4bru Citations

Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions.

OpenAccess logo Nucleic Acids Res 41 8377-90 (2013)
Cited: 52 times
EuropePMC logo PMID: 23851565

Abstract

Translational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5' cap structure is a crucial step that commits deadenylated mRNAs to 5'-to-3' degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 Å resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking-mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding.

Reviews - 4bru mentioned but not cited (1)

Articles - 4bru mentioned but not cited (2)

  1. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Sharif H, Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E. Nucleic Acids Res 41 8377-8390 (2013)
  2. Structure of the human core transcription-export complex reveals a hub for multivalent interactions. Pühringer T, Hohmann U, Fin L, Pacheco-Fiallos B, Schellhaas U, Brennecke J, Plaschka C. Elife 9 e61503 (2020)


Reviews citing this publication (15)

  1. Polysomes, Stress Granules, and Processing Bodies: A Dynamic Triumvirate Controlling Cytoplasmic mRNA Fate and Function. Chantarachot T, Bailey-Serres J. Plant Physiol 176 254-269 (2018)
  2. Interrelations between translation and general mRNA degradation in yeast. Huch S, Nissan T. Wiley Interdiscip Rev RNA 5 747-763 (2014)
  3. The conformational plasticity of eukaryotic RNA-dependent ATPases. Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. FEBS J 282 850-863 (2015)
  4. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Mugridge JS, Coller J, Gross JD. Nat Struct Mol Biol 25 1077-1085 (2018)
  5. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Duchaine TF, Fabian MR. Cold Spring Harb Perspect Biol 11 a032771 (2019)
  6. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Mayya VK, Duchaine TF. Front Genet 10 6 (2019)
  7. DDX6 and its orthologs as modulators of cellular and viral RNA expression. Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. Wiley Interdiscip Rev RNA 5 659-678 (2014)
  8. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Heck AM, Wilusz J. Cold Spring Harb Perspect Biol 10 a032839 (2018)
  9. mRNA decapping: finding the right structures. Charenton C, Graille M. Philos Trans R Soc Lond B Biol Sci 373 20180164 (2018)
  10. Mille viae in eukaryotic mRNA decapping. Valkov E, Jonas S, Weichenrieder O. Curr Opin Struct Biol 47 40-51 (2017)
  11. Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Wurm JP, Sprangers R. Curr Opin Struct Biol 59 115-123 (2019)
  12. Eukaryotic mRNA Decapping Activation. Vidya E, Duchaine TF. Front Genet 13 832547 (2022)
  13. Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Weil D, Piton A, Lessel D, Standart N. Biochem Soc Trans 48 1199-1211 (2020)
  14. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Nat Rev Mol Cell Biol 24 749-769 (2023)
  15. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. He F, Jacobson A. FEBS J 290 5057-5085 (2023)

Articles citing this publication (34)

  1. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. Mol Cell 54 751-765 (2014)
  2. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. RNA 20 1398-1409 (2014)
  3. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Ayache J, Bénard M, Ernoult-Lange M, Minshall N, Standart N, Kress M, Weil D. Mol Biol Cell 26 2579-2595 (2015)
  4. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG, Maraia RJ, Kehrl JH, Uzel G, Klionsky DJ, Williamson PR. Nat Cell Biol 17 930-942 (2015)
  5. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Mugler CF, Hondele M, Heinrich S, Sachdev R, Vallotton P, Koek AY, Chan LY, Weis K. Elife 5 e18746 (2016)
  6. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Kamenska A, Simpson C, Vindry C, Broomhead H, Bénard M, Ernoult-Lange M, Lee BP, Harries LW, Weil D, Standart N. Nucleic Acids Res 44 6318-6334 (2016)
  7. Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Sharif H, Conti E. Cell Rep 5 283-291 (2013)
  8. Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. Rao BS, Parker R. Proc Natl Acad Sci U S A 114 E9569-E9578 (2017)
  9. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. RNA 23 1552-1568 (2017)
  10. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. He F, Jacobson A. RNA 21 1633-1647 (2015)
  11. Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes. Brandmann T, Fakim H, Padamsi Z, Youn JY, Gingras AC, Fabian MR, Jinek M. EMBO J 37 e97869 (2018)
  12. Structure of the active form of Dcp1-Dcp2 decapping enzyme bound to m7GDP and its Edc3 activator. Charenton C, Taverniti V, Gaudon-Plesse C, Back R, Séraphin B, Graille M. Nat Struct Mol Biol 23 982-986 (2016)
  13. General decapping activators target different subsets of inefficiently translated mRNAs. He F, Celik A, Wu C, Jacobson A. Elife 7 e34409 (2018)
  14. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Chantarachot T, Sorenson RS, Hummel M, Ke H, Kettenburg AT, Chen D, Aiyetiwa K, Dehesh K, Eulgem T, Sieburth LE, Bailey-Serres J. Nat Plants 6 675-685 (2020)
  15. Rare De Novo Missense Variants in RNA Helicase DDX6 Cause Intellectual Disability and Dysmorphic Features and Lead to P-Body Defects and RNA Dysregulation. Balak C, Benard M, Schaefer E, Iqbal S, Ramsey K, Ernoult-Lange M, Mattioli F, Llaci L, Geoffroy V, Courel M, Naymik M, Bachman KK, Pfundt R, Rump P, Ter Beest J, Wentzensen IM, Monaghan KG, McWalter K, Richholt R, Le Béchec A, Jepsen W, De Both M, Belnap N, Boland A, Piras IS, Deleuze JF, Szelinger S, Dollfus H, Chelly J, Muller J, Campbell A, Lal D, Rangasamy S, Mandel JL, Narayanan V, Huentelman M, Weil D, Piton A. Am J Hum Genet 105 509-525 (2019)
  16. A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast. Charenton C, Gaudon-Plesse C, Fourati Z, Taverniti V, Back R, Kolesnikova O, Séraphin B, Graille M. Proc Natl Acad Sci U S A 114 E9493-E9501 (2017)
  17. Pat1 contributes to the RNA binding activity of the Lsm1-7-Pat1 complex. Chowdhury A, Kalurupalle S, Tharun S. RNA 20 1465-1475 (2014)
  18. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. Sachdev R, Hondele M, Linsenmeier M, Vallotton P, Mugler CF, Arosio P, Weis K. Elife 8 e41415 (2019)
  19. Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Damman R, Schütz S, Luo Y, Weingarth M, Sprangers R, Baldus M. Nat Commun 10 4536 (2019)
  20. Loquacious-PD facilitates Drosophila Dicer-2 cleavage through interactions with the helicase domain and dsRNA. Trettin KD, Sinha NK, Eckert DM, Apple SE, Bass BL. Proc Natl Acad Sci U S A 114 E7939-E7948 (2017)
  21. Pat1 activates late steps in mRNA decay by multiple mechanisms. Lobel JH, Tibble RW, Gross JD. Proc Natl Acad Sci U S A 116 23512-23517 (2019)
  22. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Huang JH, Ku WC, Chen YC, Chang YL, Chu CY. Sci Rep 7 42853 (2017)
  23. Molecular basis for GIGYF-Me31B complex assembly in 4EHP-mediated translational repression. Peter D, Ruscica V, Bawankar P, Weber R, Helms S, Valkov E, Igreja C, Izaurralde E. Genes Dev 33 1355-1360 (2019)
  24. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. Hrle A, Maier LK, Sharma K, Ebert J, Basquin C, Urlaub H, Marchfelder A, Conti E. RNA Biol 11 1072-1082 (2014)
  25. The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment. Fourati Z, Kolesnikova O, Back R, Keller J, Charenton C, Taverniti V, Plesse CG, Lazar N, Durand D, van Tilbeurgh H, Séraphin B, Graille M. PLoS One 9 e96828 (2014)
  26. Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. He F, Wu C, Jacobson A. Elife 11 e74410 (2022)
  27. Pdc2/Pat1 increases the range of decay factors and RNA bound by the Lsm1-7 complex. Lobel JH, Gross JD. RNA 26 1380-1388 (2020)
  28. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae. Huch S, Müller M, Muppavarapu M, Gommlich J, Balagopal V, Nissan T. Biol Open 5 1388-1399 (2016)
  29. Quantitative reconstitution of yeast RNA processing bodies. Currie SL, Xing W, Muhlrad D, Decker CJ, Parker R, Rosen MK. Proc Natl Acad Sci U S A 120 e2214064120 (2023)
  30. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. PLoS Genet 18 e1009967 (2022)
  31. Plasticity of Drosophila germ granules during germ cell development. Hakes AC, Gavis ER. PLoS Biol 21 e3002069 (2023)
  32. Conceptual modeling of mRNA decay provokes new hypotheses. Somekh J, Haimovich G, Guterman A, Dori D, Choder M. PLoS One 9 e107085 (2014)
  33. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. Vijjamarri AK, Niu X, Vandermeulen MD, Onu C, Zhang F, Qiu H, Gupta N, Gaikwad S, Greenberg ML, Cullen PJ, Lin Z, Hinnebusch AG. Elife 12 e85545 (2023)
  34. Insight into the interaction between the RNA helicase CGH-1 and EDC-3 and its implications. Zhang Y, Wang K, Yang K, Shi Y, Hong J. Sci Rep 11 20359 (2021)