4h5m Citations

Phleboviruses encapsidate their genomes by sequestering RNA bases.

Proc Natl Acad Sci U S A 109 19208-13 (2012)
Related entries: 4h5l, 4h5o, 4h5p, 4h5q, 4v9e

Cited: 63 times
EuropePMC logo PMID: 23129612

Abstract

Rift Valley fever and Toscana viruses are human pathogens for which no effective therapeutics exist. These and other phleboviruses have segmented negative-sense RNA genomes that are sequestered by a nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes of irregular, asymmetric structure, previously uncharacterized at high resolution. N binds nonspecifically to single-stranded RNA with nanomolar affinity. Crystal structures of Rift Valley fever virus N-RNA complexes reconstituted with defined RNAs of different length capture tetrameric, pentameric and hexameric N-RNA multimers. All N-N subunit contacts are mediated by a highly flexible α-helical arm. Arm movement gives rise to the three multimers in the crystal structures and also explains the asymmetric architecture of the RNP. Despite the flexible association of subunits, the crystal structures reveal an invariant, monomeric RNP building block, consisting of the core of one N subunit, the arm of a neighboring N, and four RNA nucleotides with the flanking phosphates. Up to three additional RNA nucleotides bind between subunits. The monomeric building block is matched in size to the repeating unit in viral RNP, as visualized by electron microscopy. N sequesters four RNA bases in a narrow hydrophobic binding slot and has polar contacts only with the sugar-phosphate backbone, which faces the solvent. All RNA bases, whether in the binding slot or in the subunit interface, face the protein in a manner that is incompatible with base pairing or with "reading" by the viral polymerase.

Articles - 4h5m mentioned but not cited (2)

  1. Phleboviruses encapsidate their genomes by sequestering RNA bases. Raymond DD, Piper ME, Gerrard SR, Skiniotis G, Smith JL. Proc Natl Acad Sci U S A 109 19208-19213 (2012)
  2. Distinct Mechanism for the Formation of the Ribonucleoprotein Complex of Tomato Spotted Wilt Virus. Guo Y, Liu B, Ding Z, Li G, Liu M, Zhu D, Sun Y, Dong S, Lou Z. J Virol 91 e00892-17 (2017)


Reviews citing this publication (13)

  1. Current progress in antiviral strategies. Lou Z, Sun Y, Rao Z. Trends Pharmacol Sci 35 86-102 (2014)
  2. Early Bunyavirus-Host Cell Interactions. Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Viruses 8 E143 (2016)
  3. Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses. Zhou H, Sun Y, Guo Y, Lou Z. Trends Microbiol 21 475-484 (2013)
  4. Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Sun Y, Li J, Gao GF, Tien P, Liu W. Crit Rev Microbiol 44 522-540 (2018)
  5. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Amroun A, Priet S, de Lamballerie X, Quérat G. Crit Rev Microbiol 43 753-778 (2017)
  6. Segmented negative strand RNA virus nucleoprotein structure. Reguera J, Cusack S, Kolakofsky D. Curr Opin Virol 5 7-15 (2014)
  7. RNA Encapsidation and Packaging in the Phleboviruses. Hornak KE, Lanchy JM, Lodmell JS. Viruses 8 E194 (2016)
  8. Nucleocapsid Structure of Negative Strand RNA Virus. Luo M, Terrell JR, Mcmanus SA. Viruses 12 E835 (2020)
  9. The lifecycle of the Ebola virus in host cells. Yu DS, Weng TH, Wu XX, Wang FXC, Lu XY, Wu HB, Wu NP, Li LJ, Yao HP. Oncotarget 8 55750-55759 (2017)
  10. Electron Cryomicroscopy of Viruses at Near-Atomic Resolutions. Kaelber JT, Hryc CF, Chiu W. Annu Rev Virol 4 287-308 (2017)
  11. Brothers in Arms: Structure, Assembly and Function of Arenaviridae Nucleoprotein. Papageorgiou N, Spiliopoulou M, Nguyen TV, Vaitsopoulou A, Laban EY, Alvarez K, Margiolaki I, Canard B, Ferron F. Viruses 12 E772 (2020)
  12. The mechanism of genome replication and transcription in bunyaviruses. Malet H, Williams HM, Cusack S, Rosenthal M. PLoS Pathog 19 e1011060 (2023)
  13. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Sabsay KR, Te Velthuis AJW. Microbiol Mol Biol Rev 87 e0008223 (2023)

Articles citing this publication (48)

  1. Monomeric nucleoprotein of influenza A virus. Chenavas S, Estrozi LF, Slama-Schwok A, Delmas B, Di Primo C, Baudin F, Li X, Crépin T, Ruigrok RW. PLoS Pathog 9 e1003275 (2013)
  2. Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein. Reguera J, Malet H, Weber F, Cusack S. Proc Natl Acad Sci U S A 110 7246-7251 (2013)
  3. Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Sugita Y, Matsunami H, Kawaoka Y, Noda T, Wolf M. Nature 563 137-140 (2018)
  4. Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y, Zhang F, Wang T, Li C, Zuo X, Luan CH, Li D, Liu ZJ. J Virol 87 6829-6839 (2013)
  5. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Ariza A, Tanner SJ, Walter CT, Dent KC, Shepherd DA, Wu W, Matthews SV, Hiscox JA, Green TJ, Luo M, Elliott RM, Fooks AR, Ashcroft AE, Stonehouse NJ, Ranson NA, Barr JN, Edwards TA. Nucleic Acids Res 41 5912-5926 (2013)
  6. Structure of the Leanyer orthobunyavirus nucleoprotein-RNA complex reveals unique architecture for RNA encapsidation. Niu F, Shaw N, Wang YE, Jiao L, Ding W, Li X, Zhu P, Upur H, Ouyang S, Cheng G, Liu ZJ. Proc Natl Acad Sci U S A 110 9054-9059 (2013)
  7. Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Li B, Wang Q, Pan X, Fernández de Castro I, Sun Y, Guo Y, Tao X, Risco C, Sui SF, Lou Z. Proc Natl Acad Sci U S A 110 9048-9053 (2013)
  8. Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein. Cox R, Pickar A, Qiu S, Tsao J, Rodenburg C, Dokland T, Elson A, He B, Luo M. Proc Natl Acad Sci U S A 111 15208-15213 (2014)
  9. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. Parry R, Asgari S. J Virol 92 e00224-18 (2018)
  10. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 Å resolution. Dong S, Yang P, Li G, Liu B, Wang W, Liu X, Xia B, Yang C, Lou Z, Guo Y, Rao Z. Protein Cell 6 351-362 (2015)
  11. Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation. Dong H, Li P, Elliott RM, Dong C. J Virol 87 5593-5601 (2013)
  12. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Zhou H, Sun Y, Wang Y, Liu M, Liu C, Wang W, Liu X, Li L, Deng F, Wang H, Guo Y, Lou Z. Protein Cell 4 445-455 (2013)
  13. Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism. Dong H, Li P, Böttcher B, Elliott RM, Dong C. RNA 19 1129-1136 (2013)
  14. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation. Guo Y, Wang W, Sun Y, Ma C, Wang X, Wang X, Liu P, Shen S, Li B, Lin J, Deng F, Wang H, Lou Z. J Virol 90 1048-1061 (2016)
  15. The crystal structure and RNA-binding of an orthomyxovirus nucleoprotein. Zheng W, Olson J, Vakharia V, Tao YJ. PLoS Pathog 9 e1003624 (2013)
  16. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Krupovic M, Dolja VV, Koonin EV. Biol Direct 10 12 (2015)
  17. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Zamora M, Méndez-López E, Agirrezabala X, Cuesta R, Lavín JL, Sánchez-Pina MA, Aranda MA, Valle M. Sci Adv 3 eaao2182 (2017)
  18. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. Agirrezabala X, Méndez-López E, Lasso G, Sánchez-Pina MA, Aranda M, Valle M. Elife 4 e11795 (2015)
  19. Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. Olal D, Dick A, Woods VL, Liu T, Li S, Devignot S, Weber F, Saphire EO, Daumke O. Nucleic Acids Res 42 6025-6037 (2014)
  20. Common mechanism for RNA encapsidation by negative-strand RNA viruses. Green TJ, Cox R, Tsao J, Rowse M, Qiu S, Luo M. J Virol 88 3766-3775 (2014)
  21. Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. Li J, Feng Z, Wu J, Huang Y, Lu G, Zhu M, Wang B, Mao X, Tao X. J Biol Chem 290 3950-3961 (2015)
  22. Structure of the Hantavirus Nucleoprotein Provides Insights into the Mechanism of RNA Encapsidation. Olal D, Daumke O. Cell Rep 14 2092-2099 (2016)
  23. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Rensen EI, Mochizuki T, Quemin E, Schouten S, Krupovic M, Prangishvili D. Proc Natl Acad Sci U S A 113 2478-2483 (2016)
  24. Structural and Functional Diversity of Nairovirus-Encoded Nucleoproteins. Wang W, Liu X, Wang X, Dong H, Ma C, Wang J, Liu B, Mao Y, Wang Y, Li T, Yang C, Guo Y. J Virol 89 11740-11749 (2015)
  25. Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus. Liu B, Dong S, Li G, Wang W, Liu X, Wang Y, Yang C, Rao Z, Guo Y. J Virol 91 e00825-17 (2017)
  26. Inhibition of Rift Valley fever virus replication and perturbation of nucleocapsid-RNA interactions by suramin. Ellenbecker M, Lanchy JM, Lodmell JS. Antimicrob Agents Chemother 58 7405-7415 (2014)
  27. A Negative-Stranded RNA Virus Infecting Citrus Trees: The Second Member of a New Genus Within the Order Bunyavirales. Navarro B, Zicca S, Minutolo M, Saponari M, Alioto D, Di Serio F. Front Microbiol 9 2340 (2018)
  28. Asymmetric Trimeric Ring Structure of the Nucleocapsid Protein of Tospovirus. Komoda K, Narita M, Yamashita K, Tanaka I, Yao M. J Virol 91 e01002-17 (2017)
  29. Two Novel Negative-Sense RNA Viruses Infecting Grapevine Are Members of a Newly Proposed Genus within the Family Phenuiviridae. Diaz-Lara A, Navarro B, Di Serio F, Stevens K, Hwang MS, Kohl J, Vu ST, Falk BW, Golino D, Al Rwahnih M. Viruses 11 E685 (2019)
  30. Molecular basis for the formation of ribonucleoprotein complex of Crimean-Congo hemorrhagic fever virus. Wang X, Li B, Guo Y, Shen S, Zhao L, Zhang P, Sun Y, Sui SF, Deng F, Lou Z. J Struct Biol 196 455-465 (2016)
  31. Binding of RNA by the Nucleoproteins of Influenza Viruses A and B. Labaronne A, Swale C, Monod A, Schoehn G, Crépin T, Ruigrok RW. Viruses 8 E247 (2016)
  32. Molecular characterization of emaraviruses associated with Pigeonpea sterility mosaic disease. Kumar S, Subbarao BL, Hallan V. Sci Rep 7 11831 (2017)
  33. Comparison of the efficiency of different newcastle disease virus reverse genetics systems. Liu H, de Almeida RS, Gil P, Albina E. J Virol Methods 249 111-116 (2017)
  34. Genetic variability of the S segment of Toscana virus. Baggieri M, Marchi A, Bucci P, Nicoletti L, Magurano F. Virus Res 200 35-44 (2015)
  35. Genome encapsidation by orthobunyavirus nucleoproteins. Zheng W, Tao YJ. Proc Natl Acad Sci U S A 110 8769-8770 (2013)
  36. Homology modeling and molecular dynamics provide structural insights into tospovirus nucleoprotein. Lima RN, Faheem M, Barbosa JA, Polêto MD, Verli H, Melo FL, Resende RO. BMC Bioinformatics 17 489 (2016)
  37. Atomic insights into the genesis of cellular filaments by globular proteins. McPartland L, Heller DM, Eisenberg DS, Hochschild A, Sawaya MR. Nat Struct Mol Biol 25 705-714 (2018)
  38. Complementary Mutations in the N and L Proteins for Restoration of Viral RNA Synthesis. Li W, Gumpper RH, Uddin Y, Schmidt-Krey I, Luo M. J Virol 92 e01417-18 (2018)
  39. Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding. Li H, Doruker P, Hu G, Bahar I. Biophys J 118 1782-1794 (2020)
  40. Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids. Mottram TJ, Li P, Dietrich I, Shi X, Brennan B, Varjak M, Kohl A. PLoS Negl Trop Dis 11 e0006155 (2017)
  41. Structural insight into Marburg virus nucleoprotein-RNA complex formation. Fujita-Fujiharu Y, Sugita Y, Takamatsu Y, Houri K, Igarashi M, Muramoto Y, Nakano M, Tsunoda Y, Taniguchi I, Becker S, Noda T. Nat Commun 13 1191 (2022)
  42. Identification and localization of Tospovirus genus-wide conserved residues in 3D models of the nucleocapsid and the silencing suppressor proteins. Olaya C, Adhikari B, Raikhy G, Cheng J, Pappu HR. Virol J 16 7 (2019)
  43. Isolation of Reconstructed Functional Ribonucleoprotein Complexes of Machupo Virus. Pyle JD, Whelan SPJ. J Virol 95 e0105421 (2021)
  44. Toscana virus nucleoprotein oligomer organization observed in solution. Baklouti A, Goulet A, Lichière J, Canard B, Charrel RN, Ferron F, Coutard B, Papageorgiou N. Acta Crystallogr D Struct Biol 73 650-659 (2017)
  45. A structure-based model for the prediction of protein-RNA binding affinity. Nithin C, Mukherjee S, Bahadur RP. RNA 25 1628-1645 (2019)
  46. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Viruses 13 2417 (2021)
  47. Antibody production and characterization of the nucleoprotein of sever fever with thrombocytopenia syndrome virus (SFTSV) for effective diagnosis of SFTSV. Lee K, Choi MJ, Cho MH, Choi DO, Bhoo SH. Virol J 20 206 (2023)
  48. RNA Encapsulation Mode and Evolutionary Insights from the Crystal Structure of Emaravirus Nucleoprotein. Izhaki-Tavor LS, Yechezkel IG, Alter J, Dessau M. Microbiol Spectr 11 e0501822 (2023)