3t65 Citations

Germline antibody recognition of distinct carbohydrate epitopes.

Nat Struct Biol 10 1019-25 (2003)
Related entries: 1q9k, 1q9l, 1q9o, 1q9w, 3sy0, 3t4y, 3t77

Cited: 78 times
EuropePMC logo PMID: 14625588

Abstract

High-resolution structures reveal how a germline antibody can recognize a range of clinically relevant carbohydrate epitopes. The germline response to a carbohydrate immunogen can be critical to survivability, with selection for antibody gene segments that both confer protection against common pathogens and retain the flexibility to adapt to new disease organisms. We show here that antibody S25-2 binds several distinct inner-core epitopes of bacterial lipopolysaccharides (LPSs) by linking an inherited monosaccharide residue binding site with a subset of complementarity-determining regions (CDRs) of limited flexibility positioned to recognize the remainder of an array of different epitopes. This strategy allows germline antibodies to adapt to different epitopes while minimizing entropic penalties associated with the immobilization of labile CDRs upon binding of antigen, and provides insight into the link between the genetic origin of individual CDRs and their respective roles in antigen recognition.

Articles - 3t65 mentioned but not cited (3)

  1. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ. Proteins 82 1611-1623 (2014)
  2. Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint. Weitzner BD, Gray JJ. J Immunol 198 505-515 (2017)
  3. NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning. Cohen T, Halfon M, Schneidman-Duhovny D. Front Immunol 13 958584 (2022)


Reviews citing this publication (5)

  1. Glycan array: a powerful tool for glycomics studies. Liang CH, Wu CY. Expert Rev Proteomics 6 631-645 (2009)
  2. Antibody recognition of carbohydrate epitopes†. Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Glycobiology 25 920-952 (2015)
  3. Breaking the law: unconventional strategies for antibody diversification. Kanyavuz A, Marey-Jarossay A, Lacroix-Desmazes S, Dimitrov JD. Nat Rev Immunol 19 355-368 (2019)
  4. The ABCs (Antibody, B cells, and Carbohydrate epitopes) of cholera immunity: considerations for an improved vaccine. Provenzano D, Kovác P, Wade WF. Microbiol. Immunol. 50 899-927 (2006)
  5. The History of Carbohydrates in Type I Allergy. Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. Front Immunol 11 586924 (2020)

Articles citing this publication (70)

  1. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Huang CC, Venturi M, Majeed S, Moore MJ, Phogat S, Zhang MY, Dimitrov DS, Hendrickson WA, Robinson J, Sodroski J, Wyatt R, Choe H, Farzan M, Kwong PD. Proc. Natl. Acad. Sci. U.S.A. 101 2706-2711 (2004)
  2. A new clustering of antibody CDR loop conformations. North B, Lehmann A, Dunbrack RL. J. Mol. Biol. 406 228-256 (2011)
  3. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Sethi DK, Agarwal A, Manivel V, Rao KV, Salunke DM. Immunity 24 429-438 (2006)
  4. Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Kuroda D, Shirai H, Kobori M, Nakamura H. Proteins 73 608-620 (2008)
  5. Protective and nonprotective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan manifest different specificities and gene use profiles. Maitta RW, Datta K, Chang Q, Luo RX, Witover B, Subramaniam K, Pirofski LA. Infect. Immun. 72 4810-4818 (2004)
  6. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. Dimitrov JD, Roumenina LT, Doltchinkova VR, Mihaylova NM, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. J. Biol. Chem. 282 26696-26706 (2007)
  7. Carbohydrate residues downstream of the terminal Galalpha(1,3)Gal epitope modulate the specificity of xenoreactive antibodies. Milland J, Yuriev E, Xing PX, McKenzie IF, Ramsland PA, Sandrin MS. Immunol. Cell Biol. 85 623-632 (2007)
  8. Elucidation of some Bax conformational changes through crystallization of an antibody-peptide complex. Peyerl FW, Dai S, Murphy GA, Crawford F, White J, Marrack P, Kappler JW. Cell Death Differ. 14 447-452 (2007)
  9. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Babor M, Kortemme T. Proteins 75 846-858 (2009)
  10. Effects of somatic mutations on CDR loop flexibility during affinity maturation. Wong SE, Sellers BD, Jacobson MP. Proteins 79 821-829 (2011)
  11. Solid phase immunoadsorption for therapeutic and analytical studies on neuropathy-associated anti-GM1 antibodies. Townson K, Boffey J, Nicholl D, Veitch J, Bundle D, Zhang P, Samain E, Antoine T, Bernardi A, Arosio D, Sonnino S, Isaacs N, Willison HJ. Glycobiology 17 294-303 (2007)
  12. Transition towards antigen-binding promiscuity of a monospecific antibody. Dimitrov JD, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. Mol. Immunol. 44 1854-1863 (2007)
  13. Exploration of specificity in germline monoclonal antibody recognition of a range of natural and synthetic epitopes. Brooks CL, Müller-Loennies S, Brade L, Kosma P, Hirama T, MacKenzie CR, Brade H, Evans SV. J. Mol. Biol. 377 450-468 (2008)
  14. The anti-non-gal xenoantibody response to xenoantigens on gal knockout pig cells is encoded by a restricted number of germline progenitors. Kiernan K, Harnden I, Gunthart M, Gregory C, Meisner J, Kearns-Jonker M. Am. J. Transplant. 8 1829-1839 (2008)
  15. Predicting antibody complementarity determining region structures without classification. Choi Y, Deane CM. Mol Biosyst 7 3327-3334 (2011)
  16. Structure of an anti-Lewis X Fab fragment in complex with its Lewis X antigen. van Roon AM, Pannu NS, de Vrind JP, van der Marel GA, van Boom JH, Hokke CH, Deelder AM, Abrahams JP. Structure 12 1227-1236 (2004)
  17. Structural elucidation of the mechanistic basis of degeneracy in the primary humoral response. Khan T, Salunke DM. J Immunol 188 1819-1827 (2012)
  18. Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization. Mao H, Graziano JJ, Chase TM, Bentley CA, Bazirgan OA, Reddy NP, Song BD, Smider VV. Nat. Biotechnol. 28 1195-1202 (2010)
  19. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies. Agostino M, Sandrin MS, Thompson PE, Yuriev E, Ramsland PA. Mol. Immunol. 47 233-246 (2009)
  20. Close-up of the immunogenic α1,3-galactose epitope as defined by a monoclonal chimeric immunoglobulin E and human serum using saturation transfer difference (STD) NMR. Plum M, Michel Y, Wallach K, Raiber T, Blank S, Bantleon FI, Diethers A, Greunke K, Braren I, Hackl T, Meyer B, Spillner E. J. Biol. Chem. 286 43103-43111 (2011)
  21. A monoclonal antibody against a carbohydrate epitope in lipopolysaccharide differentiates Chlamydophila psittaci from Chlamydophila pecorum, Chlamydophila pneumoniae, and Chlamydia trachomatis. Müller-Loennies S, Gronow S, Brade L, MacKenzie R, Kosma P, Brade H. Glycobiology 16 184-196 (2006)
  22. Analysis of cross-reactive and specific anti-carbohydrate antibodies against lipopolysaccharide from Chlamydophila psittaci. Gerstenbruch S, Brooks CL, Kosma P, Brade L, Mackenzie CR, Evans SV, Brade H, Müller-Loennies S. Glycobiology 20 461-472 (2010)
  23. Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping. Agostino M, Yuriev E, Ramsland PA. PLoS ONE 7 e35457 (2012)
  24. Role of antibody paratope conformational flexibility in the manifestation of molecular mimicry. Krishnan L, Sahni G, Kaur KJ, Salunke DM. Biophys. J. 94 1367-1376 (2008)
  25. Structural evaluation of a mimicry-recognizing paratope: plasticity in antigen-antibody interactions manifests in molecular mimicry. Tapryal S, Gaur V, Kaur KJ, Salunke DM. J Immunol 191 456-463 (2013)
  26. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Broecker F, Hanske J, Martin CE, Baek JY, Wahlbrink A, Wojcik F, Hartmann L, Rademacher C, Anish C, Seeberger PH. Nat Commun 7 11224 (2016)
  27. Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. Finton KA, Friend D, Jaffe J, Gewe M, Holmes MA, Larman HB, Stuart A, Larimore K, Greenberg PD, Elledge SJ, Stamatatos L, Strong RK. PLoS Pathog. 10 e1004403 (2014)
  28. Antigen recognition by antibody C836 through adjustment of V(L)/V(H) packing. Teplyakov A, Obmolova G, Malia T, Gilliland G. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1165-1167 (2011)
  29. A semisynthetic Streptococcus pneumoniae serotype 8 glycoconjugate vaccine. Schumann B, Hahm HS, Parameswarappa SG, Reppe K, Wahlbrink A, Govindan S, Kaplonek P, Pirofski LA, Witzenrath M, Anish C, Pereira CL, Seeberger PH. Sci Transl Med 9 (2017)
  30. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis. Reinhardt A, Yang Y, Claus H, Pereira CL, Cox AD, Vogel U, Anish C, Seeberger PH. Chem. Biol. 22 38-49 (2015)
  31. Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis. Parker MJ, Gomery K, Richard G, MacKenzie CR, Cox AD, Richards JC, Evans SV. Glycobiology 24 442-449 (2014)
  32. Synthesis of chlamydia lipopolysaccharide haptens through the use of α-specific 3-iodo-Kdo fluoride glycosyl donors. Pokorny B, Kosma P. Chemistry 21 305-313 (2015)
  33. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase. Biswas T, Yi L, Aggarwal P, Wu J, Rubin JR, Stuckey JA, Woodard RW, Tsodikov OV. J. Biol. Chem. 284 30594-30603 (2009)
  34. Use of molecular modeling and site-directed mutagenesis to define the structural basis for the immune response to carbohydrate xenoantigens. Kearns-Jonker M, Barteneva N, Mencel R, Hussain N, Shulkin I, Xu A, Yew M, Cramer DV. BMC Immunol. 8 3 (2007)
  35. 2G12-expressing B cell lines may aid in HIV carbohydrate vaccine design strategies. Doores KJ, Huber M, Le KM, Wang SK, Doyle-Cooper C, Cooper A, Pantophlet R, Wong CH, Nemazee D, Burton DR. J. Virol. 87 2234-2241 (2013)
  36. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R. Glycobiology 25 412-419 (2015)
  37. Structural insights into parallel strategies for germline antibody recognition of lipopolysaccharide from Chlamydia. Evans DW, Müller-Loennies S, Brooks CL, Brade L, Kosma P, Brade H, Evans SV. Glycobiology 21 1049-1059 (2011)
  38. The role of CDR H3 in antibody recognition of a synthetic analog of a lipopolysaccharide antigen. Brooks CL, Blackler RJ, Sixta G, Kosma P, Müller-Loennies S, Brade L, Hirama T, MacKenzie CR, Brade H, Evans SV. Glycobiology 20 138-147 (2010)
  39. Adjustable locks and flexible keys: plasticity of epitope-paratope interactions in germline antibodies. Khan T, Salunke DM. J Immunol 192 5398-5405 (2014)
  40. A rAb screening method for improving the probability of identifying peptide mimotopes of carbohydrate antigens. Weisser NE, Almquist KC, Hall JC. Vaccine 25 4611-4622 (2007)
  41. Characterization of murine monoclonal antibodies against Helicobacter pylori lipopolysaccharide specific for Lex and Ley blood group determinants. Altman E, Harrison BA, Hirama T, Chandan V, To R, MacKenzie R. Biochem. Cell Biol. 83 589-596 (2005)
  42. Dynamic aspects of antibody:oligosaccharide complexes characterized by molecular dynamics simulations and saturation transfer difference nuclear magnetic resonance. Theillet FX, Frank M, Vulliez-Le Normand B, Simenel C, Hoos S, Chaffotte A, Bélot F, Guerreiro C, Nato F, Phalipon A, Mulard LA, Delepierre M. Glycobiology 21 1570-1579 (2011)
  43. Groove-type recognition of chlamydiaceae-specific lipopolysaccharide antigen by a family of antibodies possessing an unusual variable heavy chain N-linked glycan. Haji-Ghassemi O, Müller-Loennies S, Saldova R, Muniyappa M, Brade L, Rudd PM, Harvey DJ, Kosma P, Brade H, Evans SV. J. Biol. Chem. 289 16644-16661 (2014)
  44. Structure of an anti-cholera toxin antibody Fab in complex with an epitope-derived D-peptide: a case of polyspecific recognition. Scheerer P, Kramer A, Otte L, Seifert M, Wessner H, Scholz C, Krauss N, Schneider-Mergener J, Höhne W. J. Mol. Recognit. 20 263-274 (2007)
  45. Synthesis of a neoglycoconjugate containing a Chlamydophila psittaci-specific branched Kdo trisaccharide epitope. Kosma P, Hofinger A, Müller-Loennies S, Brade H. Carbohydr. Res. 345 704-708 (2010)
  46. Thermodynamic stability contributes to immunoglobulin specificity. Dimitrov JD, Kaveri SV, Lacroix-Desmazes S. Trends Biochem. Sci. 39 221-226 (2014)
  47. Kinetics and thermodynamics of interaction of coagulation factor VIII with a pathogenic human antibody. Dimitrov JD, Roumenina LT, Andre S, Repesse Y, Atanasov BP, Jacquemin M, Saint-Remy JM, Bayry J, Kaveri SV, Lacroix-Desmazes S. Mol. Immunol. 47 290-297 (2009)
  48. Crystal structure of a monoclonal antibody directed against an antigenic determinant common to Ogawa and Inaba serotypes of Vibrio cholerae O1. Ahmed F, André-Leroux G, Haouz A, Boutonnier A, Delepierre M, Qadri F, Nato F, Fournier JM, Alzari PM. Proteins 70 284-288 (2008)
  49. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. Lecerf M, Scheel T, Pashov AD, Jarossay A, Ohayon D, Planchais C, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. J. Biol. Chem. 290 5203-5213 (2015)
  50. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. Soliman C, Walduck AK, Yuriev E, Richards JS, Cywes-Bentley C, Pier GB, Ramsland PA. J. Biol. Chem. 293 5079-5089 (2018)
  51. Surface Plasmon Resonance Analysis Shows an IgG-Isotype-Specific Defect in ABO Blood Group Antibody Formation in Patients with Common Variable Immunodeficiency. Fischer MB, Wolfram W, Binder CJ, Böhmig GA, Wahrmann M, Eibl MM, Wolf HM. Front Immunol 6 211 (2015)
  52. Modifying antibody specificity by chain shuffling of V / V between antibodies with related specificities. Christensen PA, Danielczyk A, Ravn P, Larsen M, Stahn R, Karsten U, Goletz S. Scand. J. Immunol. 69 1-10 (2009)
  53. On the domain pairing in chimeric antibodies. Teplyakov A, Obmolova G, Carton JM, Gao W, Zhao Y, Gilliland GL. Mol. Immunol. 47 2422-2426 (2010)
  54. Pneumococcal Polysaccharide Vaccination Elicits IgG Anti-A/B Blood Group Antibodies in Healthy Individuals and Patients with Type I Diabetes Mellitus. Wolfram W, Sauerwein KM, Binder CJ, Eibl-Musil N, Wolf HM, Fischer MB. Front Immunol 7 493 (2016)
  55. Synthesis of spacer-containing chlamydial disaccharides as analogues of the alpha-Kdop-(2-->8)-alpha-Kdop-(2-->4)-alpha-Kdop trisaccharide epitope. Sixta G, Hofinger A, Kosma P. Carbohydr. Res. 342 576-585 (2007)
  56. Synthesis of α-d-glucosyl substituted methyl glycosides of 3-deoxy-α-d-manno- and d-glycero-α-d-talo-oct-2-ulosonic acid (Kdo/Ko) corresponding to inner core fragments of Acinetobacter lipopolysaccharide. Pokorny B, Müller-Loennies S, Kosma P. Carbohydr. Res. 391 66-81 (2014)
  57. Therapeutic Antibodies to Ganglioside GD2 Evolved from Highly Selective Germline Antibodies. Sterner E, Peach ML, Nicklaus MC, Gildersleeve JC. Cell Rep 20 1681-1691 (2017)
  58. A Single Human VH-gene Allows for a Broad-Spectrum Antibody Response Targeting Bacterial Lipopolysaccharides in the Blood. Sangesland M, Yousif AS, Ronsard L, Kazer SW, Zhu AL, Gatter GJ, Hayward MR, Barnes RM, Quirindongo-Crespo M, Rohrer D, Lonberg N, Kwon D, Shalek AK, Lingwood D. Cell Rep 32 108065 (2020)
  59. A Structural Model for the Ligand Binding of Pneumococcal Serotype 3 Capsular Polysaccharide-Specific Protective Antibodies. Ozdilek A, Huang J, Babb R, Paschall AV, Middleton DR, Duke JA, Pirofski LA, Mousa JJ, Avci FY. mBio 12 e0080021 (2021)
  60. A structural insight into the molecular recognition of a (-)-Delta9-tetrahydrocannabinol and the development of a sensitive, one-step, homogeneous immunocomplex-based assay for its detection. Niemi MH, Turunen L, Pulli T, Nevanen TK, Höyhtyä M, Söderlund H, Rouvinen J, Takkinen K. J. Mol. Biol. 400 803-814 (2010)
  61. Antigen binding by conformational selection in near-germline antibodies. Blackler RJ, Müller-Loennies S, Pokorny-Lehrer B, Legg MSG, Brade L, Brade H, Kosma P, Evans SV. J Biol Chem 298 101901 (2022)
  62. Selective Recognition of Carbohydrate Antigens by Germline Antibodies Isolated from AID Knockout Mice. DeLaitsch AT, Pridgen JR, Tytla A, Peach ML, Hu R, Farnsworth DW, McMillan AK, Flanagan N, Temme JS, Nicklaus MC, Gildersleeve JC. J Am Chem Soc 144 4925-4941 (2022)
  63. Structural Basis for Antibody Recognition of Lipid A: INSIGHTS TO POLYSPECIFICITY TOWARD SINGLE-STRANDED DNA. Haji-Ghassemi O, Müller-Loennies S, Rodriguez T, Brade L, Kosma P, Brade H, Evans SV. J. Biol. Chem. 290 19629-19640 (2015)
  64. Structural and functional analyses of antibodies specific for modified core N-glycans suggest a role in TH 2 responses. Plum M, Tjerrild L, Raiber T, Bantleon F, Bantleon S, Miehe M, Jabs F, Seismann H, Möbs C, Pfützner W, Jakob T, Andersen GR, Spillner E. Allergy 78 121-130 (2023)
  65. Synthesis and antigenic properties of C-7-modified Kdo mono- and disaccharide ligands and Kdo disaccharide interresidue lactones. Sixta G, Wimmer K, Hofinger A, Brade H, Kosma P. Carbohydr. Res. 344 1660-1669 (2009)
  66. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Planchais C, Reyes-Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Protein Sci 31 e4447 (2022)
  67. Polyreactivity of antibodies from different B-cell subpopulations is determined by distinct sequence patterns of variable region. Lecerf M, Lacombe RV, Dimitrov JD. Front Immunol 14 1266668 (2023)
  68. Structural investigation of human S. aureus-targeting antibodies that bind wall teichoic acid. Fong R, Kajihara K, Chen M, Hotzel I, Mariathasan S, Hazenbos WLW, Lupardus PJ. MAbs 10 979-991 (2018)
  69. Synthesis of an Undecasaccharide Featuring an Oligomannosidic Heptasaccharide and a Bacterial Kdo-lipid A Backbone for Eliciting Neutralizing Antibodies to Mammalian Oligomannose on the HIV-1 Envelope Spike. Trattnig N, Blaukopf M, Bruxelle JF, Pantophlet R, Kosma P. J. Am. Chem. Soc. 141 7946-7954 (2019)
  70. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups. Haji-Ghassemi O, Müller-Loennies S, Rodriguez T, Brade L, Grimmecke HD, Brade H, Evans SV. J. Biol. Chem. 291 10104-10118 (2016)