4ig9 Citations

Structural and functional analysis of human SIRT1.

J Mol Biol 426 526-41 (2014)
Cited: 88 times
EuropePMC logo PMID: 24120939

Abstract

SIRT1 is a NAD(+)-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD(+)-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD(+)-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.

Reviews - 4ig9 mentioned but not cited (3)

  1. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. J Med Chem 65 8596-8685 (2022)
  2. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. 3 Biotech 13 29 (2023)
  3. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. Lambona C, Zwergel C, Valente S, Mai A. J Med Chem 67 1662-1689 (2024)

Articles - 4ig9 mentioned but not cited (15)

  1. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Dai H, Case AW, Riera TV, Considine T, Lee JE, Hamuro Y, Zhao H, Jiang Y, Sweitzer SM, Pietrak B, Schwartz B, Blum CA, Disch JS, Caldwell R, Szczepankiewicz B, Oalmann C, Yee Ng P, White BH, Casaubon R, Narayan R, Koppetsch K, Bourbonais F, Wu B, Wang J, Qian D, Jiang F, Mao C, Wang M, Hu E, Wu JC, Perni RB, Vlasuk GP, Ellis JL. Nat Commun 6 7645 (2015)
  2. Metformin Is a Direct SIRT1-Activating Compound: Computational Modeling and Experimental Validation. Cuyàs E, Verdura S, Llorach-Parés L, Fernández-Arroyo S, Joven J, Martin-Castillo B, Bosch-Barrera J, Brunet J, Nonell-Canals A, Sanchez-Martinez M, Menendez JA. Front Endocrinol (Lausanne) 9 657 (2018)
  3. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. Guan X, Lin P, Knoll E, Chakrabarti R. PLoS One 9 e107729 (2014)
  4. Seeding for sirtuins: microseed matrix seeding to obtain crystals of human Sirt3 and Sirt2 suitable for soaking. Rumpf T, Gerhardt S, Einsle O, Jung M. Acta Crystallogr F Struct Biol Commun 71 1498-1510 (2015)
  5. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families. Xia J, Tilahun EL, Kebede EH, Reid TE, Zhang L, Wang XS. J Chem Inf Model 55 374-388 (2015)
  6. Site-specific ubiquitylation acts as a regulator of linker histone H1. Höllmüller E, Geigges S, Niedermeier ML, Kammer KM, Kienle SM, Rösner D, Scheffner M, Marx A, Stengel F. Nat Commun 12 3497 (2021)
  7. Potential Mechanism of Dingji Fumai Decoction Against Atrial Fibrillation Based on Network Pharmacology, Molecular Docking, and Experimental Verification Integration Strategy. Liang Y, Liang B, Chen W, Wu XR, Liu-Huo WS, Zhao LZ. Front Cardiovasc Med 8 712398 (2021)
  8. Finding Potent Sirt Inhibitor in Coffee: Isolation, Confirmation and Synthesis of Javamide-II (N-Caffeoyltryptophan) as Sirt1/2 Inhibitor. Park JB. PLoS One 11 e0150392 (2016)
  9. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. Weiser BP, Eckenhoff RG. J Biol Chem 290 8559-8568 (2015)
  10. Synthesis and Evaluation of New Benzodioxole- Based Thiosemicarbazone Derivatives as Potential Antitumor Agents. Altıntop MD, Temel HE, Sever B, Akalın Çiftçi G, Kaplancıklı ZA. Molecules 21 E1598 (2016)
  11. A prospective compound screening contest identified broader inhibitors for Sirtuin 1. Chiba S, Ohue M, Gryniukova A, Borysko P, Zozulya S, Yasuo N, Yoshino R, Ikeda K, Shin WH, Kihara D, Iwadate M, Umeyama H, Ichikawa T, Teramoto R, Hsin KY, Gupta V, Kitano H, Sakamoto M, Higuchi A, Miura N, Yura K, Mochizuki M, Ramakrishnan C, Thangakani AM, Velmurugan D, Gromiha MM, Nakane I, Uchida N, Hakariya H, Tan M, Nakamura HK, Suzuki SD, Ito T, Kawatani M, Kudoh K, Takashina S, Yamamoto KZ, Moriwaki Y, Oda K, Kobayashi D, Okuno T, Minami S, Chikenji G, Prathipati P, Nagao C, Mohsen A, Ito M, Mizuguchi K, Honma T, Ishida T, Hirokawa T, Akiyama Y, Sekijima M. Sci Rep 9 19585 (2019)
  12. Effect of metformin on nonalcoholic fatty liver based on meta-analysis and network pharmacology. Huang Y, Wang X, Yan C, Li C, Zhang L, Zhang L, Liang E, Liu T, Mao J. Medicine (Baltimore) 101 e31437 (2022)
  13. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. Uversky VN. Intrinsically Disord Proteins 2 e970499 (2014)
  14. A new series of benzoxazole-based SIRT1 modulators for targeted therapy of non-small-cell lung cancer. Sever B, Akalın Çiftçi G, Altıntop MD. Arch Pharm (Weinheim) 354 e2000235 (2021)
  15. SIRT1 mediates the inhibitory effect of Dapagliflozin on EndMT by inhibiting the acetylation of endothelium Notch1. Wang W, Li Y, Zhang Y, Ye T, Wang K, Li S, Zhang Y. Cardiovasc Diabetol 22 331 (2023)


Reviews citing this publication (27)

  1. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Dai H, Sinclair DA, Ellis JL, Steegborn C. Pharmacol Ther 188 140-154 (2018)
  2. Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Singh V, Singh V, Ubaid S. Inflammation 43 1589-1598 (2020)
  3. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  4. The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases. Jiao F, Gong Z. Oxid Med Cell Longev 2020 6782872 (2020)
  5. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Antioxidants (Basel) 7 E63 (2018)
  6. Antioxidants of Edible Mushrooms. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L. Molecules 20 19489-19525 (2015)
  7. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Manjula R, Anuja K, Alcain FJ. Front Pharmacol 11 585821 (2020)
  8. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Fujita Y, Yamashita T. Front Neurosci 12 778 (2018)
  9. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  10. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Yang L, Ma X, He Y, Yuan C, Chen Q, Li G, Chen X. Sci China Life Sci 60 249-256 (2017)
  11. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. Front Immunol 12 779177 (2021)
  12. Chemical and structural biology of protein lysine deacetylases. Yoshida M, Kudo N, Kosono S, Ito A. Proc Jpn Acad Ser B Phys Biol Sci 93 297-321 (2017)
  13. Human Sirtuin Regulators: The "Success" Stories. Curry AM, White DS, Donu D, Cen Y. Front Physiol 12 752117 (2021)
  14. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schürer SC. Front Pharmacol 9 1201 (2018)
  15. SIRT1 Promotes Neuronal Fortification in Neurodegenerative Diseases through Attenuation of Pathological Hallmarks and Enhancement of Cellular Lifespan. Mishra P, Mittal AK, Kalonia H, Madan S, Ghosh S, Sinha JK, Rajput SK. Curr Neuropharmacol 19 1019-1037 (2021)
  16. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J Struct Biol 196 534-542 (2016)
  17. The Pleiotropic Function of Human Sirtuins as Modulators of Metabolic Pathways and Viral Infections. Alqarni MH, Foudah AI, Muharram MM, Labrou NE. Cells 10 460 (2021)
  18. Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Kang H, Kim B. Foods 12 925 (2023)
  19. Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Mol Med Rep 27 35 (2023)
  20. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. Fiorentino F, Castiello C, Mai A, Rotili D. J Med Chem 65 9580-9606 (2022)
  21. Sirtuin 1: A Dilemma in Transplantation. Assadiasl S, Mooney N, Mohebbi B, Fatahi Y, Soleimanifar N. J Transplant 2020 9012980 (2020)
  22. Virtual Screening in the Identification of Sirtuins' Activity Modulators. Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Molecules 27 5641 (2022)
  23. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Zhou Y, Zhang F, Ding J. Immune Netw 22 e21 (2022)
  24. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes? Grzeczka A, Kordowitzki P. Nutrients 14 5101 (2022)
  25. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Cells 12 852 (2023)
  26. SIRT1, a novel transcriptional downstream target of CD44, linking its deacetylase activity to tumor cell invasion/metastasis. Ahmad SMS, Al-Mansoob M, Ouhtit A. Front Oncol 12 1038121 (2022)
  27. Challenges in natural product-based drug discovery assisted with in silico-based methods. Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. RSC Adv 13 31578-31594 (2023)

Articles citing this publication (43)

  1. SIRT1 is downregulated by autophagy in senescence and ageing. Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, Amaravadi R, Garcia BA, Adams PD, Ott M, Tong W, Johansen T, Dou Z, Berger SL. Nat Cell Biol 22 1170-1179 (2020)
  2. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Nat Commun 6 6263 (2015)
  3. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM. Genes Dev 29 1316-1325 (2015)
  4. Identification of a cellularly active SIRT6 allosteric activator. Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J. Nat Chem Biol 14 1118-1126 (2018)
  5. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Teng YB, Jing H, Aramsangtienchai P, He B, Khan S, Hu J, Lin H, Hao Q. Sci Rep 5 8529 (2015)
  6. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Hwang JS, Choi HS, Ham SA, Yoo T, Lee WJ, Paek KS, Seo HG. Sci Rep 5 15971 (2015)
  7. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Madsen AS, Andersen C, Daoud M, Anderson KA, Laursen JS, Chakladar S, Huynh FK, Colaço AR, Backos DS, Fristrup P, Hirschey MD, Olsen CA. J Biol Chem 291 7128-7141 (2016)
  8. Decreased Expression of miR-138-5p by lncRNA H19 in Cervical Cancer Promotes Tumor Proliferation. Ou L, Wang D, Zhang H, Yu Q, Hua F. Oncol Res 26 401-410 (2018)
  9. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Miller R, Wentzel AR, Richards GA. Med Hypotheses 144 110044 (2020)
  10. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K, Reynolds CR, Schmidtkunz K, Jung M, Chapman KL, Steegborn C, Dexter DT, Sternberg MJ, Lam EW, Fuchter MJ. ChemMedChem 10 69-82 (2015)
  11. Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Giovannini L, Bianchi S. Nutrition 34 82-96 (2017)
  12. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. Kalous KS, Wynia-Smith SL, Olp MD, Smith BC. J Biol Chem 291 25398-25410 (2016)
  13. N-Acylethanolamines Bind to SIRT6. Rahnasto-Rilla M, Kokkola T, Jarho E, Lahtela-Kakkonen M, Moaddel R. Chembiochem 17 77-81 (2016)
  14. The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Kim J, Kang YG, Lee JY, Choi DH, Cho YU, Shin JM, Park JS, Lee JH, Kim WG, Seo DB, Lee TR, Miyamoto Y, No KT. Mol Cell Endocrinol 412 216-225 (2015)
  15. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation. Wen LL, Lin CY, Chou HC, Chang CC, Lo HY, Juan SH. PLoS One 11 e0155190 (2016)
  16. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y, Luan S, Krasnow SM, Thomas LL, Koharudin LMI, Benos PV, Marks DL, Gronenborn AM, Thomas G. Mol Cell 72 985-998.e7 (2018)
  17. From the Cover: l-Carnitine via PPARγ- and Sirt1-Dependent Mechanisms Attenuates Epithelial-Mesenchymal Transition and Renal Fibrosis Caused by Perfluorooctanesulfonate. Chou HC, Wen LL, Chang CC, Lin CY, Jin L, Juan SH. Toxicol Sci 160 217-229 (2017)
  18. Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. García-Vizcaíno EM, Liarte S, Alonso-Romero JL, Nicolás FJ. Cell Commun Signal 15 50 (2017)
  19. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Kang H, Oka S, Lee DY, Park J, Aponte AM, Jung YS, Bitterman J, Zhai P, He Y, Kooshapur H, Ghirlando R, Tjandra N, Lee SB, Kim MK, Sadoshima J, Chung JH. Nat Commun 8 15560 (2017)
  20. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5'UTR RNA. Han Y, Wang L, Cui J, Song Y, Luo Z, Chen J, Xiong Y, Zhang Q, Liu F, Ho W, Liu Y, Wu K, Wu J. J Cell Sci 129 4534-4547 (2016)
  21. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, Hayashi JM, Cruz A, Shah S, Soveg FW, Gross JD, Krogan NJ, Jerome KR, Schilling B, Ott M, Verdin E. PLoS Pathog 18 e1010811 (2022)
  22. Introducing ADNP and SIRT1 as new partners regulating microtubules and histone methylation. Hadar A, Kapitansky O, Ganaiem M, Sragovich S, Lobyntseva A, Giladi E, Yeheskel A, Avitan A, Vatine GD, Gurwitz D, Ivashko-Pachima Y, Gozes I. Mol Psychiatry 26 6550-6561 (2021)
  23. Identification of Bichalcones as Sirtuin Inhibitors by Virtual Screening and In Vitro Testing. Karaman B, Alhalabi Z, Swyter S, Mihigo SO, Andrae-Marobela K, Jung M, Sippl W, Ntie-Kang F. Molecules 23 E416 (2018)
  24. Inhibition of mTOR/S6K1/4E-BP1 Signaling by Nutraceutical SIRT1 Modulators. Bianchi S, Giovannini L. Nutr Cancer 70 490-501 (2018)
  25. Probing the mechanism of SIRT1 activation by a 1,4-dihydropyridine. Manna D, Bhuyan R, Ghosh R. J Mol Model 24 340 (2018)
  26. CSAG2 is a cancer-specific activator of SIRT1. Yang X, Potts PR. EMBO Rep 21 e50912 (2020)
  27. Hsp90 Stabilizes SIRT1 Orthologs in Mammalian Cells and C. elegans. Nguyen MT, Somogyvári M, Sőti C. Int J Mol Sci 19 E3661 (2018)
  28. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance. Gertman O, Omer D, Hendler A, Stein D, Onn L, Khukhin Y, Portillo M, Zarivach R, Cohen HY, Toiber D, Aharoni A. Sci Rep 8 3538 (2018)
  29. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. PLoS One 13 e0193602 (2018)
  30. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Rajabi N, Hansen TN, Nielsen AL, Nguyen HT, Baek M, Bolding JE, Bahlke OØ, Petersen SEG, Bartling CRO, Strømgaard K, Olsen CA. Angew Chem Int Ed Engl 61 e202115805 (2022)
  31. The Histone Acetyltransferase MOF Regulates SIRT1 Expression to Suppress Renal Cell Carcinoma Progression. Guo R, Liang Y, Zou B, Li D, Wu Z, Xie F, Zhang X, Li X. Front Oncol 12 842967 (2022)
  32. Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. Pfister JA, Ma C, D'Mello SR. PLoS One 14 e0215208 (2019)
  33. Consensus QSAR modelling of SIRT1 activators using simplex representation of molecular structure. Chauhan S, Kumar A. SAR QSAR Environ Res 29 277-294 (2018)
  34. Molecular Cloning and Characterization of Sirtuin 1 and Its Potential Regulation of Lipid Metabolism and Antioxidant Response in Largemouth Bass (Micropterus salmoides). Huang Y, Wang S, Meng X, Chen N, Li S. Front Physiol 12 726877 (2021)
  35. Structural analysis of the inhibitory effects of polyphenols, (+)-hopeaphenol and (-)-isohopeaphenol, on human SIRT1. Loisruangsin A, Hikita K, Seto N, Niwa M, Takaya Y, Kaneda N. Biofactors 45 253-258 (2019)
  36. Discovery of 5-Benzylidene-2-phenyl-1,3-dioxane-4,6-diones as Highly Potent and Selective SIRT1 Inhibitors. Li C, Hu SS, Yang L, Wang M, Long JD, Wang B, Han H, Zhu H, Zhao S, Liu JG, Liu D, Liu H. ACS Med Chem Lett 12 397-403 (2021)
  37. Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution. Hendler A, Akiva E, Sandhu M, Goldberg D, Arbely E, Jackson CJ, Aharoni A. Mol Biol Evol 38 545-556 (2021)
  38. Transcriptional factor 3 binds to sirtuin 1 to activate the Wnt/β-catenin signaling in cervical cancer. Yu X, Li Z, Bai R, Tang F. Bioengineered 13 12516-12531 (2022)
  39. Typhae pollen polysaccharides protect hypoxia-induced PC12 cell injury via regulation of miR-34a/SIRT1. Wang S, Tang Q, Ge F, Guo Q. Int J Immunopathol Pharmacol 34 2058738420910005 (2020)
  40. Amelioration of high-fat diet (HFD) + CCl4 induced NASH/NAFLD in CF-1 mice by activation of SIRT-1 using cinnamoyl sulfonamide hydroxamate derivatives: in-silico molecular modelling and in-vivo prediction. Sodum N, Rao V, Cheruku SP, Kumar G, Sankhe R, Kishore A, Kumar N, Rao CM. 3 Biotech 12 147 (2022)
  41. Jamming up the "β-staple": regulation of SIRT1 activity by its C-terminal regulatory segment (CTR). Pumroy RA, Cingolani G. J Mol Biol 426 507-509 (2014)
  42. Prediction and confirmation of a switch-like region within the N-terminal domain of hSIRT1. Huynh AT, Nguyen TN, Villegas CA, Montemorso S, Strauss B, Pearson RA, Graham JG, Oribello J, Suresh R, Lustig B, Wang N. Biochem Biophys Rep 30 101275 (2022)
  43. The differing effects of a dual acting regulator on SIRT1. Hur Y, Huynh J, Leong E, Dosanjh R, Charvat AF, Vu MH, Alam Z, Lee YT, Cabreros CC, Carroll EC, Hura GL, Wang N. Front Mol Biosci 10 1260489 (2023)