4aau Citations

ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin.

OpenAccess logo Cell 149 113-23 (2012)
Related entries: 4aaq, 4aar, 4aas, 4ab2, 4ab3

Cited: 105 times
EuropePMC logo PMID: 22445172

Abstract

The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.

Articles - 4aau mentioned but not cited (5)

  1. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. Joseph AP, Lagerstedt I, Patwardhan A, Topf M, Winn M. J Struct Biol 199 12-26 (2017)
  2. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution. Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH. Proc Natl Acad Sci U S A 110 E2958-66 (2013)
  3. Variability of Protein Structure Models from Electron Microscopy. Monroe L, Terashi G, Kihara D. Structure 25 592-602.e2 (2017)
  4. The GroEL chaperonin: a protein machine with pistons driven by ATP binding and hydrolysis. Lorimer GH, Fei X, Ye X. Philos Trans R Soc Lond B Biol Sci 373 20170179 (2018)
  5. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Nguyen B, Ma R, Tang WK, Shi D, Tolia NH. Sci Rep 11 5930 (2021)


Reviews citing this publication (31)

  1. Molecular chaperone functions in protein folding and proteostasis. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Annu Rev Biochem 82 323-355 (2013)
  2. In vivo aspects of protein folding and quality control. Balchin D, Hayer-Hartl M, Hartl FU. Science 353 aac4354 (2016)
  3. Chaperone machines for protein folding, unfolding and disaggregation. Saibil H. Nat Rev Mol Cell Biol 14 630-642 (2013)
  4. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Nogales E, Scheres SH. Mol Cell 58 677-689 (2015)
  5. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  6. Conditional disorder in chaperone action. Bardwell JC, Jakob U. Trends Biochem Sci 37 517-525 (2012)
  7. Structure and allostery of the chaperonin GroEL. Saibil HR, Fenton WA, Clare DK, Horwich AL. J Mol Biol 425 1476-1487 (2013)
  8. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ. Expert Opin Ther Targets 18 185-208 (2014)
  9. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L. Front Cell Infect Microbiol 11 609722 (2021)
  10. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Finka A, Mattoo RU, Goloubinoff P. Annu Rev Biochem 85 715-742 (2016)
  11. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  12. Advances in integrative modeling of biomolecular complexes. Karaca E, Bonvin AM. Methods 59 372-381 (2013)
  13. Dynamics, flexibility, and allostery in molecular chaperonins. Skjærven L, Cuellar J, Martinez A, Valpuesta JM. FEBS Lett 589 2522-2532 (2015)
  14. Chaperone-client interactions: Non-specificity engenders multifunctionality. Koldewey P, Horowitz S, Bardwell JCA. J Biol Chem 292 12010-12017 (2017)
  15. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. Requena JM, Montalvo AM, Fraga J. Biomed Res Int 2015 301326 (2015)
  16. Chaperonin of Group I: Oligomeric Spectrum and Biochemical and Biological Implications. Vilasi S, Bulone D, Caruso Bavisotto C, Campanella C, Marino Gammazza A, San Biagio PL, Cappello F, Conway de Macario E, Macario AJL. Front Mol Biosci 4 99 (2017)
  17. Structure-Encoded Global Motions and Their Role in Mediating Protein-Substrate Interactions. Bahar I, Cheng MH, Lee JY, Kaya C, Zhang S. Biophys J 109 1101-1109 (2015)
  18. Go hybrid: EM, crystallography, and beyond. Lander GC, Saibil HR, Nogales E. Curr Opin Struct Biol 22 627-635 (2012)
  19. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Zhao Q, Liu C. Front Mol Biosci 4 98 (2017)
  20. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Weiss C, Jebara F, Nisemblat S, Azem A. Front Mol Biosci 3 80 (2016)
  21. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Serna M. Front Mol Biosci 6 33 (2019)
  22. A cool hybrid approach to the herpesvirus 'life' cycle. Zeev-Ben-Mordehai T, Hagen C, Grünewald K. Curr Opin Virol 5 42-49 (2014)
  23. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Zininga T, Shonhai A. Int J Mol Sci 20 E5930 (2019)
  24. The chaperone toolbox at the single-molecule level: From clamping to confining. Avellaneda MJ, Koers EJ, Naqvi MM, Tans SJ. Protein Sci 26 1291-1302 (2017)
  25. Studies of the Process of Amyloid Formation by Aβ Peptide. Galzitskaya OV, Galushko EI, Selivanova OM. Biochemistry (Mosc) 83 S62-S80 (2018)
  26. The PDB and protein homeostasis: From chaperones to degradation and disaggregase machines. Saibil HR. J Biol Chem 296 100744 (2021)
  27. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. Nakamoto H, Kojima K. Physiol Plant 161 296-310 (2017)
  28. From high symmetry to high resolution in biological electron microscopy: a commentary on Crowther (1971) 'Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs'. Rosenthal PB. Philos Trans R Soc Lond B Biol Sci 370 20140345 (2015)
  29. The versatile mutational "repertoire" of Escherichia coli GroEL, a multidomain chaperonin nanomachine. Mizobata T, Kawata Y. Biophys Rev 10 631-640 (2018)
  30. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Front Bioinform 1 788308 (2021)
  31. Automated Modeling and Validation of Protein Complexes in Cryo-EM Maps. Cragnolini T, Sweeney A, Topf M. Methods Mol Biol 2215 189-223 (2021)

Articles citing this publication (69)

  1. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmström L, Aebersold R. Science 337 1348-1352 (2012)
  2. iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. Lopéz-Blanco JR, Chacón P. J Struct Biol 184 261-270 (2013)
  3. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Burmann BM, Wang C, Hiller S. Nat Struct Mol Biol 20 1265-1272 (2013)
  4. Visualizing GroEL/ES in the act of encapsulating a folding protein. Chen DH, Madan D, Weaver J, Lin Z, Schröder GF, Chiu W, Rye HS. Cell 153 1354-1365 (2013)
  5. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Georgescauld F, Popova K, Gupta AJ, Bracher A, Engen JR, Hayer-Hartl M, Hartl FU. Cell 157 922-934 (2014)
  6. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M. Methods 100 42-49 (2016)
  7. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Guo F, Liu Z, Vago F, Ren Y, Wu W, Wright ET, Serwer P, Jiang W. Proc Natl Acad Sci U S A 110 6811-6816 (2013)
  8. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Proc Natl Acad Sci U S A 114 8259-8264 (2017)
  9. GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Priya S, Sharma SK, Sood V, Mattoo RU, Finka A, Azem A, De Los Rios P, Goloubinoff P. Proc Natl Acad Sci U S A 110 7199-7204 (2013)
  10. A molecular mechanism of chaperone-client recognition. He L, Sharpe T, Mazur A, Hiller S. Sci Adv 2 e1601625 (2016)
  11. Validation of cryo-EM structure of IP₃R1 channel. Murray SC, Flanagan J, Popova OB, Chiu W, Ludtke SJ, Serysheva II. Structure 21 900-909 (2013)
  12. Using enhanced sampling and structural restraints to refine atomic structures into low-resolution electron microscopy maps. Vashisth H, Skiniotis G, Brooks CL. Structure 20 1453-1462 (2012)
  13. Targeted conformational search with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron microscopic density maps. Wu X, Subramaniam S, Case DA, Wu KW, Brooks BR. J Struct Biol 183 429-440 (2013)
  14. Oligomerization of a molecular chaperone modulates its activity. Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Elife 7 e35731 (2018)
  15. A biochemical screen for GroEL/GroES inhibitors. Johnson SM, Sharif O, Mak PA, Wang HT, Engels IH, Brinker A, Schultz PG, Horwich AL, Chapman E. Bioorg Med Chem Lett 24 786-789 (2014)
  16. CryoEM and molecular dynamics of the circadian KaiB-KaiC complex indicates that KaiB monomers interact with KaiC and block ATP binding clefts. Villarreal SA, Pattanayek R, Williams DR, Mori T, Qin X, Johnson CH, Egli M, Stewart PL. J Mol Biol 425 3311-3324 (2013)
  17. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Guan N, Shin HD, Chen RR, Li J, Liu L, Du G, Chen J. Sci Rep 4 6951 (2014)
  18. Structure and conformational variability of the mycobacterium tuberculosis fatty acid synthase multienzyme complex. Ciccarelli L, Connell SR, Enderle M, Mills DJ, Vonck J, Grininger M. Structure 21 1251-1257 (2013)
  19. Conformational States of macromolecular assemblies explored by integrative structure calculation. Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Structure 21 1500-1508 (2013)
  20. Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Randazzo L, Martorana V, Marino Gammazza A, Ortore MG, Vilasi A, Pocsfalvi G, Burgio G, Corona D, Palumbo Piccionello A, Zummo G, Bulone D, Conway de Macario E, Macario AJ, San Biagio PL, Cappello F. PLoS One 9 e97657 (2014)
  21. Molecular chaperones in cellular protein folding: the birth of a field. Horwich AL. Cell 157 285-288 (2014)
  22. In Situ Structural Restraints from Cross-Linking Mass Spectrometry in Human Mitochondria. Ryl PSJ, Bohlke-Schneider M, Lenz S, Fischer L, Budzinski L, Stuiver M, Mendes MML, Sinn L, O'Reilly FJ, Rappsilber J. J Proteome Res 19 327-336 (2020)
  23. Engineering a nanopore with co-chaperonin function. Ho CW, Van Meervelt V, Tsai KC, De Temmerman PJ, De Temmerman PJ, Mast J, Maglia G. Sci Adv 1 e1500905 (2015)
  24. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. Kim JM, Choi HS, Seong BL. RNA Biol 14 926-937 (2017)
  25. Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Zhang Q, Chen J, Kuwajima K, Zhang HM, Xian F, Young NL, Marshall AG. Sci Rep 3 1247 (2013)
  26. Chaperonin-mediated protein folding. Horwich AL. J Biol Chem 288 23622-23632 (2013)
  27. The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex. Enriquez AS, Rojo HM, Bhatt JM, Molugu SK, Hildenbrand ZL, Bernal RA. Cell Cycle 16 1309-1319 (2017)
  28. Chaperones: needed for both the good times and the bad times. Quinlan RA, Ellis RJ. Philos Trans R Soc Lond B Biol Sci 368 20130091 (2013)
  29. Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata. Xu Y, Zheng G, Dong S, Liu G, Yu X. Fish Shellfish Immunol 41 643-653 (2014)
  30. CryoEM and image sorting for flexible protein/DNA complexes. Villarreal SA, Stewart PL. J Struct Biol 187 76-83 (2014)
  31. Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change. Liu J, Sankar K, Wang Y, Jia K, Jernigan RL. Biophys J 112 1561-1570 (2017)
  32. Structural insight into the cooperation of chloroplast chaperonin subunits. Zhang S, Zhou H, Yu F, Bai C, Zhao Q, He J, Liu C. BMC Biol 14 29 (2016)
  33. ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies. Yan Q, Zhao Y. Chem Sci 6 4343-4349 (2015)
  34. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Ding J, Yang C, Niu X, Hu Y, Jin C. Sci Rep 5 16856 (2015)
  35. Temperature Regulates Stability, Ligand Binding (Mg2+ and ATP), and Stoichiometry of GroEL-GroES Complexes. Walker TE, Shirzadeh M, Sun HM, McCabe JW, Roth A, Moghadamchargari Z, Clemmer DE, Laganowsky A, Rye H, Russell DH. J Am Chem Soc 144 2667-2678 (2022)
  36. Flexible interwoven termini determine the thermal stability of thermosomes. Zhang K, Wang L, Liu Y, Chan KY, Pang X, Schulten K, Dong Z, Sun F. Protein Cell 4 432-444 (2013)
  37. Local analysis of strains and rotations for macromolecular electron microscopy maps. Sorzano CO, Martín-Ramos A, Prieto F, Melero R, Martín-Benito J, Jonic S, Navas-Calvente J, Vargas J, Otón J, Abrishami V, de la Rosa-Trevín JM, Gómez-Blanco J, Vilas JL, Marabini R, Carazo JM. J Struct Biol 195 123-128 (2016)
  38. Protein chain collapse modulation and folding stimulation by GroEL-ES. Naqvi MM, Avellaneda MJ, Roth A, Koers EJ, Roland A, Sunderlikova V, Kramer G, Rye HS, Tans SJ. Sci Adv 8 eabl6293 (2022)
  39. Protein folding, misfolding and quality control: the role of molecular chaperones. Papsdorf K, Richter K. Essays Biochem 56 53-68 (2014)
  40. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Nat Methods 20 1400-1408 (2023)
  41. Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Kim HW, Wi AR, Jeon BW, Lee JH, Shin SC, Park H, Jeon SJ. Biotechnol Lett 37 1887-1893 (2015)
  42. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction. Cabra V, Samsó M. J Vis Exp 52311 (2015)
  43. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Front Microbiol 12 812448 (2021)
  44. A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR. Int J Biol Macromol 118 671-675 (2018)
  45. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Nat Commun 8 827 (2017)
  46. HermiteFit: fast-fitting atomic structures into a low-resolution density map using three-dimensional orthogonal Hermite functions. Derevyanko G, Grudinin S. Acta Crystallogr D Biol Crystallogr 70 2069-2084 (2014)
  47. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. Zhao Q, Zhang X, Sommer F, Ta N, Wang N, Schroda M, Cong Y, Liu C. Plant J 98 798-812 (2019)
  48. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations. Peng J, Zhang Z. Sci Rep 6 29360 (2016)
  49. Pathway and mechanism of tubulin folding mediated by TRiC/CCT along its ATPase cycle revealed using cryo-EM. Liu C, Jin M, Wang S, Han W, Zhao Q, Wang Y, Xu C, Diao L, Yin Y, Peng C, Peng C, Bao L, Wang Y, Cong Y. Commun Biol 6 531 (2023)
  50. A general approach to protein folding using thermostable exoshells. Sadeghi S, Deshpande S, Vallerinteavide Mavelli G, Aksoyoglu A, Bafna J, Winterhalter M, Kini RM, Lane DP, Drum CL. Nat Commun 12 5720 (2021)
  51. Role of denatured-state properties in chaperonin action probed by single-molecule spectroscopy. Hofmann H, Hillger F, Delley C, Hoffmann A, Pfeil SH, Nettels D, Lipman EA, Schuler B. Biophys J 107 2891-2902 (2014)
  52. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation. Dalton KM, Frydman J, Pande VS. PLoS One 10 e0117724 (2015)
  53. Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time. Walker T, Sun HM, Gunnels T, Wysocki V, Laganowsky A, Rye H, Russell D. ACS Cent Sci 9 466-475 (2023)
  54. Non-Equilibrium Protein Folding and Activation by ATP-Driven Chaperones. Xu H. Biomolecules 12 832 (2022)
  55. Redeployment of automated MrBUMP search-model identification for map fitting in cryo-EM. Simpkin AJ, Winn MD, Rigden DJ, Keegan RM. Acta Crystallogr D Struct Biol 77 1378-1385 (2021)
  56. The Functional Differences between the GroEL Chaperonin of Escherichia coli and the HtpB Chaperonin of Legionella pneumophila Can Be Mapped to Specific Amino Acid Residues. Valenzuela-Valderas KN, Moreno-Hagelsieb G, Rohde JR, Garduño RA. Biomolecules 12 59 (2021)
  57. Differential conformational modulations of MreB folding upon interactions with GroEL/ES and TRiC chaperonin components. Moparthi SB, Carlsson U, Vincentelli R, Jonsson BH, Hammarström P, Wenger J. Sci Rep 6 28386 (2016)
  58. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. Marie AL, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Adv Sci (Weinh) 11 e2306824 (2024)
  59. Probing the dynamic process of encapsulation in Escherichia coli GroEL. Mizuta T, Ando K, Uemura T, Kawata Y, Mizobata T. PLoS One 8 e78135 (2013)
  60. TAR RNA Mediated Folding of a Single-Arginine-Mutant HIV-1 Tat Protein within HeLa Cells Experiencing Intracellular Crowding. Kim JM, Chun H. Int J Mol Sci 22 9998 (2021)
  61. Theoretical and practical approaches to improve the performance of local correlation algorithms for volume data analysis and shape recognition. Titarenko V, Roseman AM. Acta Crystallogr D Struct Biol 77 447-456 (2021)
  62. A molecular device for the redox quality control of GroEL/ES substrates. Dupuy E, Van der Verren SE, Lin J, Wilson MA, Dachsbeck AV, Viela F, Latour E, Gennaris A, Vertommen D, Dufrêne YF, Iorga BI, Goemans CV, Remaut H, Collet JF. Cell 186 1039-1049.e17 (2023)
  63. Allosteric differences dictate GroEL complementation of E. coli. Sivinski J, Ngo D, Zerio CJ, Ambrose AJ, Watson ER, Kaneko LK, Kostelic MM, Stevens M, Ray AM, Park Y, Wu C, Marty MT, Hoang QQ, Zhang DD, Lander GC, Johnson SM, Chapman E. FASEB J 36 e22198 (2022)
  64. Breaking down order to keep cells tidy. Slingsby C, Clark AR. Chem Biol 19 547-548 (2012)
  65. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. J Phys Chem Lett 14 6513-6521 (2023)
  66. Predicting allosteric sites using fast conformational sampling as guided by coarse-grained normal modes. Zheng W. J Chem Phys 158 124127 (2023)
  67. Structural analysis of the Sulfolobus solfataricus TF55β chaperonin by cryo-electron microscopy. Zeng YC, Sobti M, Stewart AG. Acta Crystallogr F Struct Biol Commun 77 79-84 (2021)
  68. Structural basis of substrate progression through the bacterial chaperonin cycle. Gardner S, Darrow MC, Lukoyanova N, Thalassinos K, Saibil HR. Proc Natl Acad Sci U S A 120 e2308933120 (2023)
  69. The Possible Role of the Type I Chaperonins in Human Insulin Self-Association. Pizzo F, Mangione MR, Librizzi F, Manno M, Martorana V, Noto R, Vilasi S. Life (Basel) 12 448 (2022)