4lew Citations

Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization.

Immunity 39 1019-31 (2013)
Related entries: 4lev, 4ley, 4lez

Cited: 291 times
EuropePMC logo PMID: 24332030

Abstract

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.

Articles - 4lew mentioned but not cited (3)

  1. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P. Immunity 39 1019-1031 (2013)
  2. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Millman A, Melamed S, Amitai G, Sorek R. Nat Microbiol 5 1608-1615 (2020)
  3. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cao D, Han X, Fan X, Xu RM, Zhang X. Cell Res 30 1088-1097 (2020)


Reviews citing this publication (130)

  1. Innate immune sensing and signaling of cytosolic nucleic acids. Wu J, Chen ZJ. Annu. Rev. Immunol. 32 461-488 (2014)
  2. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Cai X, Chiu YH, Chen ZJ. Mol. Cell 54 289-296 (2014)
  3. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Chen Q, Sun L, Chen ZJ. Nat. Immunol. 17 1142-1149 (2016)
  4. Discriminating self from non-self in nucleic acid sensing. Schlee M, Hartmann G. Nat. Rev. Immunol. 16 566-580 (2016)
  5. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Hornung V, Hartmann R, Ablasser A, Hopfner KP. Nat. Rev. Immunol. 14 521-528 (2014)
  6. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Ablasser A, Hur S. Nat Immunol 21 17-29 (2020)
  7. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Decout A, Katz JD, Venkatraman S, Ablasser A. Nat Rev Immunol 21 548-569 (2021)
  8. Structural biology of innate immunity. Yin Q, Fu TM, Li J, Wu H. Annu. Rev. Immunol. 33 393-416 (2015)
  9. Activation and regulation of DNA-driven immune responses. Paludan SR. Microbiol. Mol. Biol. Rev. 79 225-241 (2015)
  10. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Kwon J, Bakhoum SF. Cancer Discov 10 26-39 (2020)
  11. Evasion of host immune defenses by human papillomavirus. Westrich JA, Warren CJ, Pyeon D. Virus Res. 231 21-33 (2017)
  12. Novel Insights Into Immune Systems of Bats. Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Front Immunol 11 26 (2020)
  13. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. Tao J, Zhou X, Jiang Z. IUBMB Life 68 858-870 (2016)
  14. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Kato K, Omura H, Ishitani R, Nureki O. Annu. Rev. Biochem. 86 541-566 (2017)
  15. Cytosolic nucleic acid sensors and innate immune regulation. Ori D, Murase M, Kawai T. Int. Rev. Immunol. 36 74-88 (2017)
  16. Evolutionary Origins of cGAS-STING Signaling. Margolis SR, Wilson SC, Vance RE. Trends Immunol. 38 733-743 (2017)
  17. Toll-Like Receptors: General Molecular and Structural Biology. Behzadi P, García-Perdomo HA, Karpiński TM. J Immunol Res 2021 9914854 (2021)
  18. Transcription of inflammatory genes: long noncoding RNA and beyond. Carpenter S, Fitzgerald KA. J. Interferon Cytokine Res. 35 79-88 (2015)
  19. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. Pharmacol. Rev. 67 462-504 (2015)
  20. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Shu C, Li X, Li P. Cytokine Growth Factor Rev. 25 641-648 (2014)
  21. DNA sensor cGAS-mediated immune recognition. Xia P, Wang S, Gao P, Gao G, Fan Z. Protein Cell 7 777-791 (2016)
  22. Molecular and Structural Basis of DNA Sensors in Antiviral Innate Immunity. Zahid A, Ismail H, Li B, Jin T. Front Immunol 11 613039 (2020)
  23. Molecular mechanisms and cellular functions of cGAS-STING signalling. Hopfner KP, Hornung V. Nat Rev Mol Cell Biol 21 501-521 (2020)
  24. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Yoon SH, Waters CM. Curr Opin Microbiol 60 96-103 (2021)
  25. The role of cGAS in innate immunity and beyond. Ablasser A, Gulen MF. J. Mol. Med. 94 1085-1093 (2016)
  26. Cellular Innate Immunity: An Old Game with New Players. Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. J Innate Immun 9 111-125 (2017)
  27. Discrimination Between Self and Non-Self-Nucleic Acids by the Innate Immune System. Kawasaki T, Kawai T. Int Rev Cell Mol Biol 344 1-30 (2019)
  28. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Errett JS, Gale M. Virol Sin 30 163-173 (2015)
  29. Regulation and inhibition of the DNA sensor cGAS. Hertzog J, Rehwinkel J. EMBO Rep 21 e51345 (2020)
  30. Role of Post-Translational Modifications of cGAS in Innate Immunity. Wu Y, Li S. Int J Mol Sci 21 E7842 (2020)
  31. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Pilger D, Seymour LW, Jackson SP. Genes Dev 35 602-618 (2021)
  32. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Kumar V. Front Immunol 11 624597 (2020)
  33. A STING to inflammation and autoimmunity. Kumar V. J Leukoc Biol 106 171-185 (2019)
  34. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Yu L, Liu P. Signal Transduct Target Ther 6 170 (2021)
  35. Immune sensing of nucleic acids in inflammatory skin diseases. Demaria O, Di Domizio J, Gilliet M. Semin Immunopathol 36 519-529 (2014)
  36. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Johnson MB, Chandler M, Afonin KA. Adv Drug Deliv Rev 173 427-438 (2021)
  37. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Hong Z, Mei J, Guo H, Zhu J, Wang C. J Mol Cell Biol 14 mjac005 (2022)
  38. Sensing of dangerous DNA. Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Mech. Ageing Dev. 165 33-46 (2017)
  39. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Durante M, Formenti SC. Front Oncol 8 192 (2018)
  40. Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Dhanwani R, Takahashi M, Sharma S. Curr. Opin. Immunol. 50 82-87 (2018)
  41. DNA Sensing in the Innate Immune Response. Briard B, Place DE, Kanneganti TD. Physiology (Bethesda) 35 112-124 (2020)
  42. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Tan X, Sun L, Chen J, Chen ZJ. Annu. Rev. Microbiol. 72 447-478 (2018)
  43. Nuclear cGAS: guard or prisoner? de Oliveira Mann CC, Hopfner KP. EMBO J 40 e108293 (2021)
  44. Nuclear cGAS: sequestration and beyond. Bai J, Liu F. Protein Cell 13 90-101 (2022)
  45. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Okude H, Ori D, Kawai T. Front Immunol 11 625833 (2020)
  46. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Xu D, Tian Y, Xia Q, Ke B. Front Immunol 12 682736 (2021)
  47. The role of cGAS-STING signalling in liver diseases. Chen R, Du J, Zhu H, Ling Q. JHEP Rep 3 100324 (2021)
  48. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. J Neuroinflammation 19 242 (2022)
  49. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Xia S, Chen Z, Shen C, Fu TM. Protein Cell 12 680-694 (2021)
  50. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Front Pharmacol 12 653940 (2021)
  51. Regulation and function of the cGAS-MITA/STING axis in health and disease. Zhang ZD, Zhong B. Cell Insight 1 100001 (2022)
  52. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Wan D, Jiang W, Hao J. Front Immunol 11 615 (2020)
  53. Skin Viral Infections: Host Antiviral Innate Immunity and Viral Immune Evasion. Lei V, Petty AJ, Atwater AR, Wolfe SA, MacLeod AS. Front Immunol 11 593901 (2020)
  54. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Wang H, Li W, Zheng SJ. Front Immunol 13 901913 (2022)
  55. Conserved strategies for pathogen evasion of cGAS-STING immunity. Eaglesham JB, Kranzusch PJ. Curr Opin Immunol 66 27-34 (2020)
  56. Crosstalk between cGAS-STING signaling and cell death. Murthy AMV, Robinson N, Kumar S. Cell Death Differ 27 2989-3003 (2020)
  57. Human Papillomaviruses Target the DNA Damage Repair and Innate Immune Response Pathways to Allow for Persistent Infection. Gusho E, Laimins L. Viruses 13 1390 (2021)
  58. Old dogs, new trick: classic cancer therapies activate cGAS. Yum S, Li M, Chen ZJ. Cell Res 30 639-648 (2020)
  59. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Wang Z, Chen N, Li Z, Xu G, Zhan X, Tang J, Xiao X, Bai Z. Front Cell Dev Biol 9 717610 (2021)
  60. The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. Andrade B, Jara-Gutiérrez C, Paz-Araos M, Vázquez MC, Díaz P, Murgas P. Int J Mol Sci 23 15182 (2022)
  61. The cGAS-STING Pathway: A Promising Immunotherapy Target. Ou L, Zhang A, Cheng Y, Chen Y. Front Immunol 12 795048 (2021)
  62. The role of STING signaling in central nervous system infection and neuroinflammatory disease. Fritsch LE, Kelly C, Pickrell AM. WIREs Mech Dis 15 e1597 (2023)
  63. [Innate immune DNA sensing pathways]. Abe T. Uirusu 64 83-94 (2014)
  64. [Mitochondrial DNA and cGAS-STING Innate Immune Signaling Pathway: Latest Research Progress]. Li YX, Cui SF, Meng W, Hu HY, Wang C. Sichuan Da Xue Xue Bao Yi Xue Ban 52 387-395 (2021)
  65. Abnormal phase separation of biomacromolecules in human diseases. Zhang S, Pei G, Li B, Li P, Lin Y. Acta Biochim Biophys Sin (Shanghai) 55 1133-1152 (2023)
  66. Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies. Van Giesen KJD, Thompson MJ, Meng Q, Lovelock SL. JACS Au 3 13-24 (2023)
  67. Biomaterial-enabled therapeutic modulation of cGAS-STING signaling for enhancing antitumor immunity. Liu Y, Fei Y, Wang X, Yang B, Li M, Luo Z. Mol Ther 31 1938-1959 (2023)
  68. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Mol Cancer 19 133 (2020)
  69. Control of innate immunity by the cGAS-STING pathway. Mosallanejad K, Kagan JC. Immunol Cell Biol 100 409-423 (2022)
  70. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Zool Res 44 183-218 (2023)
  71. Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract. Roan NR, Jakobsen MR. Curr HIV/AIDS Rep 13 53-63 (2016)
  72. Immune Sensing Mechanisms that Discriminate Self from Altered Self and Foreign Nucleic Acids. Bartok E, Hartmann G. Immunity 53 54-77 (2020)
  73. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Medchemcomm 10 1999-2023 (2019)
  74. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Xie B, Luo A. Front Cell Dev Biol 10 903781 (2022)
  75. Regulation and Consequences of cGAS Activation by Self-DNA. Zierhut C, Funabiki H. Trends Cell Biol 30 594-605 (2020)
  76. Regulation of cGAS-STING Pathway - Implications for Systemic Lupus Erythematosus. Hagiwara AM, Moore RE, Wallace DJ, Ishimori M, Jefferies CA. Rheumatol Immunol Res 2 173-184 (2021)
  77. STING Signaling and Sterile Inflammation. Couillin I, Riteau N. Front Immunol 12 753789 (2021)
  78. Targeting the loss of cGAS/STING signaling in cancer. Sasaki N, Homme M, Kitajima S. Cancer Sci 114 3806-3815 (2023)
  79. The cGAS-STING pathway: more than fighting against viruses and cancer. Bao T, Liu J, Leng J, Cai L. Cell Biosci 11 209 (2021)
  80. The interactions between cGAS-STING pathway and pathogens. Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, Zhang L, Zhou F. Signal Transduct Target Ther 5 91 (2020)
  81. The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. Li J, Bakhoum SF. J Mol Cell Biol 14 mjac019 (2022)
  82. Therapeutic Development by Targeting the cGAS-STING Pathway in Autoimmune Disease and Cancer. Li Q, Tian S, Liang J, Fan J, Lai J, Chen Q. Front Pharmacol 12 779425 (2021)
  83. Viral-mediated activation and inhibition of programmed cell death. Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. PLoS Pathog 18 e1010718 (2022)
  84. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Kranzusch PJ. Curr Opin Struct Biol 59 178-187 (2019)
  85. Advances in cGAS-STING Signaling Pathway and Diseases. Yang Y, Huang Y, Zeng Z. Front Cell Dev Biol 10 800393 (2022)
  86. Allosteric crosstalk in modular proteins: Function fine-tuning and drug design. Abhishek S, Deeksha W, Nethravathi KR, Davari MD, Rajakumara E. Comput Struct Biotechnol J 21 5003-5015 (2023)
  87. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY. Arch Pharm Res 46 500-534 (2023)
  88. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Garland KM, Sheehy TL, Wilson JT. Chem Rev 122 5977-6039 (2022)
  89. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Front Immunol 12 774807 (2021)
  90. Cyclic GMP-AMP Synthase in Cancer Prevention. Chen W, Lee GE, Jeung D, Byun J, Juan W, Cho YY. J Cancer Prev 28 143-196 (2023)
  91. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Wheeler OPG, Unterholzner L. Essays Biochem 67 905-918 (2023)
  92. Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Cadena C, Hur S. Mol. Cell 76 243-254 (2019)
  93. Function and regulation of cGAS-STING signaling in infectious diseases. Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Front Immunol 14 1130423 (2023)
  94. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Zheng W, Chen N, Meurens F, Zheng W, Zhu J. Int J Mol Sci 24 14738 (2023)
  95. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, Lai S, Sun X, Geng Y, Zhu L. Front Immunol 13 931885 (2022)
  96. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Howard TR, Cristea IM. Biomolecules 10 (2020)
  97. Mechanisms of Photosensitivity in Autoimmunity. Estadt SN, Maz MP, Musai J, Kahlenberg JM. J Invest Dermatol 142 849-856 (2022)
  98. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Cattolico C, Bailey P, Barry ST. Front Cell Dev Biol 10 816517 (2022)
  99. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Kim J, Kim HS, Chung JH. Exp Mol Med 55 510-519 (2023)
  100. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Biomark Res 12 2 (2024)
  101. Phase separation in cGAS-STING signaling. Li Q, Gao P. Front Med 17 855-866 (2023)
  102. Polyvalent design in the cGAS-STING pathway. Bennett ZT, Li S, Sumer BD, Gao J. Semin Immunol 56 101580 (2021)
  103. Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Yu Y, Liu J, Liu C, Liu R, Liu L, Yu Z, Zhuang J, Sun C. Cells 11 3043 (2022)
  104. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Front Microbiol 10 2647 (2019)
  105. Progress in understanding the role of cGAS-STING pathway associated with programmed cell death in intervertebral disc degeneration. Wang Z, Hu X, Cui P, Kong C, Chen X, Wang W, Lu S. Cell Death Discov 9 377 (2023)
  106. Regulation of cGAS Activity and Downstream Signaling. Joshi B, Joshi JC, Mehta D. Cells 11 2812 (2022)
  107. Regulation of cGAS and STING signaling during inflammation and infection. Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. J Biol Chem 299 104866 (2023)
  108. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Chowdhury A, Witte S, Aich A. Front Cell Dev Biol 10 796066 (2022)
  109. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Int J Mol Sci 22 (2021)
  110. STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation? Smith JA. Front Immunol 11 611347 (2020)
  111. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Ma XY, Chen MM, Meng LH. Acta Pharmacol Sin (2024)
  112. Significance of the cGAS-STING Pathway in Health and Disease. Zhou J, Zhuang Z, Li J, Feng Z. Int J Mol Sci 24 13316 (2023)
  113. Structural studies of functional nucleosome complexes with transacting factors. Kurumizaka H. Proc Jpn Acad Ser B Phys Biol Sci 98 1-14 (2022)
  114. Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Lo Cigno I, Calati F, Albertini S, Gariglio M. Pathogens 9 (2020)
  115. The Activation of cGAS-STING in Acute Kidney Injury. Sun C, Shi H, Zhao X, Chang YL, Wang X, Zhu S, Sun S. J Inflamm Res 16 4461-4470 (2023)
  116. The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders. Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, Dou X, Yu B. Inflammation (2023)
  117. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Gao L, Zheng S, Wang Y. Front Microbiol 12 771292 (2021)
  118. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Majzoub K, Wrensch F, Baumert TF. Viruses 11 (2019)
  119. The Regulation of cGAS. Xiong M, Wang S, Wang YY, Ran Y. Virol Sin 33 117-124 (2018)
  120. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Liu N, Pang X, Zhang H, Ji P. Front Immunol 12 814709 (2021)
  121. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, Liu E, Gao X, Du M, Wang Q. Acta Pharm Sin B 12 50-75 (2022)
  122. The emerging roles of TLR and cGAS signaling in tumorigenesis and progression of ovarian cancer. Zhang Z, Zhao H, Chu C, Fu X, Liu Y, Wang L, Wei R, Xu K, Li L, Li X. Front Pharmacol 13 1072670 (2022)
  123. The mitophagy pathway and its implications in human diseases. Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. Signal Transduct Target Ther 8 304 (2023)
  124. The multifaceted functions of cGAS. Liu H, Wang F, Cao Y, Dang Y, Ge B. J Mol Cell Biol 14 mjac031 (2022)
  125. Updated roles of cGAS-STING signaling in autoimmune diseases. Liu Y, Pu F. Front Immunol 14 1254915 (2023)
  126. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Patel DJ, Yu Y, Xie W. Nat Struct Mol Biol 30 245-260 (2023)
  127. cGAS-STING pathway in ischemia-reperfusion injury: a potential target to improve transplantation outcomes. Chen Z, Liu Y, Lin Z, Huang W. Front Immunol 14 1231057 (2023)
  128. cGAS-STING pathway in oncogenesis and cancer therapeutics. Hoong BYD, Gan YH, Liu H, Chen ES. Oncotarget 11 2930-2955 (2020)
  129. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Yang Y, Wang L, Peugnet-González I, Parada-Venegas D, Dijkstra G, Faber KN. Front Immunol 14 1239142 (2023)
  130. cGAS/STING: novel perspectives of the classic pathway. Gao M, He Y, Tang H, Chen X, Liu S, Tao Y. Mol Biomed 1 7 (2020)

Articles citing this publication (158)

  1. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Nat. Med. 22 146-153 (2016)
  2. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ. Proc. Natl. Acad. Sci. U.S.A. 112 E5699-705 (2015)
  3. cGAS surveillance of micronuclei links genome instability to innate immunity. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, Osborn RT, Wheeler AP, Nowotny M, Gilbert N, Chandra T, Reijns MAM, Jackson AP. Nature 548 461-465 (2017)
  4. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ. Cell Rep 6 421-430 (2014)
  5. Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, He K, Wang H, Wang N, Sang Z, Li T, Han QY, Mao J, Diao X, Song N, Chen Y, Li WH, Man JH, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. Cell 176 1447-1460.e14 (2019)
  6. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, Hand T, Ma S, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu F. Cell Host Microbe 18 333-344 (2015)
  7. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S, Gramberg T, Andreeva L, Hopfner KP, Mertens C, Zillinger T, Jin T, Xiao TS, Bartok E, Coch C, Ackermann D, Hornung V, Ludwig J, Barchet W, Hartmann G, Schlee M. Nat. Immunol. 16 1025-1033 (2015)
  8. Structural mechanism of cGAS inhibition by the nucleosome. Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K, Hovius R, Kempf G, Weiss J, Kozicka Z, Guey B, Melenec P, Fierz B, Thomä NH, Ablasser A. Nature 587 668-672 (2020)
  9. Structural basis for the inhibition of cGAS by nucleosomes. Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H. Science 370 455-458 (2020)
  10. Structural basis of nucleosome-dependent cGAS inhibition. Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q. Science 370 450-454 (2020)
  11. cGAS is essential for the antitumor effect of immune checkpoint blockade. Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ. Proc. Natl. Acad. Sci. U.S.A. 114 1637-1642 (2017)
  12. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, Lammens K, Hornung V, Hopfner KP. Nature 587 678-682 (2020)
  13. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Kranzusch PJ, Lee ASY, Wilson SC, Solovykh MS, Vance RE, Berger JM, Doudna JA. Cell 158 1011-1021 (2014)
  14. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Jønsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sørensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR. Nat Commun 8 14391 (2017)
  15. Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response. Li T, Cheng H, Yuan H, Xu Q, Shu C, Zhang Y, Xu P, Tan J, Rui Y, Li P, Tan X. Sci Rep 6 19049 (2016)
  16. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. J. Immunol. 194 4089-4093 (2015)
  17. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ. Science 371 eabc5386 (2021)
  18. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM. Nucleic Acids Res. 42 8243-8257 (2014)
  19. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape. Hancks DC, Hartley MK, Hagan C, Clark NL, Elde NC. PLoS Genet. 11 e1005203 (2015)
  20. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. Mol Cell 81 739-755.e7 (2021)
  21. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, Maiser A, Gaidt M, Leonhardt H, Hornung V, Hopfner KP. Nature 549 394-398 (2017)
  22. Human DNA-PK activates a STING-independent DNA sensing pathway. Burleigh K, Maltbaek JH, Cambier S, Green R, Gale M, James RC, Stetson DB. Sci Immunol 5 (2020)
  23. Identification of cGAS as an innate immune sensor of extracellular bacterium Pseudomonas aeruginosa. Zhou CM, Wang B, Wu Q, Lin P, Qin SG, Pu QQ, Yu XJ, Wu M. iScience 24 101928 (2021)
  24. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. Wang Q, Huang L, Hong Z, Lv Z, Mao Z, Tang Y, Kong X, Li S, Cui Y, Liu H, Zhang L, Zhang X, Jiang L, Wang C, Zhou Q. PLoS Pathog. 13 e1006264 (2017)
  25. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Bai J, Liu F. Diabetes 68 1099-1108 (2019)
  26. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Weinreb JT, Ghazale N, Pradhan K, Gupta V, Potts KS, Tricomi B, Daniels NJ, Padgett RA, De Oliveira S, Verma A, Bowman TV. Dev Cell 56 627-640.e5 (2021)
  27. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. Mol Cell 77 709-722.e7 (2020)
  28. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Proc. Natl. Acad. Sci. U.S.A. 113 E3403-12 (2016)
  29. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H, Jung JU. Nat Commun 9 613 (2018)
  30. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Du M, Chen ZJ. Science 361 704-709 (2018)
  31. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Zhang Q, Tang Z, An R, Ye L, Zhong B. Cell Res 30 914-927 (2020)
  32. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Bose D, Su Y, Marcus A, Raulet DH, Hammond MC. Cell Chem Biol 23 1539-1549 (2016)
  33. Hepatitis C Virus NS4B Can Suppress STING Accumulation To Evade Innate Immune Responses. Yi G, Wen Y, Shu C, Han Q, Konan KV, Li P, Kao CC. J. Virol. 90 254-265 (2016)
  34. Intracellular immunity: finding the enemy within--how cells recognize and respond to intracellular pathogens. Tam JC, Jacques DA. J. Leukoc. Biol. 96 233-244 (2014)
  35. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Dai P, Wang W, Yang N, Serna-Tamayo C, Ricca JM, Zamarin D, Shuman S, Merghoub T, Wolchok JD, Deng L. Sci Immunol 2 (2017)
  36. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Shi H, Wu J, Chen ZJ, Chen C. Proc. Natl. Acad. Sci. U.S.A. 112 8947-8952 (2015)
  37. OASes and STING: adaptive evolution in concert. Mozzi A, Pontremoli C, Forni D, Clerici M, Pozzoli U, Bresolin N, Cagliani R, Sironi M. Genome Biol Evol 7 1016-1032 (2015)
  38. SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing. Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, Wang R, Wang J, Qu B, Shen N, Guo Q, Liu X, Wang C. PLoS Pathog. 13 e1006156 (2017)
  39. Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. Kato K, Ishii R, Hirano S, Ishitani R, Nureki O. Structure 23 843-850 (2015)
  40. TREX1 - Apex predator of cytosolic DNA metabolism. Simpson SR, Hemphill WO, Hudson T, Perrino FW. DNA Repair (Amst) 94 102894 (2020)
  41. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Ma R, Ji T, Chen D, Dong W, Zhang H, Yin X, Ma J, Liang X, Zhang Y, Shen G, Qin X, Huang B. Oncoimmunology 5 e1118599 (2016)
  42. cGAS is activated by DNA in a length-dependent manner. Luecke S, Holleufer A, Christensen MH, Jønsson KL, Boni GA, Sørensen LK, Johannsen M, Jakobsen MR, Hartmann R, Paludan SR. EMBO Rep. 18 1707-1715 (2017)
  43. Expression of Cyclic GMP-AMP Synthase in Patients With Systemic Lupus Erythematosus. An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, Woodward JJ, Elkon KB. 69 800-807 (2017)
  44. Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity. Huang J, You H, Su C, Li Y, Chen S, Zheng C. J. Virol. 92 (2018)
  45. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway. He J, Hao R, Liu D, Liu X, Wu S, Guo S, Wang Y, Tien P, Guo D. J. Gen. Virol. 97 3368-3378 (2016)
  46. Recruitment of DNA to tumor-derived microvesicles. Clancy JW, Sheehan CS, Boomgarden AC, D'Souza-Schorey C. Cell Rep 38 110443 (2022)
  47. Ring finger protein 166 potentiates RNA virus-induced interferon-β production via enhancing the ubiquitination of TRAF3 and TRAF6. Chen HW, Yang YK, Xu H, Yang WW, Zhai ZH, Chen DY. Sci Rep 5 14770 (2015)
  48. Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ. Cell 174 300-311.e11 (2018)
  49. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN. Oncogene 37 2037-2051 (2018)
  50. cGAS dimerization entangles DNA recognition. Kranzusch PJ, Vance RE. Immunity 39 992-994 (2013)
  51. G3BP1 promotes DNA binding and activation of cGAS. Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, Xing JQ, Zhao M, Huang YJ, Chen S, Wu SM, Wang X, Liu X, Pang X, Zhang ZY, Li T, Dai J, Dong F, Xia Q, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. Nat. Immunol. 20 18-28 (2019)
  52. Single amino acid change in STING leads to constitutive active signaling. Tang ED, Wang CY. PLoS ONE 10 e0120090 (2015)
  53. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, Jiang DW, Du YK, Li XD, Zhang GP, Yang GY, Chu BB. PLoS Pathog 16 e1008429 (2020)
  54. Nonspecific DNA Binding of cGAS N Terminus Promotes cGAS Activation. Tao J, Zhang XW, Jin J, Du XX, Lian T, Yang J, Zhou X, Jiang Z, Su XD. J. Immunol. 198 3627-3636 (2017)
  55. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Liao CY, Lei CQ, Shu HB. Cell Mol Immunol 18 2334-2343 (2021)
  56. Sublingual targeting of STING with 3'3'-cGAMP promotes systemic and mucosal immunity against anthrax toxins. Martin TL, Jee J, Kim E, Steiner HE, Cormet-Boyaka E, Boyaka PN. Vaccine 35 2511-2519 (2017)
  57. A TRAF3-NIK module differentially regulates DNA vs RNA pathways in innate immune signaling. Parvatiyar K, Pindado J, Dev A, Aliyari SR, Zaver SA, Gerami H, Chapon M, Ghaffari AA, Dhingra A, Cheng G. Nat Commun 9 2770 (2018)
  58. Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data. Chaton CT, Herr AB. Meth. Enzymol. 562 187-204 (2015)
  59. Interactome and Proteome Dynamics Uncover Immune Modulatory Associations of the Pathogen Sensing Factor cGAS. Lum KK, Song B, Federspiel JD, Diner BA, Howard T, Cristea IM. Cell Syst 7 627-642.e6 (2018)
  60. Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA Virus Infection to Limit Interferon Production. Ghosh A, Shao L, Sampath P, Zhao B, Patel NV, Zhu J, Behl B, Parise RA, Beumer JH, O'Sullivan RJ, DeLuca NA, Thorne SH, Rathinam VAK, Li P, Sarkar SN. Immunity 50 51-63.e5 (2019)
  61. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Jiang X, Li Y, Zhang N, Gao Y, Han L, Li S, Li J, Liu X, Gong Y, Xie C. Cell Biosci 11 74 (2021)
  62. Regulation of cGAS activity by RNA-modulated phase separation. Chen S, Rong M, Lv Y, Zhu D, Xiang Y. EMBO Rep 24 e51800 (2023)
  63. Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1. de Oliveira Mann CC, Kiefersauer R, Witte G, Hopfner KP. Sci Rep 6 27498 (2016)
  64. The molecular basis of tight nuclear tethering and inactivation of cGAS. Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, Lei Y, West AP, Liu WR, Li P. Nature 587 673-677 (2020)
  65. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HT, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. EMBO J 41 e109217 (2022)
  66. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, Chen YD, Fu YZ, Hu MM, Lei CQ, Luo WW, Li S, Shu HB. Nat Commun 9 3349 (2018)
  67. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression. Jiang X, Yu H, Teo CR, Tan GS, Goh SC, Patel P, Chua YK, Hameed NB, Bertoletti A, Patzel V. Mol. Ther. 24 1581-1591 (2016)
  68. Interaction between susceptibility loci in cGAS-STING pathway, MHC gene and HPV infection on the risk of cervical precancerous lesions in Chinese population. Xiao D, Huang W, Ou M, Guo C, Ye X, Liu Y, Wang M, Zhang B, Zhang N, Huang S, Zang J, Zhou Z, Wen Z, Zeng C, Wu C, Huang C, Wei X, Yang G, Jing C. Oncotarget 7 84228-84238 (2016)
  69. SPHK2-Generated S1P in CD11b+ Macrophages Blocks STING to Suppress the Inflammatory Function of Alveolar Macrophages. Joshi JC, Joshi B, Rochford I, Rayees S, Akhter MZ, Baweja S, Chava KR, Tauseef M, Abdelkarim H, Natarajan V, Gaponenko V, Mehta D. Cell Rep 30 4096-4109.e5 (2020)
  70. The N terminus of cGAS de-oligomerizes the cGAS:DNA complex and lifts the DNA size restriction of core-cGAS activity. Lee A, Park EB, Lee J, Choi BS, Kang SJ. FEBS Lett. 591 954-961 (2017)
  71. The Structural Basis of IRF-3 Activation upon Phosphorylation. Jing T, Zhao B, Xu P, Gao X, Chi L, Han H, Sankaran B, Li P. J Immunol 205 1886-1896 (2020)
  72. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Zhao B, Liu P, Fukumoto T, Nacarelli T, Fatkhutdinov N, Wu S, Lin J, Aird KM, Tang HY, Liu Q, Speicher DW, Zhang R. Nat Commun 11 908 (2020)
  73. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS. Hooy RM, Massaccesi G, Rousseau KE, Chattergoon MA, Sohn J. Nucleic Acids Res 48 4435-4447 (2020)
  74. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P, Gekara NO. EMBO J. 38 e102718 (2019)
  75. Drosophila STING protein has a role in lipid metabolism. Akhmetova K, Balasov M, Chesnokov I. Elife 10 e67358 (2021)
  76. MiR-139 Induces an Interferon-β Response in Prostate Cancer Cells by Binding to RIG-1. Nam RK, Benatar T, Amemiya Y, Seth A. Cancer Genomics Proteomics 18 197-206 (2021)
  77. RNF123 has an E3 ligase-independent function in RIG-I-like receptor-mediated antiviral signaling. Wang S, Yang YK, Chen T, Zhang H, Yang WW, Song SS, Zhai ZH, Chen DY. EMBO Rep. 17 1155-1168 (2016)
  78. The stress granule protein G3BP1 promotes pre-condensation of cGAS to allow rapid responses to DNA. Zhao M, Xia T, Xing JQ, Yin LH, Li XW, Pan J, Liu JY, Sun LM, Wang M, Li T, Mao J, Han QY, Xue W, Cai H, Wang K, Xu X, Li T, He K, Wang N, Li AL, Zhou T, Zhang XM, Li WH, Li T. EMBO Rep 23 e53166 (2022)
  79. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. J Am Soc Nephrol 33 2153-2173 (2022)
  80. Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. Yanase Y, Tsuji G, Nakamura M, Shibata N, Demizu Y. Int J Mol Sci 23 6847 (2022)
  81. DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance. Wang L, Li S, Wang K, Wang N, Liu Q, Sun Z, Wang L, Wang L, Liu Q, Song C, Liu C, Yang Q, Yang Q. Nat Commun 13 7107 (2022)
  82. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response. Li M, Shu HB. Protein Cell 11 584-599 (2020)
  83. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. Abdisalaam S, Bhattacharya S, Mukherjee S, Sinha D, Srinivasan K, Zhu M, Akbay EA, Sadek HA, Shay JW, Asaithamby A. J Biol Chem 295 11144-11160 (2020)
  84. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Cho MG, Kumar RJ, Lin CC, Boyer JA, Shahir JA, Fagan-Solis K, Simpson DA, Fan C, Foster CE, Goddard AM, Lerner LM, Ellington SW, Wang Q, Wang Y, Ho AY, Liu P, Perou CM, Zhang Q, McGinty RK, Purvis JE, Gupta GP. Nature 625 585-592 (2024)
  85. Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. Corsi F, Lavery R, Laine E, Carbone A. PLoS Comput Biol 16 e1007624 (2020)
  86. Oleic Acid Dissolves cGAS-DNA Phase Separation to Inhibit Immune Surveillance. Wang L, Liu Q, Wang N, Li S, Bian W, Sun Z, Wang L, Wang L, Liu C, Song C, Liu Q, Yang Q. Adv Sci (Weinh) 10 e2206820 (2023)
  87. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, Han C, Liu H, Yin X, Du Q, Tong D, Huang Y. PLoS Pathog 17 e1009940 (2021)
  88. Pharmacological Activation of cGAS for Cancer Immunotherapy. Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Front Immunol 12 753472 (2021)
  89. Phase separation focuses DNA sensing. Ablasser A. Science 361 646-647 (2018)
  90. Reading the fine print: sequence-specific activation of cGAS. Chiang JJ, Gack MU. Nat. Immunol. 16 1009-1010 (2015)
  91. Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation. Yu X, Zhao Z, Jiang Z. J Mol Cell Biol 14 mjac042 (2022)
  92. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Future Med Chem 10 1301-1317 (2018)
  93. TRIM14 Is a Key Regulator of the Type I IFN Response during Mycobacterium tuberculosis Infection. Hoffpauir CT, Bell SL, West KO, Jing T, Wagner AR, Torres-Odio S, Cox JS, West AP, Li P, Patrick KL, Watson RO. J Immunol 205 153-167 (2020)
  94. The Hippo signaling component LATS2 enhances innate immunity to inhibit HIV-1 infection through PQBP1-cGAS pathway. He TS, Dang L, Zhang J, Zhang J, Wang G, Wang E, Xia H, Zhou W, Wu S, Liu X. Cell Death Differ 29 192-205 (2022)
  95. The cGAS/STING/TBK1/IRF3 innate immunity pathway maintains chromosomal stability through regulation of p21 levels. Basit A, Cho MG, Kim EY, Kwon D, Kang SJ, Lee JH. Exp Mol Med 52 643-657 (2020)
  96. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Hall J, Ralph EC, Shanker S, Wang H, Byrnes LJ, Horst R, Wong J, Brault A, Dumlao D, Smith JF, Dakin LA, Schmitt DC, Trujillo J, Vincent F, Griffor M, Aulabaugh AE. Protein Sci. 26 2367-2380 (2017)
  97. A Highly Sensitive Anion Exchange Chromatography Method forMeasuring cGAS Activity in vitro. Holleufer A, Hartmann R. Bio Protoc 8 e3055 (2018)
  98. A mathematic model to reveal delicate cross-regulation between MAVS/STING, inflammasome and MyD88-dependent type I interferon signalling. Cai C, Yu X. J Cell Mol Med 24 11535-11545 (2020)
  99. Anti-triple-negative breast cancer metastasis efficacy and molecular mechanism of the STING agonist for innate immune pathway. Lu X, Wang X, Cheng H, Wang X, Liu C, Tan X. Ann Med 55 2210845 (2023)
  100. Assessment of Diadenylate Cyclase and c-di-AMP-phosphodiesterase Activities Using Thin-layer and Ion Exchange Chromatography. Latoscha A, Drexler DJ, Witte G, Tschowri N. Bio Protoc 11 e3870 (2021)
  101. Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Waters CM. Open Biol 11 210277 (2021)
  102. Autophagy-Mediated Clearance of Free Genomic DNA in the Cytoplasm Protects the Growth and Survival of Cancer Cells. Yao M, Wu Y, Cao Y, Liu H, Ma N, Chai Y, Zhang S, Zhang H, Nong L, Liang L, Zhang B. Front Oncol 11 667920 (2021)
  103. Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. Liu X, Kifle MT, Xie H, Xu L, Luo M, Li Y, Huang Z, Gong Y, Wu Y, Xie C. Nanomaterials (Basel) 12 3138 (2022)
  104. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, Zhang H, Zheng Y, Liu B, Zhang L, Zhao W, Gao C. Cell Death Differ 30 992-1004 (2023)
  105. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C. Sci Rep 10 15385 (2020)
  106. Comparative Study of Interactions between Human cGAS and Inhibitors: Insights from Molecular Dynamics and MM/PBSA Studies. Wang X, Li W. Int J Mol Sci 22 (2021)
  107. Compound C Reducing Interferon Expression by Inhibiting cGAMP Accumulation. Lai J, Luo X, Tian S, Zhang X, Huang S, Wang H, Li Q, Cai S, Chen Q. Front Pharmacol 11 88 (2020)
  108. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Nucleic Acids Res 49 9389-9403 (2021)
  109. Cyclic GMP-AMP synthase contributes to epithelial homeostasis in intestinal inflammation via Beclin-1-mediated autophagy. Khan S, Mentrup HL, Novak EA, Siow VS, Wang Q, Crawford EC, Schneider C, Comerford TE, Firek B, Rogers MB, Loughran P, Morowitz MJ, Mollen KP. FASEB J 36 e22282 (2022)
  110. Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential. Miller KN, Dasgupta N, Liu T, Adams PD, Vizioli MG. Elife 10 (2021)
  111. Development of a risk model to predict prognosis in breast cancer based on cGAS-STING-related genes. Chen C, Wang J, Dong C, Lim D, Feng Z. Front Genet 14 1121018 (2023)
  112. Discovery of an inhibitor of DNA-driven inflammation that preferentially targets the AIM2 inflammasome. Green JP, El-Sharkawy LY, Roth S, Zhu J, Cao J, Leach AG, Liesz A, Freeman S, Brough D. iScience 26 106758 (2023)
  113. Efficient Induction of Cytotoxic T Cells by Viral Vector Vaccination Requires STING-Dependent DC Functions. Barnowski C, Ciupka G, Tao R, Jin L, Busch DH, Tao S, Drexler I. Front Immunol 11 1458 (2020)
  114. Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat-inactivated vaccinia. Wang W, Liu S, Dai P, Yang N, Wang Y, Giese RA, Merghoub T, Wolchok J, Deng L. J Immunother Cancer 9 e002569 (2021)
  115. Extracellular Nucleotides and Histamine Suppress TLR3- and RIG-I-Mediated Release of Antiviral IFNs from Human Airway Epithelial Cells. Kountz TS, Biyasheva A, Schleimer RP, Prakriya M. J Immunol 208 2390-2402 (2022)
  116. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Liao Y, Cheng J, Kong X, Li S, Li X, Zhang M, Zhang H, Yang T, Dong Y, Li J, Xu Y, Yuan Z. Theranostics 10 9644-9662 (2020)
  117. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Adv Funct Mater 32 2112273 (2022)
  118. Herpes simplex virus infected cell protein 8 is required for viral inhibition of the cGAS pathway. Broekema N, Mertens ME, Angelova M, Orzalli MH, Oh HS, Knipe DM. Virology 585 34-41 (2023)
  119. Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. Zheng ZQ, Fu YZ, Wang SY, Xu ZS, Zou HM, Wang YY. Cell Insight 1 100014 (2022)
  120. Human Cancer Cells Sense Cytosolic Nucleic Acids Through the RIG-I-MAVS Pathway and cGAS-STING Pathway. Qiao Y, Zhu S, Deng S, Zou SS, Gao B, Zang G, Wu J, Jiang Y, Liu YJ, Chen J. Front Cell Dev Biol 8 606001 (2020)
  121. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ. Proc. Natl. Acad. Sci. U.S.A. 116 11946-11955 (2019)
  122. Inhibition of PARP1 Dampens Pseudorabies Virus Infection through DNA Damage-Induced Antiviral Innate Immunity. Li GL, Ding GX, Zeng L, Ming SL, Fu PF, Wang Q, Yang GY, Wang J, Chu BB. J Virol 95 e0076021 (2021)
  123. Keeping innate immune response in check: when cGAS meets the nucleosome. Xie W, Patel DJ. Cell Res 30 1055-1056 (2020)
  124. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS. Maelfait J, Seiradake E, Rehwinkel J. Bioessays 36 649-657 (2014)
  125. Lipids that directly regulate innate immune signal transduction. Barnett KC, Kagan JC. Innate Immun 26 4-14 (2020)
  126. Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Annibal A, Ripa R, Ballhysa E, Latza C, Hochhard N, Antebi A. Anal Bioanal Chem 413 6457-6468 (2021)
  127. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. Yao Y, Wang W, Chen C. PNAS Nexus 1 pgac109 (2022)
  128. NBS1-CtIP-mediated DNA end resection suppresses cGAS binding to micronuclei. Abdisalaam S, Mukherjee S, Bhattacharya S, Kumari S, Sinha D, Ortega J, Li GM, Sadek HA, Krishnan S, Asaithamby A. Nucleic Acids Res 50 2681-2699 (2022)
  129. Nucleic acid sensing activates the innate cytosolic surveillance pathway and promotes parasite survival in visceral leishmaniasis. Das S, Kumar A, Mandal A, Abhishek K, Verma S, Kumar A, Das P. Sci Rep 9 9825 (2019)
  130. Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy. Dou Y, Chen R, Liu S, Lee YT, Jing J, Liu X, Ke Y, Wang R, Zhou Y, Huang Y. Nat Commun 14 5461 (2023)
  131. Oxidative DNA Damage Accelerates Skin Inflammation in Pristane-Induced Lupus Model. Tumurkhuu G, Chen S, Montano EN, Ercan Laguna D, De Los Santos G, Yu JM, Lane M, Yamashita M, Markman JL, Blanco LP, Kaplan MJ, Shimada K, Crother TR, Ishimori M, Wallace DJ, Jefferies CA, Arditi M. Front Immunol 11 554725 (2020)
  132. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Gu H, Yang J, Zhang J, Song Y, Zhang Y, Xu P, Zhu Y, Wang L, Zhang P, Li L, Chen D, Sun Q. Nat Commun 13 1564 (2022)
  133. Potent Therapeutic Strategies for COVID-19 with Single-Domain Antibody Immunoliposomes Neutralizing SARS-CoV-2 and Lip/cGAMP Enhancing Protective Immunity. Zhou Y, Lu X, Wang X, Ying T, Tan X. Int J Mol Sci 24 4068 (2023)
  134. Proteomic analysis of RAW macrophages treated with cGAMP or c-di-GMP reveals differentially activated cellular pathways. Sooreshjani MA, Gursoy UK, Aryal UK, Sintim HO. RSC Adv 8 36840-36851 (2018)
  135. Proteomics analysis uncovers plasminogen activator PLAU as a target of the STING pathway for suppression of cancer cell migration and invasion. Tan J, Ge Y, Zhang M, Ding M. J Biol Chem 299 102779 (2023)
  136. RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses. Liu ZS, Zhang ZY, Cai H, Zhao M, Mao J, Dai J, Xia T, Zhang XM, Li T. Cell Biosci 8 35 (2018)
  137. S1P Generation by Sphingosine Kinase-2 in Recruited Macrophages Resolves Lung Inflammation by Blocking STING Signaling in Alveolar Macrophages. Joshi JC, Joshi B, Rochford I, Mehta D. J Cell Signal 2 47-51 (2021)
  138. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma. Li Y, Gao Y, Jiang X, Cheng Y, Zhang J, Xu L, Liu X, Huang Z, Xie C, Gong Y. J Transl Med 20 628 (2022)
  139. STING antagonists, synthesized via Povarov-Doebner type multicomponent reaction. Ong WWS, Dayal N, Chaudhuri R, Lamptey J, Sintim HO. RSC Med Chem 14 1101-1113 (2023)
  140. Species-specific cleavage of cGAS by picornavirus protease 3C disrupts mitochondria DNA-mediated immune sensing. Yan Y, Wu L, Yuan Y, Wang H, Yin H, Li M, Chai L, Liang R, Liu Y, Zhao D, Xing J, Li P, Li X. PLoS Pathog 19 e1011641 (2023)
  141. Structural and Hydrodynamic Characterization of Dimeric Human Oligoadenylate Synthetase 2. Koul A, Gemmill D, Lubna N, Meier M, Krahn N, Booy EP, Stetefeld J, Patel TR, McKenna SA. Biophys J 118 2726-2740 (2020)
  142. Structural biology: a 'funny' cyclic dinucleotide receptor. Haitin Y. Nat. Chem. Biol. 10 413-414 (2014)
  143. TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis. Rego SL, Harvey S, Simpson SR, Hemphill WO, McIver ZA, Grayson JM, Perrino FW. Autoimmunity 1-12 (2018)
  144. The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS. Xiong TC, Wei MC, Li FX, Shi M, Gan H, Tang Z, Dong HP, Liuyu T, Gao P, Zhong B, Zhang ZD, Lin D. Nat Commun 13 5973 (2022)
  145. The Impact of Rare Human Variants on Barrier-To-Auto-Integration Factor 1 (Banf1) Structure and Function. Rose M, Bai B, Tang M, Cheong CM, Beard S, Burgess JT, Adams MN, O'Byrne KJ, Richard DJ, Gandhi NS, Bolderson E. Front Cell Dev Biol 9 775441 (2021)
  146. The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C, Maurin M, Bochnakian A, Amigorena S, Piel M, Fachinetti D, Londoño-Vallejo A, Manel N. Cell Rep 26 2377-2393.e13 (2019)
  147. The Pharmacologically Active Alkaloid Cryptolepine Activates a Type 1 Interferon Response That Is Independent of MAVS and STING Pathways. Domfeh SA, Narkwa PW, Quaye O, Kusi KA, Addy BS, Lant S, Sumner RP, Maluquer de Motes C, Awandare GA, Ansah C, Mutocheluh M. J Immunol Res 2022 8873536 (2022)
  148. The RNA polymerase of cytoplasmically replicating Zika virus binds with chromatin DNA in nuclei and regulates host gene transcription. Li P, Wu J, Liu S, Lu R, Jiang H, Wang N, Luo M, Guo L, Xiao J, Bu L, Liu L, Xing F, Peng H, Li C, Ma L, Zhao B, Zhou Z, Guo D. Proc Natl Acad Sci U S A 119 e2205013119 (2022)
  149. The STING/TBK1/IRF3/IFN type I pathway is defective in cystic fibrosis. Occhigrossi L, Rossin F, Villella VR, Esposito S, Abbate C, D'Eletto M, Farrace MG, Tosco A, Nardacci R, Fimia GM, Raia V, Piacentini M. Front Immunol 14 1093212 (2023)
  150. The allosteric activation of cGAS underpins its dynamic signaling landscape. Hooy RM, Sohn J. Elife 7 (2018)
  151. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Volkman HE, Cambier S, Gray EE, Stetson DB. Elife 8 (2019)
  152. Transcriptome analysis identifies LGP2 as an MDA5-mediated signaling activator following spring viremia of carp virus infection in common carp (Cyprinus carpio L.). Liu R, Niu Y, Qi Y, Li H, Yang G, Shan S. Front Immunol 13 1019872 (2022)
  153. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. Nucleic Acids Res 50 11093-11108 (2022)
  154. Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Wang C, Zhang R, He J, Yu L, Li X, Zhang J, Li S, Zhang C, Kagan JC, Karp JM, Kuai R. Nat Commun 14 3877 (2023)
  155. Viral DNA Binding to NLRC3, an Inhibitory Nucleic Acid Sensor, Unleashes STING, a Cyclic Dinucleotide Receptor that Activates Type I Interferon. Li X, Deng M, Petrucelli AS, Zhu C, Mo J, Zhang L, Tam JW, Ariel P, Zhao B, Zhang S, Ke H, Li P, Dokholyan NV, Duncan JA, Ting JP. Immunity 50 591-599.e6 (2019)
  156. cGAS regulates the DNA damage response to maintain proliferative signaling in gastric cancer cells. Liu B, Liu H, Ren F, Liu H, Bukhari I, Fu Y, Wu W, Zhao M, Zhu S, Mo H, Li F, Zheng MB, Tang Y, Zheng P, Mi Y. Oncol Res 29 87-103 (2021)
  157. cGAS/STING/TBK1/IRF3 Signaling Pathway Activates BMDCs Maturation Following Mycobacterium bovis Infection. Li Q, Liu C, Yue R, El-Ashram S, Wang J, He X, Zhao D, Zhou X, Xu L. Int J Mol Sci 20 (2019)
  158. m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner. Balzarolo M, Engels S, de Jong AJ, Franke K, van den Berg TK, Gulen MF, Ablasser A, Janssen EM, van Steensel B, Wolkers MC. Open Biol 11 210030 (2021)