3ukm Citations

Crystal structure of the human two-pore domain potassium channel K2P1.

Science 335 432-6 (2012)
Cited: 206 times
EuropePMC logo PMID: 22282804

Abstract

Two-pore domain potassium (K(+)) channels (K2P channels) control the negative resting potential of eukaryotic cells and regulate cell excitability by conducting K(+) ions across the plasma membrane. Here, we present the 3.4 angstrom resolution crystal structure of a human K2P channel, K2P1 (TWIK-1). Unlike other K(+) channel structures, K2P1 is dimeric. An extracellular cap domain located above the selectivity filter forms an ion pathway in which K(+) ions flow through side portals. Openings within the transmembrane region expose the pore to the lipid bilayer and are filled with electron density attributable to alkyl chains. An interfacial helix appears structurally poised to affect gating. The structure lays a foundation to further investigate how K2P channels are regulated by diverse stimuli.

Reviews - 3ukm mentioned but not cited (6)

  1. Hydrophobic gating in ion channels. Aryal P, Sansom MS, Tucker SJ. J Mol Biol 427 121-130 (2015)
  2. Structure of potassium channels. Kuang Q, Purhonen P, Hebert H. Cell Mol Life Sci 72 3677-3693 (2015)
  3. The recombinant expression systems for structure determination of eukaryotic membrane proteins. He Y, Wang K, Yan N. Protein Cell 5 658-672 (2014)
  4. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Stephens RF, Guan W, Zhorov BS, Spafford JD. Front Physiol 6 153 (2015)
  5. The role of pH-sensitive TASK channels in central respiratory chemoreception. Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. Pflugers Arch 467 917-929 (2015)
  6. Structural Insights into the Mechanisms and Pharmacology of K2P Potassium Channels. Natale AM, Deal PE, Minor DL. J Mol Biol 433 166995 (2021)

Articles - 3ukm mentioned but not cited (32)

  1. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Brohawn SG, Campbell EB, MacKinnon R. Nature 516 126-130 (2014)
  2. A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. Nat Commun 5 4377 (2014)
  3. Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Aryal P, Jarerattanachat V, Clausen MV, Schewe M, McClenaghan C, Argent L, Conrad LJ, Dong YY, Pike ACW, Carpenter EP, Baukrowitz T, Sansom MSP, Tucker SJ. Structure 25 708-718.e2 (2017)
  4. Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. Ma L, Zhang X, Zhou M, Chen H. J Biol Chem 287 37145-37153 (2012)
  5. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Braun G, Lengyel M, Enyedi P, Czirják G. Br J Pharmacol 172 1728-1738 (2015)
  6. An extracellular ion pathway plays a central role in the cooperative gating of a K(2P) K+ channel by extracellular pH. González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV. J Biol Chem 288 5984-5991 (2013)
  7. State-independent intracellular access of quaternary ammonium blockers to the pore of TREK-1. Rapedius M, Schmidt MR, Sharma C, Stansfeld PJ, Sansom MS, Baukrowitz T, Tucker SJ. Channels (Austin) 6 473-478 (2012)
  8. Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. Chatelain FC, Bichet D, Feliciangeli S, Larroque MM, Braud VM, Douguet D, Lesage F. J Biol Chem 288 35081-35092 (2013)
  9. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore. Chokshi RH, Larsen AT, Bhayana B, Cotten JF. Mol Pharmacol 88 926-934 (2015)
  10. A Database of Predicted Binding Sites for Cholesterol on Membrane Proteins, Deep in the Membrane. Lee AG. Biophys J 115 522-532 (2018)
  11. Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. Channels (Austin) 9 44-49 (2015)
  12. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18. Sehgal SA, Hassan M, Rashid S. Drug Des Devel Ther 8 571-581 (2014)
  13. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels. Goldstein M, Rinné S, Kiper AK, Ramírez D, Netter MF, Bustos D, Ortiz-Bonnin B, González W, Decher N. Sci Rep 6 19492 (2016)
  14. Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism. Luethy A, Boghosian JD, Srikantha R, Cotten JF. Mol Pharmacol 91 620-629 (2017)
  15. Selectivity filter instability dominates the low intrinsic activity of the TWIK-1 K2P K+ channel. Nematian-Ardestani E, Abd-Wahab F, Chatelain FC, Sun H, Schewe M, Baukrowitz T, Tucker SJ. J Biol Chem 295 610-618 (2020)
  16. Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. Bertaccini EJ, Dickinson R, Trudell JR, Franks NP. ACS Chem Neurosci 5 1246-1252 (2014)
  17. Determining the molecular basis of voltage sensitivity in membrane proteins. Kasimova MA, Lindahl E, Delemotte L. J Gen Physiol 150 1444-1458 (2018)
  18. Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based Virtual Screening. Ramírez D, Concha G, Arévalo B, Prent-Peñaloza L, Zúñiga L, Kiper AK, Rinné S, Reyes-Parada M, Decher N, Decher N, González W, Caballero J. Int J Mol Sci 20 E4014 (2019)
  19. Structural Basis for pH-gating of the K+ channel TWIK1 at the selectivity filter. Turney TS, Li V, Brohawn SG. Nat Commun 13 3232 (2022)
  20. Structure/Activity Analysis of TASK-3 Channel Antagonists Based on a 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine. Ramírez D, Bedoya M, Kiper AK, Rinné S, Morales-Navarro S, Hernández-Rodríguez EW, Sepúlveda FV, Decher N, González W. Int J Mol Sci 20 E2252 (2019)
  21. Exploring the Dynamics of the TWIK-1 Channel. Oakes V, Furini S, Pryde D, Domene C. Biophys J 111 775-784 (2016)
  22. Structural properties determining low K+ affinity of the selectivity filter in the TWIK1 K+ channel. Tsukamoto H, Higashi M, Motoki H, Watanabe H, Ganser C, Nakajo K, Kubo Y, Uchihashi T, Furutani Y. J Biol Chem 293 6969-6984 (2018)
  23. Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 K2P Channels. Bustos D, Bedoya M, Ramírez D, Concha G, Zúñiga L, Decher N, Hernández-Rodríguez EW, Sepúlveda FV, Martínez L, González W. Int J Mol Sci 21 E532 (2020)
  24. Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Cousin MA, Veale EL, Dsouza NR, Tripathi S, Holden RG, Arelin M, Beek G, Bekheirnia MR, Beygo J, Bhambhani V, Bialer M, Bigoni S, Boelman C, Carmichael J, Courtin T, Cogne B, Dabaj I, Doummar D, Fazilleau L, Ferlini A, Gavrilova RH, Graham JM, Haack TB, Juusola J, Kant SG, Kayani S, Keren B, Ketteler P, Klöckner C, Koopmann TT, Kruisselbrink TM, Kuechler A, Lambert L, Latypova X, Lebel RR, Leduc MS, Leonardi E, Lewis AM, Liew W, Machol K, Mardini S, McWalter K, Mignot C, McLaughlin J, Murgia A, Narayanan V, Nava C, Neuser S, Nizon M, Ognibene D, Park J, Platzer K, Poirsier C, Radtke M, Ramsey K, Runke CK, Guillen Sacoto MJ, Scaglia F, Shinawi M, Spranger S, Tan ES, Taylor J, Trentesaux AS, Vairo F, Willaert R, Zadeh N, Urrutia R, Babovic-Vuksanovic D, Zimmermann MT, Mathie A, Klee EW. Genome Med 14 62 (2022)
  25. Interhelical H-Bonds Modulate the Activity of a Polytopic Transmembrane Kinase. Almada JC, Bortolotti A, Ruysschaert JM, de Mendoza D, Inda ME, Cybulski LE. Biomolecules 11 938 (2021)
  26. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  27. High-Resolution Structures of K+ Channels. Jiang QX. Handb Exp Pharmacol 267 51-81 (2021)
  28. Mechanistic basis of the dynamic response of TWIK1 ionic selectivity to pH. Chatelain FC, Gilbert N, Bichet D, Jauch A, Feliciangeli S, Lesage F, Bignucolo O. Nat Commun 15 3849 (2024)
  29. Overexpressed KCNK1 regulates potassium channels affecting molecular mechanisms and biological pathways in bladder cancer. Zhang W, Chen XS, Wei Y, Wang XM, Chen XJ, Chi BT, Huang LQ, He RQ, Huang ZG, Li Q, Chen G, He J, Wu M. Eur J Med Res 29 257 (2024)
  30. Three-dimensional Modelling of the Voltage-gated Sodium Ion Channel from Anopheles gambiae Reveals Spatial Clustering of Evolutionarily Conserved Acidic Residues at the Extracellular Sites. Vinekar RS, Sowdhamini R. Curr Neuropharmacol 15 1062-1072 (2017)
  31. Letter Does 131 I therapy for Graves' disease cause cancer? Hoffman DA, Lundin FE. N Engl J Med 299 662 (1978)
  32. The Inhibitory Effect of Magnolol on the Human TWIK1 Channel Is Related to G229 and T225 Sites. Wang J, Liu H, Sun Z, Zou X, Zhang Z, Wei X, Pan L, Stalin A, Zhao W, Chen Y. Molecules 28 6815 (2023)


Reviews citing this publication (50)

  1. Mechanically Activated Ion Channels. Ranade SS, Syeda R, Patapoutian A. Neuron 87 1162-1179 (2015)
  2. Emerging Diversity in Lipid-Protein Interactions. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Chem Rev 119 5775-5848 (2019)
  3. Common folds and transport mechanisms of secondary active transporters. Shi Y. Annu Rev Biophys 42 51-72 (2013)
  4. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Anishkin A, Loukin SH, Teng J, Kung C. Proc Natl Acad Sci U S A 111 7898-7905 (2014)
  5. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Schmitt N, Grunnet M, Olesen SP. Physiol Rev 94 609-653 (2014)
  6. The family of K2P channels: salient structural and functional properties. Feliciangeli S, Chatelain FC, Bichet D, Lesage F. J Physiol 593 2587-2603 (2015)
  7. Molecular force transduction by ion channels: diversity and unifying principles. Sukharev S, Sachs F. J Cell Sci 125 3075-3083 (2012)
  8. The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Teng J, Loukin S, Anishkin A, Kung C. Pflugers Arch 467 27-37 (2015)
  9. Pichia pastoris as an expression host for membrane protein structural biology. Byrne B. Curr Opin Struct Biol 32 9-17 (2015)
  10. Known structures and unknown mechanisms of TMEM16 scramblases and channels. Falzone ME, Malvezzi M, Lee BC, Lee BC, Accardi A. J Gen Physiol 150 933-947 (2018)
  11. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Physiol Rev 95 179-217 (2015)
  12. Much more than a leak: structure and function of K₂p-channels. Renigunta V, Schlichthörl G, Daut J. Pflugers Arch 467 867-894 (2015)
  13. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Brohawn SG. Ann N Y Acad Sci 1352 20-32 (2015)
  14. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Abbott GW. Gene 576 1-13 (2016)
  15. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Mathie A, Veale EL. Pflugers Arch 467 931-943 (2015)
  16. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. Payandeh J, Minor DL. J Mol Biol 427 3-30 (2015)
  17. Potassium channels: structures, diseases, and modulators. Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Chem Biol Drug Des 83 1-26 (2014)
  18. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Van Hook MJ, Nawy S, Thoreson WB. Prog Retin Eye Res 72 100760 (2019)
  19. Temperature sensitivity of two-pore (K2P) potassium channels. Schneider ER, Anderson EO, Gracheva EO, Bagriantsev SN. Curr Top Membr 74 113-133 (2014)
  20. Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR Review 26. Gada K, Plant LD. Br J Pharmacol 176 256-266 (2019)
  21. Evolution of acid nociception: ion channels and receptors for detecting acid. Pattison LA, Callejo G, St John Smith E. Philos Trans R Soc Lond B Biol Sci 374 20190291 (2019)
  22. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Gordon D, Chen R, Chung SH. Physiol Rev 93 767-802 (2013)
  23. Properties, regulation, pharmacology, and functions of the K₂p channel, TRESK. Enyedi P, Czirják G. Pflugers Arch 467 945-958 (2015)
  24. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Isacoff EY, Jan LY, Minor DL. Neuron 80 658-674 (2013)
  25. The role of K₂p channels in anaesthesia and sleep. Steinberg EA, Wafford KA, Brickley SG, Franks NP, Wisden W. Pflugers Arch 467 907-916 (2015)
  26. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. Front Cell Neurosci 14 601324 (2020)
  27. Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia? Niemeyer MI, Cid LP, González W, Sepúlveda FV. Mol Pharmacol 90 309-317 (2016)
  28. The evolution of bacterial mechanosensitive channels. Booth IR, Miller S, Müller A, Lehtovirta-Morley L. Cell Calcium 57 140-150 (2015)
  29. Beta-Cell Ion Channels and Their Role in Regulating Insulin Secretion. Thompson B, Satin LS. Compr Physiol 11 1-21 (2021)
  30. Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Chen H, Chatelain FC, Lesage F. Trends Pharmacol Sci 35 461-469 (2014)
  31. Two-pore Domain Potassium Channels in Astrocytes. Ryoo K, Park JY. Exp Neurobiol 25 222-232 (2016)
  32. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Onco Targets Ther 15 783-797 (2022)
  33. The CNS under pathophysiologic attack--examining the role of K₂p channels. Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. Pflugers Arch 467 959-972 (2015)
  34. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function. López-Cayuqueo KI, Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP. Pflugers Arch 467 1043-1053 (2015)
  35. Ion Channels in Lung Cancer. Bulk E, Todesca LM, Schwab A. Rev Physiol Biochem Pharmacol 181 57-79 (2021)
  36. K₂p channels in plants and animals. González W, Valdebenito B, Caballero J, Riadi G, Riedelsberger J, Martínez G, Ramírez D, Zúñiga L, Sepúlveda FV, Dreyer I, Janta M, Becker D. Pflugers Arch 467 1091-1104 (2015)
  37. Lysophosphatidic Acid and Ion Channels as Molecular Mediators of Pain. Juárez-Contreras R, Rosenbaum T, Morales-Lázaro SL. Front Mol Neurosci 11 462 (2018)
  38. The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Decher N, Kiper AK, Rolfes C, Schulze-Bahr E, Rinné S. Pflugers Arch 467 1055-1067 (2015)
  39. The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3. Kilisch M, Lytovchenko O, Schwappach B, Renigunta V, Daut J. Pflugers Arch 467 1105-1120 (2015)
  40. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics. Lockless SW. J Gen Physiol 146 3-13 (2015)
  41. K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. Furini S, Domene C. Biophys J 105 1737-1745 (2013)
  42. Overexpression of membrane proteins from higher eukaryotes in yeasts. Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Appl Microbiol Biotechnol 98 7671-7698 (2014)
  43. Pharmacological Approaches to Studying Potassium Channels. Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Handb Exp Pharmacol 267 83-111 (2021)
  44. Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Bichet D, Blin S, Feliciangeli S, Chatelain FC, Bobak N, Lesage F. Pflugers Arch 467 1121-1131 (2015)
  45. Two-Pore Domain Potassium Channel in Neurological Disorders. Aggarwal P, Singh S, Ravichandiran V. J Membr Biol 254 367-380 (2021)
  46. Fenestropathy of Voltage-Gated Sodium Channels. Gamal El-Din TM, Lenaeus MJ. Front Pharmacol 13 842645 (2022)
  47. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Cho CH, Hwang EM, Park JY. Int J Mol Sci 19 E51 (2017)
  48. Potassium Ion Channels in Malignant Central Nervous System Cancers. Boyle Y, Johns TG, Fletcher EV. Cancers (Basel) 14 4767 (2022)
  49. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. Fan X, Lu Y, Du G, Liu J. Molecules 27 8296 (2022)
  50. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Curr Neuropharmacol 20 16-26 (2022)

Articles citing this publication (118)

  1. Crystal structure of the calcium release-activated calcium channel Orai. Hou X, Pedi L, Diver MM, Long SB. Science 338 1308-1313 (2012)
  2. Three-dimensional structures of membrane proteins from genomic sequencing. Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Cell 149 1607-1621 (2012)
  3. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Brohawn SG, Su Z, MacKinnon R. Proc Natl Acad Sci U S A 111 3614-3619 (2014)
  4. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben M, Goubin S, Mukhopadhyay S, Ruda GF, Clausen MV, Cao L, Brennan PE, Burgess-Brown NA, Sansom MS, Tucker SJ, Carpenter EP. Science 347 1256-1259 (2015)
  5. Structure of the voltage-gated calcium channel Cav1.1 complex. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Science 350 aad2395 (2015)
  6. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. Cell 164 937-949 (2016)
  7. K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL. Nature 547 364-368 (2017)
  8. The role of lipids in mechanosensation. Pliotas C, Dahl AC, Rasmussen T, Mahendran KR, Smith TK, Marius P, Gault J, Banda T, Rasmussen A, Miller S, Robinson CV, Bayley H, Sansom MS, Booth IR, Naismith JH. Nat Struct Mol Biol 22 991-998 (2015)
  9. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Baradaran R, Wang C, Siliciano AF, Long SB. Nature 559 580-584 (2018)
  10. Structural insights into TRPM8 inhibition and desensitization. Diver MM, Cheng Y, Julius D. Science 365 1434-1440 (2019)
  11. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park JY. Nat Commun 5 3227 (2014)
  12. Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Brohawn SG, Campbell EB, MacKinnon R. Proc Natl Acad Sci U S A 110 2129-2134 (2013)
  13. Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL. Neuron 84 1198-1212 (2014)
  14. Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. Bagriantsev SN, Clark KA, Minor DL. EMBO J 31 3297-3308 (2012)
  15. TWIK1, a unique background channel with variable ion selectivity. Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F. Proc Natl Acad Sci U S A 109 5499-5504 (2012)
  16. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SA. Sci Signal 5 ra84 (2012)
  17. Functional analysis of a migraine-associated TRESK K+ channel mutation. Liu P, Xiao Z, Ren F, Guo Z, Chen Z, Zhao H, Cao YQ. J Neurosci 33 12810-12824 (2013)
  18. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Sandoz G, Levitz J, Kramer RH, Isacoff EY. Neuron 74 1005-1014 (2012)
  19. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels. Cabanos C, Wang M, Han X, Hansen SB. Cell Rep 20 1287-1294 (2017)
  20. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A. J Biol Chem 288 27307-27314 (2013)
  21. K2P channel C-type gating involves asymmetric selectivity filter order-disorder transitions. Lolicato M, Natale AM, Abderemane-Ali F, Crottès D, Capponi S, Duman R, Wagner A, Rosenberg JM, Grabe M, Minor DL. Sci Adv 6 eabc9174 (2020)
  22. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. Turner PJ, Buckler KJ. J Physiol 591 5977-5998 (2013)
  23. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. Liang B, Soka M, Christensen AH, Olesen MS, Larsen AP, Knop FK, Wang F, Nielsen JB, Andersen MN, Humphreys D, Mann SA, Huttner IG, Vandenberg JI, Svendsen JH, Haunsø S, Preiss T, Seebohm G, Olesen SP, Schmitt N, Fatkin D. J Mol Cell Cardiol 67 69-76 (2014)
  24. Identifying the molecular basis of host-parasite coevolution: merging models and mechanisms. Dybdahl MF, Jenkins CE, Nuismer SL. Am Nat 184 1-13 (2014)
  25. A lower X-gate in TASK channels traps inhibitors within the vestibule. Rödström KEJ, Kiper AK, Zhang W, Rinné S, Pike ACW, Goldstein M, Conrad LJ, Delbeck M, Hahn MG, Meier H, Platzk M, Quigley A, Speedman D, Shrestha L, Mukhopadhyay SMM, Burgess-Brown NA, Tucker SJ, Müller T, Decher N, Carpenter EP. Nature 582 443-447 (2020)
  26. Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter. Shao J, Fu Z, Ji Y, Guan X, Guo S, Ding Z, Yang X, Cong Y, Shen Y. Sci Rep 6 34174 (2016)
  27. Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Scalise M, Pochini L, Giangregorio N, Tonazzi A, Indiveri C. Pharmaceutics 5 472-497 (2013)
  28. Structural basis for pH gating of the two-pore domain K+ channel TASK2. Li B, Rietmeijer RA, Brohawn SG. Nature 586 457-462 (2020)
  29. Crystal structure of the potassium-importing KdpFABC membrane complex. Huang CS, Pedersen BP, Stokes DL. Nature 546 681-685 (2017)
  30. Modulation of Potassium Channels Inhibits Bunyavirus Infection. Hover S, King B, Hall B, Loundras EA, Taqi H, Daly J, Dallas M, Peers C, Schnettler E, McKimmie C, Kohl A, Barr JN, Mankouri J. J Biol Chem 291 3411-3422 (2016)
  31. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions. Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV. Front Physiol 4 198 (2013)
  32. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Choi JH, Yarishkin O, Kim E, Bae Y, Kim A, Kim SC, Ryoo K, Cho CH, Hwang EM, Park JY. Exp Mol Med 50 1-13 (2018)
  33. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? Kiper AK, Rinné S, Rolfes C, Ramírez D, Seebohm G, Netter MF, González W, Decher N. Pflugers Arch 467 1081-1090 (2015)
  34. Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Schmidt C, Wiedmann F, Schweizer PA, Becker R, Katus HA, Thomas D. Naunyn Schmiedebergs Arch Pharmacol 385 1003-1016 (2012)
  35. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. Guo Z, Cao YQ. PLoS One 9 e87029 (2014)
  36. A Role for K2P Channels in the Operation of Somatosensory Nociceptors. Plant LD. Front Mol Neurosci 5 21 (2012)
  37. The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis. Bittner S, Bauer MA, Ehling P, Bobak N, Breuer J, Herrmann AM, Golfels M, Wiendl H, Budde T, Meuth SG. Exp Neurol 238 149-155 (2012)
  38. Polynuclear Ruthenium Amines Inhibit K2P Channels via a "Finger in the Dam" Mechanism. Pope L, Lolicato M, Minor DL. Cell Chem Biol 27 511-524.e4 (2020)
  39. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. Hoshi T, Xu R, Hou S, Heinemann SH, Tian Y. J Gen Physiol 142 507-522 (2013)
  40. Structure of the human sodium leak channel NALCN. Kschonsak M, Chua HC, Noland CL, Weidling C, Clairfeuille T, Bahlke OØ, Ameen AO, Li ZR, Arthur CP, Ciferri C, Pless SA, Payandeh J. Nature 587 313-318 (2020)
  41. The contribution of TWIK-1 channels to astrocyte K(+) current is limited by retention in intracellular compartments. Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK, Barhanin J, Lesage F, Zhou M. Front Cell Neurosci 7 246 (2013)
  42. Cardiac expression and atrial fibrillation-associated remodeling of K₂p2.1 (TREK-1) K⁺ channels in a porcine model. Schmidt C, Wiedmann F, Tristram F, Anand P, Wenzel W, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Life Sci 97 107-115 (2014)
  43. Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Ben Soussia I, El Mouridi S, Kang D, Leclercq-Blondel A, Khoubza L, Tardy P, Zariohi N, Gendrel M, Lesage F, Kim EJ, Bichet D, Andrini O, Boulin T. Nat Commun 10 787 (2019)
  44. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K2P Channels. Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL. ACS Chem Neurosci 9 3153-3165 (2018)
  45. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K, Fujiyoshi Y, Oshima A. Sci Adv 6 eaax3157 (2020)
  46. SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Kim S, Govindan JA, Tu ZJ, Greenstein D. Genetics 192 905-928 (2012)
  47. T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter. Senatore A, Guan W, Boone AN, Spafford JD. J Biol Chem 289 11952-11969 (2014)
  48. An allosteric ligand-binding site in the extracellular cap of K2P channels. Luo Q, Chen L, Cheng X, Ma Y, Li X, Zhang B, Li L, Zhang S, Guo F, Li Y, Yang H. Nat Commun 8 378 (2017)
  49. Force transduction and lipid binding in MscL: a continuum-molecular approach. Vanegas JM, Arroyo M. PLoS One 9 e113947 (2014)
  50. Identification and analysis of cation channel homologues in human pathogenic fungi. Prole DL, Taylor CW. PLoS One 7 e42404 (2012)
  51. Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Sci Rep 6 21248 (2016)
  52. Modulation of K2P 2.1 and K2P 10.1 K(+) channel sensitivity to carvedilol by alternative mRNA translation initiation. Kisselbach J, Seyler C, Schweizer PA, Gerstberger R, Becker R, Katus HA, Thomas D. Br J Pharmacol 171 5182-5194 (2014)
  53. Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Schmidpeter PAM, Petroff JT, Khajoueinejad L, Wague A, Frankfater C, Cheng WWL, Nimigean CM, Riegelhaupt PM. Nat Commun 14 1077 (2023)
  54. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. Elife 12 e84477 (2023)
  55. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. Christensen AH, Chatelain FC, Huttner IG, Olesen MS, Soka M, Feliciangeli S, Horvat C, Santiago CF, Vandenberg JI, Schmitt N, Olesen SP, Lesage F, Fatkin D. J Mol Cell Cardiol 97 24-35 (2016)
  56. N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1. Mant A, Williams S, Roncoroni L, Lowry E, Johnson D, O'Kelly I. J Biol Chem 288 3251-3264 (2013)
  57. Nonmigraine-associated TRESK K+ channel variant C110R does not increase the excitability of trigeminal ganglion neurons. Guo Z, Liu P, Ren F, Cao YQ. J Neurophysiol 112 568-579 (2014)
  58. Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. Liu S, Bian X, Lockless SW. J Gen Physiol 140 671-679 (2012)
  59. Rapid expression screening of eukaryotic membrane proteins in Pichia pastoris. Brooks CL, Morrison M, Joanne Lemieux M. Protein Sci 22 425-433 (2013)
  60. Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels. Soussia IB, Choveau FS, Blin S, Kim EJ, Feliciangeli S, Chatelain FC, Kang D, Bichet D, Lesage F. Front Mol Neurosci 11 301 (2018)
  61. Enhancement of K2P2.1 (TREK1) background currents expressed in Xenopus oocytes by voltage-gated K+ channel β subunits. Kisselbach J, Schweizer PA, Gerstberger R, Becker R, Katus HA, Thomas D. Life Sci 91 377-383 (2012)
  62. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel. Zhuo RG, Liu XY, Zhang SZ, Wei XL, Zheng JQ, Xu JP, Ma XY. Neuroscience 300 85-93 (2015)
  63. Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz T, Tucker SJ. J Gen Physiol 153 e202012812 (2021)
  64. Selective and state-dependent activation of TRESK (K2P 18.1) background potassium channel by cloxyquin. Lengyel M, Dobolyi A, Czirják G, Enyedi P. Br J Pharmacol 174 2102-2113 (2017)
  65. A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. Rinné S, Renigunta V, Schlichthörl G, Zuzarte M, Bittner S, Meuth SG, Decher N, Daut J, Preisig-Müller R. Pflugers Arch 466 1559-1570 (2014)
  66. Understanding the Cap Structure in K2P Channels. Zúñiga L, Zúñiga R. Front Physiol 7 228 (2016)
  67. The molecular basis for an allosteric inhibition of K+-flux gating in K2P channels. Rinné S, Kiper AK, Vowinkel KS, Ramírez D, Schewe M, Bedoya M, Aser D, Gensler I, Netter MF, Stansfeld PJ, Baukrowitz T, Gonzalez W, Decher N, Decher N. Elife 8 e39476 (2019)
  68. General rules for the arrangements and gating motions of pore-lining helices in homomeric ion channels. Dai J, Zhou HX. Nat Commun 5 4641 (2014)
  69. Molecular and functional determinants of local anesthetic inhibition of NaChBac. Lee S, Goodchild SJ, Ahern CA. Channels (Austin) 6 403-406 (2012)
  70. Comparison of K+ Channel Families. Taura J, Kircher DM, Gameiro-Ros I, Slesinger PA. Handb Exp Pharmacol 267 1-49 (2021)
  71. Further advances in the production of membrane proteins in Pichia pastoris. Hedfalk K. Bioengineered 4 363-367 (2013)
  72. Ion currents through Kir potassium channels are gated by anionic lipids. Jin R, He S, Black KA, Clarke OB, Wu D, Bolla JR, Johnson P, Periasamy A, Wardak A, Czabotar P, Colman PM, Robinson CV, Laver D, Smith BJ, Gulbis JM. Nat Commun 13 490 (2022)
  73. Physical basis for distinct basal and mechanically gated activity of the human K+ channel TRAAK. Rietmeijer RA, Sorum B, Li B, Brohawn SG. Neuron 109 2902-2913.e4 (2021)
  74. Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles. Lopez MN, Wilding TJ, Huettner JE. J Gen Physiol 142 225-239 (2013)
  75. Optogenetic techniques for the study of native potassium channels. Sandoz G, Levitz J. Front Mol Neurosci 6 6 (2013)
  76. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Front Pharmacol 10 1367 (2019)
  77. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons. Burgos P, Zúñiga R, Domínguez P, Delgado-López F, Plant LD, Zúñiga L. Biochem Biophys Res Commun 453 754-760 (2014)
  78. Structure of the Human BK Ion Channel in Lipid Environment. Tonggu L, Wang L. Membranes (Basel) 12 758 (2022)
  79. The Polysite Pharmacology of TREK K2P Channels. Pope L, Minor DL. Adv Exp Med Biol 1349 51-65 (2021)
  80. N-glycosylation-dependent regulation of hK2P17.1 currents. Wiedmann F, Schlund D, Voigt N, Ratte A, Kraft M, Katus HA, Schmidt C. Mol Biol Cell 30 1425-1436 (2019)
  81. Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. Zidar N, Žula A, Tomašič T, Rogers M, Kirby RW, Tytgat J, Peigneur S, Kikelj D, Ilaš J, Mašič LP. Eur J Med Chem 139 232-241 (2017)
  82. Effects of N-glycosylation on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Li M, Tonggu L, Tang L, Wang L. Biochem J 466 77-84 (2015)
  83. Expanding the phenotypic spectrum of KCNK4: From syndromic neurodevelopmental disorder to rolandic epilepsy. Yan HJ, He YY, Jin L, Guo Q, Zhou JH, Luo S. Front Mol Neurosci 15 1081097 (2022)
  84. Structural biology. The inner workings of a dynamic duo. Poulsen H, Nissen P. Science 335 416-417 (2012)
  85. The Insensitivity of TASK-3 K₂P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. Concha G, Bustos D, Zúñiga R, Catalán MA, Zúñiga L. Int J Mol Sci 19 E2437 (2018)
  86. The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Zhuo RG, Peng P, Zheng JQ, Zhang YL, Wen L, Wei XL, Ma XY. Biochem Biophys Res Commun 490 1125-1131 (2017)
  87. Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Abbott GW. Handb Exp Pharmacol 267 445-480 (2021)
  88. Hydrogen scrambling in non-covalent complexes of peptides. Modzel M, Stefanowicz P, Szewczuk Z. Rapid Commun Mass Spectrom 26 2739-2744 (2012)
  89. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Al-Moubarak E, Veale EL, Mathie A. Sci Rep 9 12394 (2019)
  90. The Pharmacology of Two-Pore Domain Potassium Channels. Kamuene JM, Xu Y, Plant LD. Handb Exp Pharmacol 267 417-443 (2021)
  91. Convergence of Multiple Stimuli to a Single Gate in TREK1 and TRAAK Potassium Channels. Choveau FS, Ben Soussia I, Bichet D, Franck CC, Feliciangeli S, Lesage F. Front Pharmacol 12 755826 (2021)
  92. Domain structure and conformational changes in rat KV2.1 ion channel. Grizel A, Popinako A, Kasimova MA, Stevens L, Karlova M, Moisenovich MM, Sokolova OS. J Neuroimmune Pharmacol 9 727-739 (2014)
  93. Expression of Proton-Sensitive GPR31, GPR151, TASK1 and TASK3 in Common Skin Tumors. Förch A, Wallner S, Zeman F, Ettl T, Brochhausen C, Schreml S. Cells 11 27 (2021)
  94. Interfacial Binding Sites for Cholesterol on Kir, Kv, K2P, and Related Potassium Channels. Lee AG. Biophys J 119 35-47 (2020)
  95. Mechanosensitive Ion Channels in Cardiovascular Physiology. Teng J, Loukin S, Kung C. Exp Clin Cardiol 20 6550-6560 (2014)
  96. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. J Physiol Biochem 71 601-610 (2015)
  97. Expression and Purification of Human Mitochondrial Intramembrane Protease PARL. Arutyunova E, Lysyk L, Morrison M, Brooks C, Joanne Lemieux M. Methods Mol Biol 2302 1-20 (2021)
  98. Grafting voltage and pharmacological sensitivity in potassium channels. Lan X, Fan C, Ji W, Tian F, Xu T, Gao Z. Cell Res 26 935-945 (2016)
  99. Stable cell line of human SH-SY5Y uniformly expressing TWIK-related acid-sensitive potassium channel and eGFP fusion. Li C, Wei L, Jiang H, Shan L, Li X, Lu N, Wang G, Li D. Appl Biochem Biotechnol 172 3253-3262 (2014)
  100. The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Cunningham KP, Clapp LH, Mathie A, Veale EL. Front Pharmacol 12 705421 (2021)
  101. Therapeutic Antibodies Targeting Potassium Ion Channels. Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Handb Exp Pharmacol 267 507-545 (2021)
  102. When is a hydrophobic gate not a hydrophobic gate? Seiferth D, Biggin PC, Tucker SJ. J Gen Physiol 154 e202213210 (2022)
  103. A Direct Interaction between Cyclodextrins and TASK Channels Decreases the Leak Current in Cerebellar Granule Neurons. Zúñiga R, Mancilla D, Rojas T, Vergara F, González W, Catalán MA, Zúñiga L. Biology (Basel) 11 1097 (2022)
  104. Classification of 2-pore domain potassium channels based on rectification under quasi-physiological ionic conditions. Chen H, Zuo D, Zhang J, Zhou M, Ma L. Channels (Austin) 8 503-508 (2014)
  105. Distinct classes of potassium channels fused to GPCRs as electrical signaling biosensors. García-Fernández MD, Chatelain FC, Nury H, Moroni A, Moreau CJ. Cell Rep Methods 1 None (2021)
  106. Effect of 158 herbal remedies on human TRPV1 and the two-pore domain potassium channels KCNK2, 3 and 9. Herbrechter R, Beltrán LR, Ziemba PM, Titt S, Lashuk K, Gottemeyer A, Levermann J, Hoffmann KM, Beltrán M, Hatt H, Störtkuhl KF, Werner M, Gisselmann G. J Tradit Complement Med 10 446-453 (2020)
  107. Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. Navarro-Retamal C, Caballero J. RSC Adv 8 26610-26618 (2018)
  108. Ion Channels in Anesthesia. Zhou W, Guan Z. Adv Exp Med Biol 1349 401-413 (2021)
  109. A leak K+ channel TWK-40 sustains the rhythmic motor program. Yue Z, Li Y, Yu B, Xu Y, Chen L, Chitturi J, Meng J, Wang Y, Tian Y, Mouridi SE, Zhang C, Zhen M, Boulin T, Gao S. PNAS Nexus 3 pgae234 (2024)
  110. Activation of hTREK-1 by polyunsaturated fatty acids involves direct interaction. Bechard E, Arel E, Bride J, Louradour J, Bussy X, Elloumi A, Vigor C, Soule P, Oger C, Galano JM, Durand T, Le Guennec JY, Moha-Ou-Maati H, Demion M. Sci Rep 14 15244 (2024)
  111. C-type inactivation and proton modulation mechanisms of the TASK3 channel. Lin H, Li J, Zhang Q, Yang H, Chen S. Proc Natl Acad Sci U S A 121 e2320345121 (2024)
  112. Effects of ionic strength on gating and permeation of TREK-2 K2P channels. Conrad LJ, Proks P, Tucker SJ. PLoS One 16 e0258275 (2021)
  113. Evidence for an Association Between a pH-Dependent Potassium Channel, TWIK-1, and the Accuracy of Smooth Pursuit Eye Movements. Bargary G, Bosten JM, Lawrance-Owen AJ, Goodbourn PT, Mollon JD. Invest Ophthalmol Vis Sci 65 24 (2024)
  114. Extracellular modulation of TREK-2 activity with nanobodies provides insight into the mechanisms of K2P channel regulation. Rödström KEJ, Cloake A, Sörmann J, Baronina A, Smith KHM, Pike ACW, Ang J, Proks P, Schewe M, Holland-Kaye I, Bushell SR, Elliott J, Pardon E, Baukrowitz T, Owens RJ, Newstead S, Steyaert J, Carpenter EP, Tucker SJ. Nat Commun 15 4173 (2024)
  115. Identification of the first in silico-designed TREK1 antagonists that block channel currents dose dependently. Viswanath AN, Jung SY, Hwang EM, Park KD, Lim SM, Min SJ, Cho YS, Pae AN. Chem Biol Drug Des 88 807-819 (2016)
  116. Plasma membrane SK2 channel activity regulates migration and chemosensitivity of high-grade serous ovarian cancer cells. Romito O, Lemettre A, Chantôme A, Champion O, Couty N, Ouldamer L, Hempel N, Trebak M, Goupille C, Potier-Cartereau M. Mol Oncol 18 1853-1865 (2024)
  117. Tick-Derived Peptide Blocks Potassium Channel TREK-1. Du C, Chen L, Liu G, Yuan F, Zhang Z, Rong M, Mo G, Liu C. Int J Mol Sci 25 8377 (2024)
  118. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)