4ig9 Citations

Structural and functional analysis of human SIRT1.

J Mol Biol 426 526-41 (2014)
Cited: 88 times
EuropePMC logo PMID: 24120939

Abstract

SIRT1 is a NAD(+)-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD(+)-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD(+)-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.

Reviews - 4ig9 mentioned but not cited (3)

  1. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. J Med Chem 65 8596-8685 (2022)
  2. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. 3 Biotech 13 29 (2023)
  3. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. Lambona C, Zwergel C, Valente S, Mai A. J Med Chem 67 1662-1689 (2024)

Articles - 4ig9 mentioned but not cited (15)



Reviews citing this publication (27)

  1. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Dai H, Sinclair DA, Ellis JL, Steegborn C. Pharmacol Ther 188 140-154 (2018)
  2. Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Singh V, Singh V, Ubaid S. Inflammation 43 1589-1598 (2020)
  3. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  4. The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases. Jiao F, Gong Z. Oxid Med Cell Longev 2020 6782872 (2020)
  5. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Antioxidants (Basel) 7 E63 (2018)
  6. Antioxidants of Edible Mushrooms. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L. Molecules 20 19489-19525 (2015)
  7. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Manjula R, Anuja K, Alcain FJ. Front Pharmacol 11 585821 (2020)
  8. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Fujita Y, Yamashita T. Front Neurosci 12 778 (2018)
  9. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  10. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Yang L, Ma X, He Y, Yuan C, Chen Q, Li G, Chen X. Sci China Life Sci 60 249-256 (2017)
  11. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. Front Immunol 12 779177 (2021)
  12. Chemical and structural biology of protein lysine deacetylases. Yoshida M, Kudo N, Kosono S, Ito A. Proc Jpn Acad Ser B Phys Biol Sci 93 297-321 (2017)
  13. Human Sirtuin Regulators: The "Success" Stories. Curry AM, White DS, Donu D, Cen Y. Front Physiol 12 752117 (2021)
  14. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schürer SC. Front Pharmacol 9 1201 (2018)
  15. SIRT1 Promotes Neuronal Fortification in Neurodegenerative Diseases through Attenuation of Pathological Hallmarks and Enhancement of Cellular Lifespan. Mishra P, Mittal AK, Kalonia H, Madan S, Ghosh S, Sinha JK, Rajput SK. Curr Neuropharmacol 19 1019-1037 (2021)
  16. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J Struct Biol 196 534-542 (2016)
  17. The Pleiotropic Function of Human Sirtuins as Modulators of Metabolic Pathways and Viral Infections. Alqarni MH, Foudah AI, Muharram MM, Labrou NE. Cells 10 460 (2021)
  18. Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Kang H, Kim B. Foods 12 925 (2023)
  19. Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Mol Med Rep 27 35 (2023)
  20. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. Fiorentino F, Castiello C, Mai A, Rotili D. J Med Chem 65 9580-9606 (2022)
  21. Sirtuin 1: A Dilemma in Transplantation. Assadiasl S, Mooney N, Mohebbi B, Fatahi Y, Soleimanifar N. J Transplant 2020 9012980 (2020)
  22. Virtual Screening in the Identification of Sirtuins' Activity Modulators. Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Molecules 27 5641 (2022)
  23. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Zhou Y, Zhang F, Ding J. Immune Netw 22 e21 (2022)
  24. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes? Grzeczka A, Kordowitzki P. Nutrients 14 5101 (2022)
  25. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Cells 12 852 (2023)
  26. SIRT1, a novel transcriptional downstream target of CD44, linking its deacetylase activity to tumor cell invasion/metastasis. Ahmad SMS, Al-Mansoob M, Ouhtit A. Front Oncol 12 1038121 (2022)
  27. Challenges in natural product-based drug discovery assisted with in silico-based methods. Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. RSC Adv 13 31578-31594 (2023)

Articles citing this publication (43)