3h5n Citations

How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic.

EMBO J 28 1953-64 (2009)
Related entries: 3h5a, 3h5r, 3h9g, 3h9j, 3h9q

Cited: 47 times
EuropePMC logo PMID: 19494832

Abstract

The 39-kDa Escherichia coli enzyme MccB catalyses a remarkable posttranslational modification of the MccA heptapeptide during the biosynthesis of microcin C7 (MccC7), a 'Trojan horse' antibiotic. The approximately 260-residue C-terminal region of MccB is homologous to ubiquitin-like protein (UBL) activating enzyme (E1) adenylation domains. Accordingly, MccB-catalysed C-terminal MccA-acyl-adenylation is reminiscent of the E1-catalysed activation reaction. However, unlike E1 substrates, which are UBLs with a C-terminal di-glycine sequence, MccB's substrate, MccA, is a short peptide with an essential C-terminal Asn. Furthermore, after an intramolecular rearrangement of MccA-acyl-adenylate, MccB catalyses a second, unique reaction, producing a stable phosphoramidate-linked analogue of acyl-adenylated aspartic acid. We report six-crystal structures of MccB in apo, substrate-, intermediate-, and inhibitor-bound forms. Structural and kinetic analyses reveal a novel-peptide clamping mechanism for MccB binding to heptapeptide substrates and a dynamic-active site for catalysing dual adenosine triphosphate-consuming reactions. The results provide insight into how a distinctive member of the E1 superfamily carries out two-step activation for generating the peptidyl-antibiotic MccC7.

Articles - 3h5n mentioned but not cited (3)

  1. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Koehnke J, Bent AF, Zollman D, Smith K, Houssen WE, Zhu X, Mann G, Lebl T, Scharff R, Shirran S, Botting CH, Jaspars M, Schwarz-Linek U, Naismith JH. Angew Chem Int Ed Engl 52 13991-13996 (2013)
  2. Post-translational Claisen Condensation and Decarboxylation en Route to the Bicyclic Core of Pantocin A. Ghodge SV, Biernat KA, Bassett SJ, Redinbo MR, Bowers AA. J Am Chem Soc 138 5487-5490 (2016)
  3. Distinct Conformation of ATP Molecule in Solution and on Protein. Kobayashi E, Yura K, Nagai Y. Biophysics (Nagoya-shi) 9 1-12 (2013)


Reviews citing this publication (10)

  1. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. Chem Rev 117 5389-5456 (2017)
  2. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Waldman AJ, Ng TL, Wang P, Balskus EP. Chem Rev 117 5784-5863 (2017)
  3. Microcin C: biosynthesis and mechanisms of bacterial resistance. Severinov K, Nair SK. Future Microbiol 7 281-289 (2012)
  4. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis. Dunbar KL, Mitchell DA. ACS Chem Biol 8 473-487 (2013)
  5. Genome mining methods to discover bioactive natural products. Bauman KD, Butler KS, Moore BS, Chekan JR. Nat Prod Rep 38 2100-2129 (2021)
  6. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. Methods Enzymol 604 113-163 (2018)
  7. The structural biology of patellamide biosynthesis. Koehnke J, Bent AF, Houssen WE, Mann G, Jaspars M, Naismith JH. Curr Opin Struct Biol 29 112-121 (2014)
  8. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)
  9. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Petkowski JJ, Bains W, Seager S. Molecules 24 E866 (2019)
  10. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. Travin DY, Severinov K, Dubiley S. RSC Chem Biol 2 468-485 (2021)

Articles citing this publication (34)

  1. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA. Nat Chem Biol 11 564-570 (2015)
  2. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Koehnke J, Mann G, Bent AF, Ludewig H, Shirran S, Botting C, Lebl T, Houssen W, Jaspars M, Naismith JH. Nat Chem Biol 11 558-563 (2015)
  3. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. Haft DH, Basu MK, Mitchell DA. BMC Biol 8 70 (2010)
  4. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Chowdhury R, Sekirnik R, Brissett NC, Krojer T, Ho CH, Ng SS, Clifton IJ, Ge W, Kershaw NJ, Fox GC, Muniz JRC, Vollmar M, Phillips C, Pilka ES, Kavanagh KL, von Delft F, Oppermann U, McDonough MA, Doherty AJ, Schofield CJ. Nature 510 422-426 (2014)
  5. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. J Am Chem Soc 139 11734-11744 (2017)
  6. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. McIntosh JA, Schmidt EW. Chembiochem 11 1413-1421 (2010)
  7. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA. Nat Chem Biol 10 823-829 (2014)
  8. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Davis KM, Schramma KR, Hansen WA, Bacik JP, Khare SD, Seyedsayamdost MR, Ando N. Proc Natl Acad Sci U S A 114 10420-10425 (2017)
  9. Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. Gonzalez DJ, Lee SW, Hensler ME, Markley AL, Dahesh S, Mitchell DA, Bandeira N, Nizet V, Dixon JE, Dorrestein PC. J Biol Chem 285 28220-28228 (2010)
  10. RRE-Finder: a Genome-Mining Tool for Class-Independent RiPP Discovery. Kloosterman AM, Shelton KE, van Wezel GP, Medema MH, Mitchell DA. mSystems 5 e00267-20 (2020)
  11. Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products. Dunbar KL, Tietz JI, Cox CL, Burkhart BJ, Mitchell DA. J Am Chem Soc 137 7672-7677 (2015)
  12. MccE provides resistance to protein synthesis inhibitor microcin C by acetylating the processed form of the antibiotic. Novikova M, Kazakov T, Vondenhoff GH, Semenova E, Rozenski J, Metlytskaya A, Zukher I, Tikhonov A, Van Aerschot A, Severinov K. J Biol Chem 285 12662-12669 (2010)
  13. Nuclear Magnetic Resonance Structure and Binding Studies of PqqD, a Chaperone Required in the Biosynthesis of the Bacterial Dehydrogenase Cofactor Pyrroloquinoline Quinone. Evans RL, Latham JA, Xia Y, Klinman JP, Wilmot CM. Biochemistry 56 2735-2746 (2017)
  14. Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses. Vannini A, Pinatel E, Costantini PE, Pelliciari S, Roncarati D, Puccio S, De Bellis G, Peano C, Danielli A. Sci Rep 7 45458 (2017)
  15. The B1 Protein Guides the Biosynthesis of a Lasso Peptide. Zhu S, Fage CD, Hegemann JD, Mielcarek A, Yan D, Linne U, Marahiel MA. Sci Rep 6 35604 (2016)
  16. Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. Gonzalez DJ, Xu Y, Yang YL, Esquenazi E, Liu WT, Edlund A, Duong T, Du L, Molnár I, Gerwick WH, Jensen PR, Fischbach M, Liaw CC, Straight P, Nizet V, Dorrestein PC. J Proteomics 75 5069-5076 (2012)
  17. Enzymatic synthesis of bioinformatically predicted microcin C-like compounds encoded by diverse bacteria. Bantysh O, Serebryakova M, Makarova KS, Dubiley S, Datsenko KA, Severinov K. mBio 5 e01059-14 (2014)
  18. Exploring the Post-translational Enzymology of PaaA by mRNA Display. Fleming SR, Himes PM, Ghodge SV, Goto Y, Suga H, Bowers AA. J Am Chem Soc 142 5024-5028 (2020)
  19. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Chekan JR, Ongpipattanakul C, Nair SK. Proc Natl Acad Sci U S A 116 24049-24055 (2019)
  20. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison. Ghilarov D, Stevenson CEM, Travin DY, Piskunova J, Serebryakova M, Maxwell A, Lawson DM, Severinov K. Mol Cell 73 749-762.e5 (2019)
  21. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA. Cheung WL, Chen MY, Maksimov MO, Link AJ. ACS Cent Sci 2 702-709 (2016)
  22. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution. Fuchs SW, Lackner G, Morinaka BI, Morishita Y, Asai T, Riniker S, Piel J. Angew Chem Int Ed Engl 55 12330-12333 (2016)
  23. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens. Serebryakova M, Tsibulskaya D, Mokina O, Kulikovsky A, Nautiyal M, Van Aerschot A, Severinov K, Dubiley S. J Am Chem Soc 138 15690-15698 (2016)
  24. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis. Miller FS, Crone KK, Jensen MR, Shaw S, Harcombe WR, Elias MH, Freeman MF. Nat Commun 12 5355 (2021)
  25. Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor. Fujishiro T, Kahnt J, Ermler U, Shima S. Nat Commun 6 6895 (2015)
  26. Biosynthesis of the RiPP trojan horse nucleotide antibiotic microcin C is directed by the N-formyl of the peptide precursor. Dong SH, Kulikovsky A, Zukher I, Estrada P, Dubiley S, Severinov K, Nair SK. Chem Sci 10 2391-2395 (2019)
  27. Enzymatic Synthesis and Functional Characterization of Bioactive Microcin C-Like Compounds with Altered Peptide Sequence and Length. Bantysh O, Serebryakova M, Zukher I, Kulikovsky A, Tsibulskaya D, Dubiley S, Severinov K. J Bacteriol 197 3133-3141 (2015)
  28. Biosynthesis: Leading the way to RiPPs. Link AJ. Nat Chem Biol 11 551-552 (2015)
  29. Reiterative Synthesis by the Ribosome and Recognition of the N-Terminal Formyl Group by Biosynthetic Machinery Contribute to Evolutionary Conservation of the Length of Antibiotic Microcin C Peptide Precursor. Zukher I, Pavlov M, Tsibulskaya D, Kulikovsky A, Zyubko T, Bikmetov D, Serebryakova M, Nair SK, Ehrenberg M, Dubiley S, Severinov K. mBio 10 e00768-19 (2019)
  30. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Song I, Kim Y, Yu J, Go SY, Lee HG, Song WJ, Kim S. Nat Chem Biol 17 1123-1131 (2021)
  31. Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. de Rond T, Asay JE, Moore BS. Nat Chem Biol 17 794-799 (2021)
  32. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM. Nat Commun 13 548 (2022)
  33. Discovery of a Unique Structural Motif in Lanthipeptide Synthetases for Substrate Binding and Interdomain Interactions. Huang S, Wang Y, Cai C, Xiao X, Liu S, Ma Y, Xie X, Liang Y, Chen H, Zhu J, Hegemann JD, Yao H, Wei W, Wang H. Angew Chem Int Ed Engl 61 e202211382 (2022)
  34. Evaluation of Effectiveness and Safety of Microcin C7 in Weaned Piglets. Shang L, Zhou J, Tu J, Zeng X, Qiao S. Animals (Basel) 12 3267 (2022)