4cr3 Citations

Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.

Proc Natl Acad Sci U S A 111 5544-9 (2014)
Related entries: 4cr2, 4cr4

Cited: 120 times
EuropePMC logo PMID: 24706844

Abstract

The 26S proteasome is a 2.5 MDa molecular machine that executes the degradation of substrates of the ubiquitin-proteasome pathway. The molecular architecture of the 26S proteasome was recently established by cryo-EM approaches. For a detailed understanding of the sequence of events from the initial binding of polyubiquitylated substrates to the translocation into the proteolytic core complex, it is necessary to move beyond static structures and characterize the conformational landscape of the 26S proteasome. To this end we have subjected a large cryo-EM dataset acquired in the presence of ATP and ATP-γS to a deep classification procedure, which deconvolutes coexisting conformational states. Highly variable regions, such as the density assigned to the largest subunit, Rpn1, are now well resolved and rendered interpretable. Our analysis reveals the existence of three major conformations: in addition to the previously described ATP-hydrolyzing (ATPh) and ATP-γS conformations, an intermediate state has been found. Its AAA-ATPase module adopts essentially the same topology that is observed in the ATPh conformation, whereas the lid is more similar to the ATP-γS bound state. Based on the conformational ensemble of the 26S proteasome in solution, we propose a mechanistic model for substrate recognition, commitment, deubiquitylation, and translocation into the core particle.

Reviews - 4cr3 mentioned but not cited (1)

  1. AAA-ATPases in Protein Degradation. Yedidi RS, Wendler P, Enenkel C. Front Mol Biosci 4 42 (2017)

Articles - 4cr3 mentioned but not cited (8)

  1. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F. Proc Natl Acad Sci U S A 111 5544-5549 (2014)
  2. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Wehmer M, Rudack T, Beck F, Aufderheide A, Pfeifer G, Plitzko JM, Förster F, Schulten K, Baumeister W, Sakata E. Proc Natl Acad Sci U S A 114 1305-1310 (2017)
  3. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, Goldberg AL, Sakata E, Baumeister W, Förster F. Proc Natl Acad Sci U S A 112 8626-8631 (2015)
  4. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. VanderLinden RT, Hemmis CW, Yao T, Robinson H, Hill CP. J Biol Chem 292 9493-9504 (2017)
  5. AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. Ionescu CM, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J. J Cheminform 7 50 (2015)
  6. An Allosteric Interaction Network Promotes Conformation State-Dependent Eviction of the Nas6 Assembly Chaperone from Nascent 26S Proteasomes. Nemec AA, Peterson AK, Warnock JL, Reed RG, Tomko RJ. Cell Rep 26 483-495.e5 (2019)
  7. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Mol Cell Proteomics 20 100084 (2021)
  8. Engineered disulfide crosslinking to measure conformational changes in the 26S proteasome. Reed RG, Tomko RJ. Methods Enzymol 619 145-159 (2019)


Reviews citing this publication (33)

  1. Structure and Function of the 26S Proteasome. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Annu Rev Biochem 87 697-724 (2018)
  2. Proteasome Structure and Assembly. Budenholzer L, Cheng CL, Li Y, Hochstrasser M. J Mol Biol 429 3500-3524 (2017)
  3. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A. Cell Res 26 869-885 (2016)
  4. Gates, Channels, and Switches: Elements of the Proteasome Machine. Finley D, Chen X, Walters KJ. Trends Biochem Sci 41 77-93 (2016)
  5. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  6. A Practical Review of Proteasome Pharmacology. Thibaudeau TA, Smith DM. Pharmacol Rev 71 170-197 (2019)
  7. In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. Asano S, Engel BD, Baumeister W. J Mol Biol 428 332-343 (2016)
  8. High-Resolution Native Mass Spectrometry. Tamara S, den Boer MA, Heck AJR. Chem Rev 122 7269-7326 (2022)
  9. Recognition of Client Proteins by the Proteasome. Yu H, Matouschek A. Annu Rev Biophys 46 149-173 (2017)
  10. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. de Poot SAH, Tian G, Finley D. J Mol Biol 429 3525-3545 (2017)
  11. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Morozov AV, Karpov VL. Front Oncol 9 761 (2019)
  12. Reversible phosphorylation of the 26S proteasome. Guo X, Huang X, Chen MJ. Protein Cell 8 255-272 (2017)
  13. Structure, Dynamics and Function of the 26S Proteasome. Mao Y. Subcell Biochem 96 1-151 (2021)
  14. Refining the nuclear auxin response pathway through structural biology. Korasick DA, Jez JM, Strader LC. Curr Opin Plant Biol 27 22-28 (2015)
  15. Cryo-electron tomography-the cell biology that came in from the cold. Wagner J, Schaffer M, Fernández-Busnadiego R. FEBS Lett 591 2520-2533 (2017)
  16. Proteasome in action: substrate degradation by the 26S proteasome. Sahu I, Glickman MH. Biochem Soc Trans 49 629-644 (2021)
  17. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. FEBS J 288 5231-5251 (2021)
  18. Mechanisms of substrate recognition by the 26S proteasome. Davis C, Spaller BL, Matouschek A. Curr Opin Struct Biol 67 161-169 (2021)
  19. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Greene ER, Dong KC, Martin A. Curr Opin Struct Biol 61 33-41 (2020)
  20. Structural disorder and its role in proteasomal degradation. Aufderheide A, Unverdorben P, Baumeister W, Förster F. FEBS Lett 589 2552-2560 (2015)
  21. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 E629 (2020)
  22. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Int J Mol Sci 21 E5312 (2020)
  23. Proteasome substrate receptors and their therapeutic potential. Osei-Amponsa V, Walters KJ. Trends Biochem Sci 47 950-964 (2022)
  24. Tuning the proteasome to brighten the end of the journey. Mayor T, Sharon M, Glickman MH. Am J Physiol Cell Physiol 311 C793-C804 (2016)
  25. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Yedidi RS, Fatehi AK, Enenkel C. Crit Rev Biochem Mol Biol 51 497-512 (2016)
  26. Functional Differences between Proteasome Subtypes. Abi Habib J, Lesenfants J, Vigneron N, Van den Eynde BJ. Cells 11 421 (2022)
  27. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Structure 31 4-19 (2023)
  28. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation. Förster F, Schuller JM, Unverdorben P, Aufderheide A. Biomolecules 4 774-794 (2014)
  29. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. Creekmore BC, Chang YW, Lee EB. J Neuropathol Exp Neurol 80 494-513 (2021)
  30. Proteasome Biology: Chemistry and Bioengineering Insights. Račková L, Csekes E. Polymers (Basel) 12 E2909 (2020)
  31. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Yu P, Hua Z. Int J Mol Sci 24 2221 (2023)
  32. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Henneberg F, Chari A. Life (Basel) 11 1289 (2021)
  33. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Betancourt D, Lawal T, Tomko RJ. Biomolecules 13 1223 (2023)

Articles citing this publication (78)

  1. In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Guo Q, Lehmer C, Martínez-Sánchez A, Rudack T, Beck F, Hartmann H, Pérez-Berlanga M, Frottin F, Hipp MS, Hartl FU, Edbauer D, Baumeister W, Fernández-Busnadiego R. Cell 172 696-705.e12 (2018)
  2. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F, Danev R, Baumeister W. Science 347 439-442 (2015)
  3. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Thibaudeau TA, Anderson RT, Smith DM. Nat Commun 9 1097 (2018)
  4. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SA, Tuebing F, Sun S, Vannoy J, Tarasov SG, Engen JR, Finley D, Walters KJ. Science 351 aad9421 (2016)
  5. An atomic structure of the human 26S proteasome. Huang X, Luan B, Wu J, Shi Y. Nat Struct Mol Biol 23 778-785 (2016)
  6. Structure of the human 26S proteasome at a resolution of 3.9 Å. Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W. Proc Natl Acad Sci U S A 113 7816-7821 (2016)
  7. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Leitner A, Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J, Förster F, Aebersold R. Proc Natl Acad Sci U S A 111 9455-9460 (2014)
  8. Structural basis for dynamic regulation of the human 26S proteasome. Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y. Proc Natl Acad Sci U S A 113 12991-12996 (2016)
  9. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. Methods 100 3-15 (2016)
  10. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. Nat Struct Mol Biol 22 712-719 (2015)
  11. Proteasomes tether to two distinct sites at the nuclear pore complex. Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S, Thomas HF, Plitzko JM, Beck M, Baumeister W, Engel BD. Proc Natl Acad Sci U S A 114 13726-13731 (2017)
  12. An integrated workflow for crosslinking mass spectrometry. Mendes ML, Fischer L, Chen ZA, Barbon M, O'Reilly FJ, Giese SH, Bohlke-Schneider M, Belsom A, Dau T, Combe CW, Graham M, Eisele MR, Baumeister W, Speck C, Rappsilber J. Mol Syst Biol 15 e8994 (2019)
  13. Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating. Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, Pfeifer G, Plitzko JM, Baumeister W, Tomko RJ, Sakata E. Cell Rep 24 1301-1315.e5 (2018)
  14. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Bard JAM, Bashore C, Dong KC, Martin A. Cell 177 286-298.e15 (2019)
  15. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Elife 5 e13027 (2016)
  16. Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Wang X, Cimermancic P, Yu C, Schweitzer A, Chopra N, Engel JL, Greenberg C, Huszagh AS, Beck F, Sakata E, Yang Y, Novitsky EJ, Leitner A, Nanni P, Kahraman A, Guo X, Dixon JE, Rychnovsky SD, Aebersold R, Baumeister W, Sali A, Huang L. Mol Cell Proteomics 16 840-854 (2017)
  17. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Choi WH, de Poot SA, Lee JH, Kim JH, Han DH, Kim YK, Finley D, Lee MJ. Nat Commun 7 10963 (2016)
  18. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Fan X, Wang J, Zhang X, Yang Z, Zhang JC, Zhao L, Peng HL, Lei J, Wang HW. Nat Commun 10 2386 (2019)
  19. Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. McGreevy R, Teo I, Singharoy A, Schulten K. Methods 100 50-60 (2016)
  20. SCOPe: classification of large macromolecular structures in the structural classification of proteins-extended database. Chandonia JM, Fox NK, Brenner SE. Nucleic Acids Res 47 D475-D481 (2019)
  21. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Tomko RJ, Taylor DW, Chen ZA, Wang HW, Rappsilber J, Hochstrasser M. Cell 163 432-444 (2015)
  22. Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Lu X, Nowicka U, Sridharan V, Liu F, Randles L, Hymel D, Dyba M, Tarasov SG, Tarasova NI, Zhao XZ, Hamazaki J, Murata S, Burke TR, Walters KJ. Nat Commun 8 15540 (2017)
  23. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley DJ, Shi Y, Wang F. Proc Natl Acad Sci U S A 113 2642-2647 (2016)
  24. Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Kuo CL, Goldberg AL. Proc Natl Acad Sci U S A 114 E3404-E3413 (2017)
  25. Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome. Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y. Nat Commun 9 1360 (2018)
  26. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. Pharmacol Ther 213 107579 (2020)
  27. Direct visualization of degradation microcompartments at the ER membrane. Albert S, Wietrzynski W, Lee CW, Schaffer M, Beck F, Schuller JM, Salomé PA, Plitzko JM, Baumeister W, Engel BD. Proc Natl Acad Sci U S A 117 1069-1080 (2020)
  28. ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Kim YC, Snoberger A, Schupp J, Smith DM. Nat Commun 6 8520 (2015)
  29. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Huang R, Ripstein ZA, Augustyniak R, Lazniewski M, Ginalski K, Kay LE, Rubinstein JL. Proc Natl Acad Sci U S A 113 E4190-9 (2016)
  30. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A. J Biol Chem 291 14526-14539 (2016)
  31. SPT5 stabilization of promoter-proximal RNA polymerase II. Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL, Shilatifard A. Mol Cell 81 4413-4424.e5 (2021)
  32. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Ding Z, Fu Z, Xu C, Wang Y, Wang Y, Li J, Kong L, Chen J, Li N, Zhang R, Cong Y. Cell Res 27 373-385 (2017)
  33. Structural basis for the disaggregase activity and regulation of Hsp104. Heuck A, Schitter-Sollner S, Suskiewicz MJ, Kurzbauer R, Kley J, Schleiffer A, Rombaut P, Herzog F, Clausen T. Elife 5 e21516 (2016)
  34. High-density chemical cross-linking for modeling protein interactions. Mintseris J, Gygi SP. Proc Natl Acad Sci U S A 117 93-102 (2020)
  35. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Chojnacki M, Mansour W, Hameed DS, Singh RK, El Oualid F, Rosenzweig R, Nakasone MA, Yu Z, Glaser F, Kay LE, Fushman D, Ovaa H, Glickman MH. Cell Chem Biol 24 443-457.e6 (2017)
  36. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y. Mol Cell 67 322-333.e6 (2017)
  37. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sokolova V, Li F, Polovin G, Park S. Sci Rep 5 14909 (2015)
  38. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. Reichard EL, Chirico GG, Dewey WJ, Nassif ND, Bard KE, Millas NE, Kraut DA. J Biol Chem 291 18547-18561 (2016)
  39. Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Abi Habib J, De Plaen E, Stroobant V, Zivkovic D, Bousquet MP, Guillaume B, Wahni K, Messens J, Busse A, Vigneron N, Van den Eynde BJ. Sci Rep 10 15765 (2020)
  40. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Lambert C, Lerner TR, Bui NK, Somers H, Aizawa S, Liddell S, Clark A, Vollmer W, Lovering AL, Sockett RE. Sci Rep 6 26010 (2016)
  41. Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer. Birol M, Enchev RI, Padilla A, Stengel F, Aebersold R, Betzi S, Yang Y, Hoh F, Peter M, Dumas C, Echalier A. PLoS One 9 e105688 (2014)
  42. Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Keren-Kaplan T, Zeev Peters L, Levin-Kravets O, Attali I, Kleifeld O, Shohat N, Artzi S, Zucker O, Pilzer I, Reis N, Glickman MH, Ben-Aroya S, Prag G. Nat Commun 7 12960 (2016)
  43. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. Sci Rep 6 27873 (2016)
  44. Rice stripe tenuivirus nonstructural protein 3 hijacks the 26S proteasome of the small brown planthopper via direct interaction with regulatory particle non-ATPase subunit 3. Xu Y, Wu J, Fu S, Li C, Zhu ZR, Zhou X. J Virol 89 4296-4310 (2015)
  45. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation. Greene ER, Goodall EA, de la Peña AH, Matyskiela ME, Lander GC, Martin A. Elife 8 e49806 (2019)
  46. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing. Snoberger A, Brettrager EJ, Smith DM. Nat Commun 9 2374 (2018)
  47. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Li F, Tian G, Langager D, Sokolova V, Finley D, Park S. Proc Natl Acad Sci U S A 114 1548-1553 (2017)
  48. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Cundiff MD, Hurley CM, Wong JD, Boscia JA, Bashyal A, Rosenberg J, Reichard EL, Nassif ND, Brodbelt JS, Kraut DA. Sci Rep 9 14506 (2019)
  49. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Kwon DH, Zhang F, Fedor JG, Suo Y, Lee SY. Nat Commun 13 2874 (2022)
  50. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly. Li X, Li Y, Arendt CS, Hochstrasser M. J Biol Chem 291 1991-2003 (2016)
  51. Base-CP proteasome can serve as a platform for stepwise lid formation. Yu Z, Livnat-Levanon N, Kleifeld O, Mansour W, Nakasone MA, Castaneda CA, Dixon EK, Fushman D, Reis N, Pick E, Glickman MH. Biosci Rep 35 e00194 (2015)
  52. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. J Biol Chem 295 16219-16238 (2020)
  53. Mycobacterium tuberculosis proteasomal ATPase Mpa has a β-grasp domain that hinders docking with the proteasome core protease. Wu Y, Hu K, Li D, Bai L, Yang S, Jastrab JB, Xiao S, Hu Y, Zhang S, Darwin KH, Wang T, Li H. Mol Microbiol 105 227-241 (2017)
  54. Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Hung KYS, Klumpe S, Eisele MR, Elsasser S, Tian G, Sun S, Moroco JA, Cheng TC, Joshi T, Seibel T, Van Dalen D, Feng XH, Lu Y, Ovaa H, Engen JR, Lee BH, Rudack T, Sakata E, Finley D. Nat Commun 13 838 (2022)
  55. Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Chen X, Dorris Z, Shi D, Huang RK, Khant H, Fox T, de Val N, Williams D, Zhang P, Walters KJ. Structure 28 1206-1217.e4 (2020)
  56. Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. Drew K, Müller CL, Bonneau R, Marcotte EM. PLoS Comput Biol 13 e1005625 (2017)
  57. Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Fu X, Sokolova V, Webb KJ, Old W, Park S. Proc Natl Acad Sci U S A 115 13246-13251 (2018)
  58. Solution structure of yeast Rpn9: insights into proteasome lid assembly. Hu Y, Wu Y, Li Q, Zhang W, Jin C. J Biol Chem 290 6878-6889 (2015)
  59. Effects of Acetylation and Phosphorylation on Subunit Interactions in Three Large Eukaryotic Complexes. Šoštarić N, O'Reilly FJ, Giansanti P, Heck AJR, Gavin AC, van Noort V. Mol Cell Proteomics 17 2387-2401 (2018)
  60. Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Jespersen N, Ehrenbolger K, Winiger RR, Svedberg D, Vossbrinck CR, Barandun J. Nat Commun 13 6962 (2022)
  61. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. Jonsson E, Htet ZM, Bard JAM, Dong KC, Martin A. Sci Adv 8 eadd9520 (2022)
  62. A timer to coordinate substrate processing by the 26S proteasome. Yao T. Nat Struct Mol Biol 22 652-653 (2015)
  63. Cooperative Binding of the Cationic Porphyrin Tris-T4 Enhances Catalytic Activity of 20S Proteasome Unveiling a Complex Distribution of Functional States. Santoro AM, D'Urso A, Cunsolo A, Milardi D, Purrello R, Sbardella D, Tundo GR, Diana D, Fattorusso R, Dato AD, Paladino A, Persico M, Coletta M, Fattorusso C. Int J Mol Sci 21 E7190 (2020)
  64. Cryo-EM structure of the plant 26S proteasome. Kandolf S, Grishkovskaya I, Belačić K, Bolhuis DL, Amann S, Foster B, Imre R, Mechtler K, Schleiffer A, Tagare HD, Zhong ED, Meinhart A, Brown NG, Haselbach D. Plant Commun 3 100310 (2022)
  65. Proteasome Inhibition Is an Effective Treatment Strategy for Microsporidia Infection in Honey Bees. Huntsman EM, Cho RM, Kogan HV, McNamara-Bordewick NK, Tomko RJ, Snow JW. Biomolecules 11 1600 (2021)
  66. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Nahar A, Sokolova V, Sekaran S, Orth JD, Park S. Cell Rep 39 110918 (2022)
  67. Constructing atomic structural models into cryo-EM densities using molecular dynamics - Pros and cons. Wang Y, Shekhar M, Thifault D, Williams CJ, McGreevy R, Richardson J, Singharoy A, Tajkhorshid E. J Struct Biol 204 319-328 (2018)
  68. Gyre and gimble in the proteasome. Hochstrasser M. Proc Natl Acad Sci U S A 113 12896-12898 (2016)
  69. Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms. Zhao B, Reilly CP, Davis C, Matouschek A, Reilly JP. J Proteome Res 19 2758-2771 (2020)
  70. Analysis of the Dynamic Proteasome Structure by Cross-Linking Mass Spectrometry. Mendes ML, Dittmar G. Biomolecules 11 505 (2021)
  71. Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1. Zeng M, Tang Z, Ren L, Wang H, Wang X, Zhu W, Mao X, Li Z, Mo X, Chen J, Han J, Kong D, Ji J, Carr AM, Liu C. J Clin Invest 133 e171533 (2023)
  72. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus. Diao W, Yang X, Zhou H. Acta Crystallogr F Struct Biol Commun 70 611-615 (2014)
  73. Saccharomyces cerevisiae as a Toolkit for COP9 Signalosome Research. Harshuk-Shabso D, Castel N, Israeli R, Harari S, Pick E. Biomolecules 11 497 (2021)
  74. FAT10 and NUB1L cooperate to activate the 26S proteasome. Brockmann F, Catone N, Wünsch C, Offensperger F, Scheffner M, Schmidtke G, Aichem A. Life Sci Alliance 6 e202201463 (2023)
  75. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Mol Cell 83 2959-2975.e7 (2023)
  76. NMR 1H, 13C, 15N backbone and side chain resonance assignment of the N-terminal domain of yeast proteasome lid subunit Rpn5. Zhang W, Zhao C, Hu Y, Jin C. Biomol NMR Assign 13 1-4 (2019)
  77. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. Sekaran S, Park S. J Biol Chem 299 102870 (2023)
  78. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis. Hayashi S, Hirayama T. Sci Rep 6 25351 (2016)