3i5b Citations

Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR.

J Mol Biol 393 619-33 (2009)
Related entries: 3i5a, 3i5c

Cited: 89 times
EuropePMC logo PMID: 19695263

Abstract

The bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) controls secretion, cell adhesion, and motility, leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity.

Reviews - 3i5b mentioned but not cited (1)

  1. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP. Krasteva PV, Giglio KM, Sondermann H. Protein Sci. 21 929-948 (2012)

Articles - 3i5b mentioned but not cited (4)

  1. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. De N, Navarro MV, Raghavan RV, Sondermann H. J. Mol. Biol. 393 619-633 (2009)
  2. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. Gourinchas G, Etzl S, Göbl C, Vide U, Madl T, Winkler A. Sci Adv 3 e1602498 (2017)
  3. Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP enzyme. Patterson DC, Ruiz MP, Yoon H, Walker JA, Armache JP, Yennawar NH, Weinert EE. Proc Natl Acad Sci U S A 118 e2100657118 (2021)
  4. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Meek RW, Cadby IT, Moynihan PJ, Lovering AL. Nat Commun 10 4086 (2019)


Reviews citing this publication (22)

  1. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Römling U, Galperin MY, Gomelsky M. Microbiol. Mol. Biol. Rev. 77 1-52 (2013)
  2. Diversity of structure and function of response regulator output domains. Galperin MY. Curr. Opin. Microbiol. 13 150-159 (2010)
  3. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Chem Soc Rev 42 305-341 (2013)
  4. You've come a long way: c-di-GMP signaling. Sondermann H, Shikuma NJ, Yildiz FH. Curr. Opin. Microbiol. 15 140-146 (2012)
  5. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Gao R, Stock AM. Curr. Opin. Microbiol. 13 160-167 (2010)
  6. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Environ. Microbiol. 16 1961-1981 (2014)
  7. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms. Chou SH, Galperin MY. J. Bacteriol. 198 32-46 (2016)
  8. C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. Schirmer T. J. Mol. Biol. 428 3683-3701 (2016)
  9. 3',5'-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Yan H, Chen W. Chem Soc Rev 39 2914-2924 (2010)
  10. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Chem. Commun. (Camb.) 52 9327-9342 (2016)
  11. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Whiteley CG, Lee DJ. Biotechnol. Adv. 33 124-141 (2015)
  12. Quorum sensing and biofilm formation in mycobacteria: role of c-di-GMP and methods to study this second messenger. Sharma IM, Petchiappan A, Chatterji D. IUBMB Life 66 823-834 (2014)
  13. The lost language of the RNA World. Nelson JW, Breaker RR. Sci Signal 10 (2017)
  14. Two-component systems required for virulence in Pseudomonas aeruginosa. Francis VI, Stevenson EC, Porter SL. FEMS Microbiol. Lett. 364 (2017)
  15. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Römling U, Liang ZX, Dow JM. J. Bacteriol. 199 (2017)
  16. The bacterial second messenger c-di-GMP: probing interactions with protein and RNA binding partners using cyclic dinucleotide analogs. Shanahan CA, Strobel SA. Org. Biomol. Chem. 10 9113-9129 (2012)
  17. Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung. Riquelme SA, Ahn D, Prince A. J Innate Immun 10 442-454 (2018)
  18. Sensory Perception in Bacterial Cyclic Diguanylate Signal Transduction. Randall TE, Eckartt K, Kakumanu S, Price-Whelan A, Dietrich LEP, Harrison JJ. J Bacteriol 204 e0043321 (2022)
  19. Cyclic-di-AMP signalling in lactic acid bacteria. Turner MS, Xiang Y, Liang ZX, Marcellin E, Pham HT. FEMS Microbiol Rev 47 fuad025 (2023)
  20. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Khan F, Jeong GJ, Tabassum N, Kim YM. Cell Commun Signal 21 259 (2023)
  21. Nano-RNases: oligo- or dinucleases? Lee VT, Sondermann H, Winkler WC. FEMS Microbiol Rev 46 fuac038 (2022)
  22. The World of Cyclic Dinucleotides in Bacterial Behavior. Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. Molecules 25 (2020)

Articles citing this publication (62)

  1. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. Navarro MV, Newell PD, Krasteva PV, Chatterjee D, Madden DR, O'Toole GA, Sondermann H. PLoS Biol. 9 e1000588 (2011)
  2. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. Srivastava D, Harris RC, Waters CM. J. Bacteriol. 193 6331-6341 (2011)
  3. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. Hobley L, Fung RK, Lambert C, Harris MA, Dabhi JM, King SS, Basford SM, Uchida K, Till R, Ahmad R, Aizawa S, Gomelsky M, Sockett RE. PLoS Pathog. 8 e1002493 (2012)
  4. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. Huangyutitham V, Güvener ZT, Harwood CS. MBio 4 e00242-13 (2013)
  5. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT. Proc. Natl. Acad. Sci. U.S.A. 112 E5048-57 (2015)
  6. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Basu Roy A, Sauer K. Mol. Microbiol. 94 771-793 (2014)
  7. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. Lieberman OJ, Orr MW, Wang Y, Lee VT. ACS Chem. Biol. 9 183-192 (2014)
  8. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzolà F, Rinaldo S. PLoS ONE 8 e74920 (2013)
  9. Investigating the allosteric regulation of YfiN from Pseudomonas aeruginosa: clues from the structure of the catalytic domain. Giardina G, Paiardini A, Fernicola S, Franceschini S, Rinaldo S, Stelitano V, Cutruzzolà F. PLoS ONE 8 e81324 (2013)
  10. Structure of the PilZ-FimXEAL-c-di-GMP Complex Responsible for the Regulation of Bacterial Type IV Pilus Biogenesis. Guzzo CR, Dunger G, Salinas RK, Farah CS. J. Mol. Biol. 425 2174-2197 (2013)
  11. The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3'-5')-cyclic dimeric GMP synthesis. Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A. J. Biol. Chem. 286 31136-31144 (2011)
  12. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. Nucleic Acids Res. 43 10633-10654 (2015)
  13. Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. Li Z, Chen JH, Hao Y, Nair SK. J. Biol. Chem. 287 30191-30204 (2012)
  14. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes. Tan H, West JA, Ramsay JP, Monson RE, Griffin JL, Toth IK, Salmond GP. Microbiology (Reading, Engl.) 160 1427-1439 (2014)
  15. Differential binding of 2'-biotinylated analogs of c-di-GMP with c-di-GMP riboswitches and binding proteins. Luo Y, Zhou J, Watt SK, Lee VT, Dayie TK, Sintim HO. Mol Biosyst 8 772-778 (2012)
  16. A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa. Houot L, Fanni A, de Bentzmann S, Bordi C. Microbiology (Reading, Engl.) 158 1964-1971 (2012)
  17. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling. Xu L, Venkataramani P, Ding Y, Liu Y, Deng Y, Yong GL, Xin L, Ye R, Zhang L, Yang L, Liang ZX. J. Biol. Chem. 291 16112-16123 (2016)
  18. A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase. Schaller RA, Ali SK, Klose KE, Kurtz DM. Biochemistry 51 8563-8570 (2012)
  19. Cooperative substrate binding by a diguanylate cyclase. Oliveira MC, Teixeira RD, Andrade MO, Pinheiro GM, Ramos CH, Farah CS. J. Mol. Biol. 427 415-432 (2015)
  20. Structural analysis of an oxygen-regulated diguanylate cyclase. Tarnawski M, Barends TR, Schlichting I. Acta Crystallogr. D Biol. Crystallogr. 71 2158-2177 (2015)
  21. The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein. Dahlstrom KM, Giglio KM, Sondermann H, O'Toole GA. J. Bacteriol. 198 1595-1603 (2016)
  22. Structure of a diguanylate cyclase from Thermotoga maritima: insights into activation, feedback inhibition and thermostability. Deepthi A, Liew CW, Liang ZX, Swaminathan K, Lescar J. PLoS ONE 9 e110912 (2014)
  23. Synthesis of cyclic di-nucleotidic acids as potential inhibitors targeting diguanylate cyclase. Ching SM, Tan WJ, Chua KL, Lam Y. Bioorg. Med. Chem. 18 6657-6665 (2010)
  24. Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB. Pu M, Wood TK. Biochem. Biophys. Res. Commun. 402 351-355 (2010)
  25. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis. Sharma IM, Prakash S, Dhanaraman T, Chatterji D. Microbiology (Reading, Engl.) 160 2304-2318 (2014)
  26. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Burns JL, Deer DD, Weinert EE. Mol Biosyst 10 2823-2826 (2014)
  27. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD. J. Struct. Biol. 186 380-385 (2014)
  28. Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2'-F-c-di-GMP. Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO. Bioorg. Med. Chem. 21 4396-4404 (2013)
  29. The REC domain mediated dimerization is critical for FleQ from Pseudomonas aeruginosa to function as a c-di-GMP receptor and flagella gene regulator. Su T, Liu S, Wang K, Chi K, Zhu D, Wei T, Huang Y, Guo L, Hu W, Xu S, Lin Z, Gu L. J. Struct. Biol. 192 1-13 (2015)
  30. Crystal structure of a catalytically active GG(D/E)EF diguanylate cyclase domain from Marinobacter aquaeolei with bound c-di-GMP product. Vorobiev SM, Neely H, Yu B, Seetharaman J, Xiao R, Acton TB, Montelione GT, Hunt JF. J. Struct. Funct. Genomics 13 177-183 (2012)
  31. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus. Castro M, Deane SM, Ruiz L, Rawlings DE, Guiliani N. PLoS ONE 10 e0116399 (2015)
  32. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Wang Y, Hay ID, Rehman ZU, Rehm BH. Appl. Microbiol. Biotechnol. 99 7253-7265 (2015)
  33. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone. Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Front Microbiol 8 1280 (2017)
  34. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation. Chen Y, Liu S, Liu C, Huang Y, Chi K, Su T, Zhu D, Peng J, Xia Z, He J, Xu S, Hu W, Gu L. Sci Rep 6 29499 (2016)
  35. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions. Muñoz-Martínez F, García-Fontana C, Rico-Jiménez M, Alfonso C, Krell T. PLoS ONE 7 e45810 (2012)
  36. Systematic Analysis of c-di-GMP Signaling Mechanisms and Biological Functions in Dickeya zeae EC1. Chen Y, Zhou J, Lv M, Liang Z, Parsek MR, Zhang LH. mBio 11 e02993-20 (2020)
  37. Cellulose production is coupled to sensing of the pyrimidine biosynthetic pathway via c-di-GMP production by the DgcQ protein of Escherichia coli. Rossi E, Motta S, Aliverti A, Cossu F, Gourlay L, Mauri P, Landini P. Environ. Microbiol. 19 4551-4563 (2017)
  38. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins. Lieberman OJ, DeStefano JJ, Lee VT. PLoS ONE 8 e53689 (2013)
  39. Activation mechanism of a small prototypic Rec-GGDEF diguanylate cyclase. Teixeira RD, Holzschuh F, Schirmer T. Nat Commun 12 2162 (2021)
  40. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. Gourinchas G, Heintz U, Winkler A. Elife 7 (2018)
  41. Bacterial c-di-GMP has a key role in establishing host-microbe symbiosis. Obeng N, Czerwinski A, Schütz D, Michels J, Leipert J, Bansept F, García García MJ, Schultheiß T, Kemlein M, Fuß J, Tholey A, Traulsen A, Sondermann H, Schulenburg H. Nat Microbiol 8 1809-1819 (2023)
  42. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems. Christensen S, Serbus LR. G3 (Bethesda) 5 983-996 (2015)
  43. In silico comparative analysis of GGDEF and EAL domain signaling proteins from the Azospirillum genomes. Mata AR, Pacheco CM, Cruz Pérez JF, Sáenz MM, Baca BE. BMC Microbiol. 18 20 (2018)
  44. Insights into Biofilm Dispersal Regulation from the Crystal Structure of the PAS-GGDEF-EAL Region of RbdA from Pseudomonas aeruginosa. Liu C, Liew CW, Wong YH, Tan ST, Poh WH, Manimekalai MSS, Rajan S, Xin L, Liang ZX, Grüber G, Rice SA, Lescar J. J. Bacteriol. 200 (2018)
  45. Predicting mutational routes to new adaptive phenotypes. Lind PA, Libby E, Herzog J, Rainey PB. Elife 8 (2019)
  46. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing. Nakayama S, Zhou J, Zheng Y, Szmacinski H, Sintim HO. Future Sci OA 2 FSO93 (2016)
  47. Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors. Rivera S, Burns JL, Vansuch GE, Chica B, Weinert EE. J. Inorg. Biochem. 164 70-76 (2016)
  48. Identification of two different chemosensory pathways in representatives of the genus Halomonas. Gasperotti AF, Revuelta MV, Studdert CA, Herrera Seitz MK. BMC Genomics 19 266 (2018)
  49. Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcus vulcanus. Enomoto G, Okuda Y, Ikeuchi M. Sci Rep 8 5338 (2018)
  50. An M protein coiled coil unfurls and exposes its hydrophobic core to capture LL-37. Kolesinski P, Wang KC, Hirose Y, Nizet V, Ghosh P. Elife 11 e77989 (2022)
  51. Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. Belhart K, Gutierrez MP, Zacca F, Ambrosis N, Cartelle Gestal M, Taylor D, Dahlstrom KM, Harvill ET, O'Toole GA, Sisti F, Fernández J. J Bacteriol 201 (2019)
  52. Characterization and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1. Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. Infect Drug Resist 12 655-665 (2019)
  53. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Yan W, Wei Y, Fan S, Yu C, Tian F, Wang Q, Yang F, Chen H. Microorganisms 9 495 (2021)
  54. Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria. Kessler C, Mhatre E, Cooper V, Kim W. Appl Environ Microbiol 87 e0130621 (2021)
  55. Expression and function of the cdgD gene, encoding a CHASE-PAS-DGC-EAL domain protein, in Azospirillum brasilense. Cruz-Pérez JF, Lara-Oueilhe R, Marcos-Jiménez C, Cuatlayotl-Olarte R, Xiqui-Vázquez ML, Reyes-Carmona SR, Baca BE, Ramírez-Mata A. Sci Rep 11 520 (2021)
  56. Functional Characterization of c-di-GMP Signaling-Related Genes in the Probiotic Lactobacillus acidophilus. He J, Ruan W, Sun J, Wang F, Yan W. Front Microbiol 9 1935 (2018)
  57. H-NOX Regulates Biofilm Formation in Agrobacterium Vitis in Response to NO. Williams DE, Nesbitt NM, Muralidharan S, Hossain S, Boon EM. Biochemistry 62 912-922 (2023)
  58. Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. Kessler C, Kim W. mSystems 7 e0073722 (2022)
  59. Illuminating the inner workings of a natural protein switch: Blue-light sensing in LOV-activated diguanylate cyclases. Vide U, Kasapović D, Fuchs M, Heimböck MP, Totaro MG, Zenzmaier E, Winkler A. Sci Adv 9 eadh4721 (2023)
  60. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. Gourinchas G, Vide U, Winkler A. J. Biol. Chem. 294 4498-4510 (2019)
  61. Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Barr SA, Kennedy EN, McKay LS, Johnson RM, Ohr RJ, Cotter PA, Bourret RB. Mol Microbiol 119 174-190 (2023)
  62. The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. O'Neal L, Baraquet C, Suo Z, Dreifus JE, Peng Y, Raivio TL, Wozniak DJ, Harwood CS, Parsek MR. Proc Natl Acad Sci U S A 119 e2117633119 (2022)