical Moiety Immediately C-Terminal to the Acetyl-Lysine of the Substrate. Yu ND, Wang B, Li XZ, Han HZ, Liu D. Molecules 27 2714 (2022)
  48. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation. Shindo Y, Komatsu H, Hotta K, Ariga K, Oka K. Sci Rep 6 29224 (2016)
  49. Characteristics of SP600125 Induced Tetraploid Cells in Comparison With Diploid and Tetraploid Cells of Fish. Fan Y, Zhang G, Zhao K, Fu W, Chen S, Liu J, Liu W, Peng L, Ren L, Liu S, Xiao Y. Front Genet 12 781007 (2021)
  50. Elucidating the tunability of binding behavior for the MERS-CoV macro domain with NAD metabolites. Lin MH, Cho CC, Chiu YC, Chien CY, Huang YP, Chang CF, Hsu CH. Commun Biol 4 123 (2021)
  51. Hsp90 Stabilizes SIRT1 Orthologs in Mammalian Cells and C. elegans. Nguyen MT, Somogyvári M, Sőti C. Int J Mol Sci 19 (2018)
  52. Molecular Mechanism of Sirtuin 1 Inhibition by Human Immunodeficiency Virus 1 Tat Protein. Adolph RS, Beck E, Schweimer K, Di Fonzo A, Weyand M, Rösch P, Wöhrl BM, Steegborn C. Life (Basel) 13 949 (2023)
  53. Molecular Mechanism of Sirtuin 1 Modulation by the AROS Protein. Weiss S, Adolph RS, Schweimer K, DiFonzo A, Meleshin M, Schutkowski M, Steegborn C. Int J Mol Sci 23 12764 (2022)
  54. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Zhang X, Cao R, Niu J, Yang S, Ma H, Zhao S, Li H. Cell Discov 5 35 (2019)
  55. Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays. Abbotto E, Casini B, Piacente F, Scarano N, Cerri E, Tonelli M, Astigiano C, Millo E, Sturla L, Bruzzone S, Cichero E. Pharmaceuticals (Basel) 16 1316 (2023)
  56. article-commentary Steroid boost for sirtuin research. Rumpf T, Jung M. Aging (Albany NY) 3 818 (2011)
  57. Synthesis and hypoglycemic activity of quinoxaline derivatives. Jia W, Wang J, Wei C, Bian M, Bao S, Yu L. Front Chem 11 1197124 (2023)
  58. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Int J Mol Sci 24 9363 (2023)