3nou Citations

Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome.

Nature 479 428-32 (2011)
Related entries: 3nhq, 3nop, 3not

Cited: 91 times
EuropePMC logo PMID: 22002602

Abstract

Light is a fundamental signal that regulates important physiological processes such as development and circadian rhythm in living organisms. Phytochromes form a major family of photoreceptors responsible for red light perception in plants, fungi and bacteria. They undergo reversible photoconversion between red-absorbing (Pr) and far-red-absorbing (Pfr) states, thereby ultimately converting a light signal into a distinct biological signal that mediates subsequent cellular responses. Several structures of microbial phytochromes have been determined in their dark-adapted Pr or Pfr states. However, the structural nature of initial photochemical events has not been characterized by crystallography. Here we report the crystal structures of three intermediates in the photoreaction of Pseudomonas aeruginosa bacteriophytochrome (PaBphP). We used cryotrapping crystallography to capture intermediates, and followed structural changes by scanning the temperature at which the photoreaction proceeded. Light-induced conformational changes in PaBphP originate in ring D of the biliverdin (BV) chromophore, and E-to-Z isomerization about the C(15) = C(16) double bond between rings C and D is the initial photochemical event. As the chromophore relaxes, the twist of the C(15) methine bridge about its two dihedral angles is reversed. Structural changes extend further to rings B and A, and to the surrounding protein regions. These data indicate that absorption of a photon by the Pfr state of PaBphP converts a light signal into a structural signal via twisting and untwisting of the methine bridges in the linear tetrapyrrole within the confined protein cavity.

Reviews citing this publication (8)

  1. Phytochromes: an atomic perspective on photoactivation and signaling. Burgie ES, Vierstra RD. Plant Cell 26 4568-4583 (2014)
  2. Phytochrome diversification in cyanobacteria and eukaryotic algae. Rockwell NC, Lagarias JC. Curr Opin Plant Biol 37 87-93 (2017)
  3. Solid-state NMR spectroscopy to probe photoactivation in canonical phytochromes. Song C, Rohmer T, Tiersch M, Zaanen J, Hughes J, Matysik J. Photochem Photobiol 89 259-273 (2013)
  4. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Gourinchas G, Etzl S, Winkler A. Curr Opin Struct Biol 57 72-83 (2019)
  5. Moving beyond static snapshots: Protein dynamics and the Protein Data Bank. Miller MD, Phillips GN. J Biol Chem 296 100749 (2021)
  6. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. Nagano S. J Plant Res 129 123-135 (2016)
  7. Photoactivated structural dynamics of fluorescent proteins. Bourgeois D, Regis-Faro A, Adam V. Biochem Soc Trans 40 531-538 (2012)
  8. Phytochromes in Agrobacterium fabrum. Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Front Plant Sci 12 642801 (2021)

Articles citing this publication (83)

  1. Signal amplification and transduction in phytochrome photosensors. Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S, Hoernke M, Kosheleva I, Henning R, Menzel A, Ihalainen JA, Westenhoff S. Nature 509 245-248 (2014)
  2. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD. Proc Natl Acad Sci U S A 111 10179-10184 (2014)
  3. Eukaryotic algal phytochromes span the visible spectrum. Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC, Bhattacharya D, Worden AZ, Lagarias JC. Proc Natl Acad Sci U S A 111 3871-3876 (2014)
  4. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y, Inomata K, Lagarias JC, Ikeuchi M. Proc Natl Acad Sci U S A 110 4974-4979 (2013)
  5. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion. Burgie ES, Zhang J, Vierstra RD. Structure 24 448-457 (2016)
  6. Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. Bellini D, Papiz MZ. Structure 20 1436-1446 (2012)
  7. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES, Walker JM, Phillips GN, Vierstra RD. Structure 21 88-97 (2013)
  8. Engineering adenylate cyclases regulated by near-infrared window light. Ryu MH, Kang IH, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J, Raizen DM, Gomelsky M. Proc Natl Acad Sci U S A 111 10167-10172 (2014)
  9. Structural photoactivation of a full-length bacterial phytochrome. Björling A, Berntsson O, Lehtivuori H, Takala H, Hughes AJ, Panman M, Hoernke M, Niebling S, Henry L, Henning R, Kosheleva I, Chukharev V, Tkachenko NV, Menzel A, Newby G, Khakhulin D, Wulff M, Ihalainen JA, Westenhoff S. Sci Adv 2 e1600920 (2016)
  10. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. Burgie ES, Wang T, Bussell AN, Walker JM, Li H, Vierstra RD. J Biol Chem 289 24573-24587 (2014)
  11. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. Elife 9 e53514 (2020)
  12. X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future. Shoemaker SC, Ando N. Biochemistry 57 277-285 (2018)
  13. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR. J Mol Biol 428 3702-3720 (2016)
  14. Origins of fluorescence in evolved bacteriophytochromes. Bhattacharya S, Auldridge ME, Lehtivuori H, Ihalainen JA, Forest KT. J Biol Chem 289 32144-32152 (2014)
  15. A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120. Ma Q, Hua HH, Chen Y, Liu BB, Krämer AL, Scheer H, Zhao KH, Zhou M. FEBS J 279 4095-4108 (2012)
  16. Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states. Cornilescu CC, Cornilescu G, Burgie ES, Markley JL, Ulijasz AT, Vierstra RD. J Biol Chem 289 3055-3065 (2014)
  17. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Rockwell NC, Martin SS, Lagarias JC. Photochem Photobiol Sci 14 929-941 (2015)
  18. Structural snapshot of a bacterial phytochrome in its functional intermediate state. Schmidt A, Sauthof L, Szczepek M, Lopez MF, Escobar FV, Qureshi BM, Michael N, Buhrke D, Stevens T, Kwiatkowski D, von Stetten D, Mroginski MA, Krauß N, Lamparter T, Hildebrandt P, Scheerer P. Nat Commun 9 4912 (2018)
  19. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. Salewski J, Escobar FV, Kaminski S, von Stetten D, Keidel A, Rippers Y, Michael N, Scheerer P, Piwowarski P, Bartl F, Frankenberg-Dinkel N, Ringsdorf S, Gärtner W, Lamparter T, Mroginski MA, Hildebrandt P. J Biol Chem 288 16800-16814 (2013)
  20. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. Velazquez Escobar F, Piwowarski P, Salewski J, Michael N, Fernandez Lopez M, Rupp A, Qureshi BM, Scheerer P, Bartl F, Frankenberg-Dinkel N, Siebert F, Andrea Mroginski M, Hildebrandt P. Nat Chem 7 423-430 (2015)
  21. Dynamic Crystallography Reveals Early Signalling Events in Ultraviolet Photoreceptor UVR8. Zeng X, Ren Z, Wu Q, Fan J, Peng PP, Tang K, Zhang R, Zhao KH, Yang X. Nat Plants 1 14006 (2015)
  22. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. Zhang J, Stankey RJ, Vierstra RD. Plant Physiol 161 1445-1457 (2013)
  23. The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome. Song C, Psakis G, Psakis G, Kopycki J, Lang C, Matysik J, Hughes J. J Biol Chem 289 2552-2562 (2014)
  24. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. Gourinchas G, Heintz U, Winkler A. Elife 7 e34815 (2018)
  25. Light Signaling Mechanism of Two Tandem Bacteriophytochromes. Yang X, Stojković EA, Ozarowski WB, Kuk J, Davydova E, Moffat K. Structure 23 1179-1189 (2015)
  26. FTIR Spectroscopy Revealing Light-Dependent Refolding of the Conserved Tongue Region of Bacteriophytochrome. Stojković EA, Toh KC, Alexandre MT, Baclayon M, Moffat K, Kennis JT. J Phys Chem Lett 5 2512-2515 (2014)
  27. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes. Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. J Biol Chem 290 16383-16392 (2015)
  28. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Zienicke B, Molina I, Glenz R, Singer P, Ehmer D, Escobar FV, Hildebrandt P, Diller R, Lamparter T. J Biol Chem 288 31738-31751 (2013)
  29. Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1. Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Biochemistry 53 4601-4611 (2014)
  30. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Rockwell NC, Lagarias JC, Bhattacharya D. Front Ecol Evol 2 (2014)
  31. Light-induced structural changes in a monomeric bacteriophytochrome. Takala H, Niebling S, Berntsson O, Björling A, Lehtivuori H, Häkkänen H, Panman M, Gustavsson E, Hoernke M, Newby G, Zontone F, Wulff M, Menzel A, Ihalainen JA, Westenhoff S. Struct Dyn 3 054701 (2016)
  32. Photoreceptors Take Charge: Emerging Principles for Light Sensing. Kottke T, Xie A, Larsen DS, Hoff WD. Annu Rev Biophys 47 291-313 (2018)
  33. Photoactivation mechanism of a carotenoid-based photoreceptor. Bandara S, Ren Z, Lu L, Zeng X, Shin H, Zhao KH, Yang X. Proc Natl Acad Sci U S A 114 6286-6291 (2017)
  34. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Lim S, Rockwell NC, Martin SS, Dallas JL, Lagarias JC, Ames JB. Photochem Photobiol Sci 13 951-962 (2014)
  35. Bacteriophytochrome Photoisomerization Proceeds Homogeneously Despite Heterogeneity in Ground State. Wang C, Flanagan ML, McGillicuddy RD, Zheng H, Ginzburg AR, Yang X, Moffat K, Engel GS. Biophys J 111 2125-2134 (2016)
  36. There and Back Again: Loss and Reacquisition of Two-Cys Photocycles in Cyanobacteriochromes. Rockwell NC, Martin SS, Lagarias JC. Photochem Photobiol 93 741-754 (2017)
  37. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump-IR probe study. Linke M, Yang Y, Zienicke B, Hammam MA, von Haimberger T, Zacarias A, Inomata K, Lamparter T, Heyne K. Biophys J 105 1756-1766 (2013)
  38. Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Kim J, Kim KH, Oang KY, Lee JH, Hong K, Cho H, Huse N, Schoenlein RW, Kim TK, Ihee H. Chem Commun (Camb) 52 3734-3749 (2016)
  39. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. Structure 29 743-754.e4 (2021)
  40. Mapping light-driven conformational changes within the photosensory module of plant phytochrome B. von Horsten S, Straß S, Hellwig N, Gruth V, Klasen R, Mielcarek A, Linne U, Morgner N, Essen LO. Sci Rep 6 34366 (2016)
  41. Photoreversible interconversion of a phytochrome photosensory module in the crystalline state. Burgie ES, Clinger JA, Miller MD, Brewster AS, Aller P, Butryn A, Fuller FD, Gul S, Young ID, Pham CC, Kim IS, Bhowmick A, O'Riordan LJ, Sutherlin KD, Heinemann JV, Batyuk A, Alonso-Mori R, Hunter MS, Koglin JE, Yano J, Yachandra VK, Sauter NK, Cohen AE, Kern J, Orville AM, Phillips GN, Vierstra RD. Proc Natl Acad Sci U S A 117 300-307 (2020)
  42. Elucidating the Molecular Mechanism of Ultrafast Pfr-State Photoisomerization in Bathy Bacteriophytochrome PaBphP. Wang D, Qin Y, Zhang S, Wang L, Yang X, Zhong D. J Phys Chem Lett 10 6197-6201 (2019)
  43. High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures. Sanchez JC, Carrillo M, Pandey S, Noda M, Aldama L, Feliz D, Claesson E, Wahlgren WY, Tracy G, Duong P, Nugent AC, Field A, Šrajer V, Kupitz C, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Schmidt M, Stojković EA. Struct Dyn 6 054701 (2019)
  44. Steric Effects Govern the Photoactivation of Phytochromes. Falklöf O, Durbeej B. Chemphyschem 17 954-957 (2016)
  45. Blue protein with red fluorescence. Ghosh S, Yu CL, Ferraro DJ, Sudha S, Pal SK, Schaefer WF, Gibson DT, Ramaswamy S. Proc Natl Acad Sci U S A 113 11513-11518 (2016)
  46. Coordination of the biliverdin D-ring in bacteriophytochromes. Lenngren N, Edlund P, Takala H, Stucki-Buchli B, Rumfeldt J, Peshev I, Häkkänen H, Westenhoff S, Ihalainen JA. Phys Chem Chem Phys 20 18216-18225 (2018)
  47. Structural basis of molecular logic OR in a dual-sensor histidine kinase. Shin H, Ren Z, Zeng X, Bandara S, Yang X. Proc Natl Acad Sci U S A 116 19973-19982 (2019)
  48. X-ray radiation induces deprotonation of the bilin chromophore in crystalline D. radiodurans phytochrome. Li F, Burgie ES, Yu T, Héroux A, Schatz GC, Vierstra RD, Orville AM. J Am Chem Soc 137 2792-2795 (2015)
  49. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Velazquez Escobar F, von Stetten D, Günther-Lütkens M, Keidel A, Michael N, Lamparter T, Essen LO, Hughes J, Gärtner W, Yang Y, Heyne K, Mroginski MA, Hildebrandt P. Front Mol Biosci 2 37 (2015)
  50. Dynamic Nuclear Polarization Provides New Insights into Chromophore Structure in Phytochrome Photoreceptors. Stöppler D, Song C, van Rossum BJ, Geiger MA, Lang C, Mroginski MA, Jagtap AP, Sigurdsson ST, Matysik J, Hughes J, Oschkinat H. Angew Chem Int Ed Engl 55 16017-16020 (2016)
  51. Modeling of phytochrome absorption spectra. Falklöf O, Durbeej B. J Comput Chem 34 1363-1374 (2013)
  52. Non-Bonded Interactions Drive the Sub-Picosecond Bilin Photoisomerization in the P(fr) State of Phytochrome Cph1. Yang Y, Heyne K, Mathies RA, Dasgupta J. Chemphyschem 17 369-374 (2016)
  53. A far-red cyanobacteriochrome lineage specific for verdins. Moreno MV, Rockwell NC, Mora M, Fisher AJ, Lagarias JC. Proc Natl Acad Sci U S A 117 27962-27970 (2020)
  54. Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome. Wang D, Li X, Wang L, Yang X, Zhong D. J Phys Chem Lett 11 8819-8824 (2020)
  55. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion. Kacprzak S, Njimona I, Renz A, Feng J, Reijerse E, Lubitz W, Krauss N, Scheerer P, Nagano S, Lamparter T, Weber S. J Biol Chem 292 7598-7606 (2017)
  56. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr of Agrobacterium fabrum: Isomerization in a pH-dependent H-bond Network. Singer P, Wörner S, Lamparter T, Diller R. Chemphyschem 17 1288-1297 (2016)
  57. Fast Photochemistry of Prototypical Phytochromes-A Species vs. Subunit Specific Comparison. Ihalainen JA, Takala H, Lehtivuori H. Front Mol Biosci 2 75 (2015)
  58. Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching. Gustavsson E, Isaksson L, Persson C, Mayzel M, Brath U, Vrhovac L, Ihalainen JA, Karlsson BG, Orekhov V, Westenhoff S. Biophys J 118 415-421 (2020)
  59. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction. Baker AW, Satyshur KA, Moreno Morales N, Forest KT. J Bacteriol 198 1218-1229 (2016)
  60. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Proc Natl Acad Sci U S A 118 e2025094118 (2021)
  61. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. Gourinchas G, Vide U, Winkler A. J Biol Chem 294 4498-4510 (2019)
  62. Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes. Song JY, Lee HY, Yang HW, Song JJ, Lagarias JC, Park YI. J Biol Chem 295 6754-6766 (2020)
  63. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Sci Adv 7 eabh1097 (2021)
  64. An automated platform for in situ serial crystallography at room temperature. Ren Z, Wang C, Shin H, Bandara S, Kumarapperuma I, Ren MY, Kang W, Yang X. IUCrJ 7 1009-1018 (2020)
  65. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120. Yuan C, Li HZ, Tang K, Gärtner W, Scheer H, Zhou M, Zhao KH. Photochem Photobiol Sci 15 546-553 (2016)
  66. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Photochem Photobiol Sci 21 471-491 (2022)
  67. Structure of the response regulator RPA3017 involved in red-light signaling in Rhodopseudomonas palustris. Yang X, Zeng X, Moffat K, Yang X. Acta Crystallogr F Struct Biol Commun 71 1215-1222 (2015)
  68. Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Yang Y, Stensitzki T, Sauthof L, Schmidt A, Piwowarski P, Velazquez Escobar F, Michael N, Nguyen AD, Szczepek M, Brünig FN, Netz RR, Mroginski MA, Adam S, Bartl F, Schapiro I, Hildebrandt P, Scheerer P, Heyne K. Nat Chem 14 823-830 (2022)
  69. MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Xu QZ, Bielytskyi P, Otis J, Lang C, Hughes J, Zhao KH, Losi A, Gärtner W, Song C. Int J Mol Sci 20 E3656 (2019)
  70. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin. Purwar N, Tenboer J, Tripathi S, Schmidt M. Int J Mol Sci 14 18881-18898 (2013)
  71. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Liu XY, Zhang TS, Fang Q, Fang WH, González L, Cui G. Angew Chem Int Ed Engl 60 18688-18693 (2021)
  72. Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Altmayer S, Köhler L, Bielytskyi P, Gärtner W, Matysik J, Wiebeler C, Song C. Photochem Photobiol Sci 21 447-469 (2022)
  73. Red light-induced structure changes in phytochrome A from Pisum sativum. Oide M, Nakasako M. Sci Rep 11 2827 (2021)
  74. Influence of the PHY domain on the ms-photoconversion dynamics of a knotless phytochrome. Fischer T, Köhler L, Ott T, Song C, Wachtveitl J, Slavov C. Photochem Photobiol Sci 21 1627-1636 (2022)
  75. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. Clinger JA, Chen E, Kliger DS, Phillips GN. J Phys Chem B 125 202-210 (2021)
  76. Structural biology: Action at a distance in a light receptor. Baker AW, Forest KT. Nature 509 174-175 (2014)
  77. Ultrafast Structural Changes Decomposed from Serial Crystallographic Data. Ren Z. J Phys Chem Lett 10 7148-7163 (2019)
  78. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis. Yang R, Nishiyama K, Kamiya A, Ukaji Y, Inomata K, Lamparter T. Plant Cell 24 1936-1951 (2012)
  79. Light-induced protein structural dynamics in bacteriophytochrome revealed by time-resolved x-ray solution scattering. Lee SJ, Kim TW, Kim JG, Yang C, Yun SR, Kim C, Ren Z, Kumarapperuma I, Kuk J, Moffat K, Yang X, Ihee H. Sci Adv 8 eabm6278 (2022)
  80. Mode of autophosphorylation in bacteriophytochromes RpBphP2 and RpBphP3. Kumarapperuma I, Tom IP, Bandara S, Montano S, Yang X. Photochem Photobiol Sci 22 1257-1266 (2023)
  81. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1. Song C, Lang C, Kopycki J, Hughes J, Matysik J. Front Mol Biosci 2 42 (2015)
  82. Photocycle of a cyanobacteriochrome: a charge defect on ring C impairs conjugation in chromophore. Köhler L, Gärtner W, Salvan G, Matysik J, Wiebeler C, Song C. Chem Sci 14 6295-6308 (2023)
  83. Photoinduced isomerization sampling of retinal in bacteriorhodopsin. Ren Z. PNAS Nexus 1 pgac103 (2022)