3w9c Citations

The structure of the cytochrome p450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography.

Abstract

Cytochrome P450cam catalyzes the hydroxylation of camphor in a complex process involving two electron transfers (ETs) from the iron-sulfur protein putidaredoxin. The enzymatic control of the successive steps of catalysis is critical for a highly efficient reaction. The injection of the successive electrons is part of the control system. To understand the molecular interactions between putidaredoxin and cytochrome P450cam, we determined the structure of the complex both in solution and in the crystal state. Paramagnetic NMR spectroscopy using lanthanide tags yielded 446 structural restraints that were used to determine the solution structure. An ensemble of 10 structures with an RMSD of 1.3Å was obtained. The crystal structure of the complex was solved, showing a position of putidaredoxin that is identical with the one in the solution structure. The NMR data further demonstrate the presence of a minor state or set of states of the complex in solution, which is attributed to the presence of an encounter complex. The structure of the major state shows a small binding interface and a metal-to-metal distance of 16Å, with two pathways that provide strong electronic coupling of the redox centers. The interpretation of these results is discussed in the context of ET. The structure indicates that the ET rate can be much faster than the reported value, suggesting that the process may be gated.

Articles - 3w9c mentioned but not cited (8)

  1. Mechanisms of Cytochrome P450-Catalyzed Oxidations. Guengerich FP. ACS Catal 8 10964-10976 (2018)
  2. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. EMBO J 36 291-300 (2017)
  3. Delicate conformational balance of the redox enzyme cytochrome P450cam. Skinner SP, Liu WM, Hiruma Y, Timmer M, Blok A, Hass MA, Ubbink M. Proc Natl Acad Sci U S A 112 9022-9027 (2015)
  4. Identification of productive and futile encounters in an electron transfer protein complex. Andrałojć W, Hiruma Y, Liu WM, Ravera E, Nojiri M, Parigi G, Luchinat C, Ubbink M. Proc Natl Acad Sci U S A 114 E1840-E1847 (2017)
  5. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts. Hollingsworth SA, Poulos TL. Protein Sci 24 49-57 (2015)
  6. Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding. Skinner SP, Follmer AH, Ubbink M, Poulos TL, Houwing-Duistermaat JJ, Paci E. Biochemistry 60 2932-2942 (2021)
  7. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Hargrove TY, Lamb DC, Smith JA, Wawrzak Z, Kelly SL, Lepesheva GI. Sci Rep 12 16232 (2022)
  8. Structure of cytochrome P450 2B4 with an acetate ligand and an active site hydrogen bond network similar to oxyferrous P450cam. Yang Y, Bu W, Im S, Meagher J, Stuckey J, Waskell L. J Inorg Biochem 185 17-25 (2018)


Reviews citing this publication (11)

  1. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Göbl C, Madl T, Simon B, Sattler M. Prog Nucl Magn Reson Spectrosc 80 26-63 (2014)
  2. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Kandel SE, Lampe JN. Chem Res Toxicol 27 1474-1486 (2014)
  3. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Nitsche C, Otting G. Prog Nucl Magn Reson Spectrosc 98-99 20-49 (2017)
  4. Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Hass MA, Ubbink M. Curr Opin Struct Biol 24 45-53 (2014)
  5. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Mak PJ, Denisov IG. Biochim Biophys Acta Proteins Proteom 1866 178-204 (2018)
  6. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Chem Rev 122 9571-9642 (2022)
  7. Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450. Poulos TL, Follmer AH. Acc Chem Res 55 373-380 (2022)
  8. A dynamic understanding of cytochrome P450 structure and function through solution NMR. Pochapsky TC. Curr Opin Biotechnol 69 35-42 (2021)
  9. An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Chiliza ZE, Martínez-Oyanedel J, Syed K. Biophys Rev 12 1217-1222 (2020)
  10. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Lampe JN. Front Pharmacol 8 521 (2017)
  11. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Cronin JM, Yu AM. Drug Metab Dispos 51 685-699 (2023)

Articles citing this publication (44)

  1. Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. Estrada DF, Skinner AL, Laurence JS, Scott EE. J Biol Chem 289 14310-14320 (2014)
  2. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance. Colthart AM, Tietz DR, Ni Y, Friedman JL, Dang M, Pochapsky TC. Sci Rep 6 22035 (2016)
  3. Conformational selectivity in cytochrome P450 redox partner interactions. Hollingsworth SA, Batabyal D, Nguyen BD, Poulos TL. Proc Natl Acad Sci U S A 113 8723-8728 (2016)
  4. A two-armed lanthanoid-chelating paramagnetic NMR probe linked to proteins via thioether linkages. Liu WM, Skinner SP, Timmer M, Blok A, Hass MA, Filippov DV, Overhand M, Ubbink M. Chemistry 20 6256-6258 (2014)
  5. Effect of Redox Partner Binding on Cytochrome P450 Conformational Dynamics. Batabyal D, Richards LS, Poulos TL. J Am Chem Soc 139 13193-13199 (2017)
  6. Kinetic and structural characterization of the interaction between the FMN binding domain of cytochrome P450 reductase and cytochrome c. Huang R, Zhang M, Rwere F, Waskell L, Ramamoorthy A. J Biol Chem 290 4843-4855 (2015)
  7. Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam (CYP101A1). Follmer AH, Tripathi S, Poulos TL. J Am Chem Soc 141 2678-2683 (2019)
  8. Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51. Hargrove TY, Wawrzak Z, Fisher PM, Child SA, Nes WD, Guengerich FP, Waterman MR, Lepesheva GI. J Biol Chem 293 19344-19353 (2018)
  9. Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Lee MD, Dennis ML, Swarbrick JD, Graham B. Chem Commun (Camb) 52 7954-7957 (2016)
  10. Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Zhang L, Xie Z, Liu Z, Zhou S, Ma L, Liu W, Huang JW, Ko TP, Li X, Hu Y, Min J, Yu X, Guo RT, Chen CC. Nat Commun 11 2676 (2020)
  11. Multiple paramagnetic effects through a tagged reporter protein. Camacho-Zarco AR, Munari F, Wegstroth M, Liu WM, Ubbink M, Becker S, Zweckstetter M. Angew Chem Int Ed Engl 54 336-339 (2015)
  12. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling. Xing Q, Huang P, Yang J, Sun JQ, Gong Z, Dong X, Guo DC, Chen SM, Yang YH, Wang Y, Yang MH, Yi M, Ding YM, Liu ML, Zhang WP, Tang C. Angew Chem Int Ed Engl 53 11501-11505 (2014)
  13. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. Hass MA, Liu WM, Agafonov RV, Otten R, Phung LA, Schilder JT, Kern D, Ubbink M. J Biomol NMR 61 123-136 (2015)
  14. Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Lee MD, Loh CT, Shin J, Chhabra S, Dennis ML, Otting G, Swarbrick JD, Graham B. Chem Sci 6 2614-2624 (2015)
  15. Crystal structure of cindoxin, the P450cin redox partner. Madrona Y, Hollingsworth SA, Tripathi S, Fields JB, Rwigema JC, Tobias DJ, Poulos TL. Biochemistry 53 1435-1446 (2014)
  16. Insights into an efficient light-driven hybrid P450 BM3 enzyme from crystallographic, spectroscopic and biochemical studies. Spradlin J, Lee D, Mahadevan S, Mahomed M, Tang L, Lam Q, Colbert A, Shafaat OS, Goodin D, Kloos M, Kato M, Cheruzel LE. Biochim Biophys Acta 1864 1732-1738 (2016)
  17. Site-Specific 1D and 2D IR Spectroscopy to Characterize the Conformations and Dynamics of Protein Molecular Recognition. Ramos S, Thielges MC. J Phys Chem B 123 3551-3566 (2019)
  18. Solution structure of the cytochrome P450 reductase-cytochrome c complex determined by neutron scattering. Freeman SL, Martel A, Devos JM, Basran J, Raven EL, Roberts GCK. J Biol Chem 293 5210-5219 (2018)
  19. What Your Crystal Structure Will Not Tell You about Enzyme Function. Pochapsky TC, Pochapsky SS. Acc Chem Res 52 1409-1418 (2019)
  20. Effects of Alternative Redox Partners and Oxidizing Agents on CYP154C8 Catalytic Activity and Product Distribution. Dangi B, Park H, Oh TJ. Chembiochem 19 2273-2282 (2018)
  21. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007. Willetts A, Kelly D. Microorganisms 4 E38 (2016)
  22. Hot-spot residues in the cytochrome P450cam-putidaredoxin binding interface. Hiruma Y, Gupta A, Kloosterman A, Olijve C, Olmez B, Hass MA, Ubbink M. Chembiochem 15 80-86 (2014)
  23. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. Brixius-Anderko S, Scott EE. J Biol Chem 296 100794 (2021)
  24. A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s. Batabyal D, Lewis-Ballester A, Yeh SR, Poulos TL. Biochemistry 55 6517-6523 (2016)
  25. An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin. Chuo SW, Wang LP, Britt RD, Goodin DB. Biochemistry 58 2353-2361 (2019)
  26. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. Barb AW, Subedi GP. J Biomol NMR 64 75-85 (2016)
  27. Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Görner C, Schrepfer P, Redai V, Wallrapp F, Loll B, Eisenreich W, Haslbeck M, Brück T. Microb Cell Fact 15 86 (2016)
  28. Installation of a Rigid EDTA-Like Motif into a Protein α-Helix for Paramagnetic NMR Spectroscopy with Cobalt(II) Ions. Swarbrick JD, Ung P, Dennis ML, Lee MD, Chhabra S, Graham B. Chemistry 22 1228-1232 (2016)
  29. Long-range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins. Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C. J Biol Inorg Chem 23 71-80 (2018)
  30. Conformational Change Induced by Putidaredoxin Binding to Ferrous CO-ligated Cytochrome P450cam Characterized by 2D IR Spectroscopy. Ramos S, Basom EJ, Thielges MC. Front Mol Biosci 5 94 (2018)
  31. Conformational Variation in Enzyme Catalysis: A Structural Study on Catalytic Residues. Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. J Mol Biol 434 167517 (2022)
  32. Perspectives on paramagnetic NMR from a life sciences infrastructure. Ravera E, Parigi G, Luchinat C. J Magn Reson 282 154-169 (2017)
  33. Protein docking using an ensemble of spin labels optimized by intra-molecular paramagnetic relaxation enhancement. Schilder J, Liu WM, Kumar P, Overhand M, Huber M, Ubbink M. Phys Chem Chem Phys 18 5729-5742 (2016)
  34. Short two-armed lanthanide-binding tags for paramagnetic NMR spectroscopy based on chiral 1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane scaffolds. Lee MD, Dennis ML, Graham B, Swarbrick JD. Chem Commun (Camb) 53 13205-13208 (2017)
  35. Proton Relay Network in the Bacterial P450s: CYP101A1 and CYP101D1. Amaya JA, Batabyal D, Poulos TL. Biochemistry 59 2896-2902 (2020)
  36. Unexpected Differences between Two Closely Related Bacterial P450 Camphor Monooxygenases. Murarka VC, Batabyal D, Amaya JA, Sevrioukova IF, Poulos TL. Biochemistry 59 2743-2750 (2020)
  37. Bacterial CYP154C8 catalyzes carbon-carbon bond cleavage in steroids. Dangi B, Oh TJ. FEBS Lett 593 67-79 (2019)
  38. Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Johnson EO, Wong LL. Catal Sci Technol 6 7549-7560 (2016)
  39. Weak self-association of cytochrome c peroxidase molecules observed by paramagnetic NMR. Schilder J, Ubbink M. J Biomol NMR 65 29-40 (2016)
  40. Effect of redox partner binding on CYP101D1 conformational dynamics. Batabyal D, Poulos TL. J Inorg Biochem 183 179-183 (2018)
  41. Active Site Hydrogen Bonding Induced in Cytochrome P450cam by Effector Putidaredoxin. Mammoser CC, Ramos S, Thielges MC. Biochemistry 60 1699-1707 (2021)
  42. Aqueous synthesis of a small-molecule lanthanide chelator amenable to copper-free click chemistry. Bishop SC, Winefield R, Anbanandam A, Lampe JN. PLoS One 14 e0209726 (2019)
  43. Structural insights into 3Fe-4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Gilep A, Varaksa T, Bukhdruker S, Kavaleuski A, Ryzhykau Y, Smolskaya S, Sushko T, Tsumoto K, Grabovec I, Kapranov I, Okhrimenko I, Marin E, Shevtsov M, Mishin A, Kovalev K, Kuklin A, Gordeliy V, Kaluzhskiy L, Gnedenko O, Yablokov E, Ivanov A, Borshchevskiy V, Strushkevich N. Front Mol Biosci 9 1100032 (2022)
  44. Use of Phenoxyaniline Analogues To Generate Biochemical Insights into the Interactio n of Polybrominated Diphenyl Ether with CYP2B Enzymes. Chen C, Liu J, Halpert JR, Wilderman PR. Biochemistry 57 817-826 (2018)