4v9c Citations

Allosteric control of the ribosome by small-molecule antibiotics.

Nat Struct Mol Biol 19 957-63 (2012)
Cited: 85 times
EuropePMC logo PMID: 22902368

Abstract

Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl-transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.

Reviews - 4v9c mentioned but not cited (1)

Articles - 4v9c mentioned but not cited (3)

  1. Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Wasserman MR, Pulk A, Zhou Z, Altman RB, Zinder JC, Green KD, Garneau-Tsodikova S, Cate JH, Blanchard SC. Nat Commun 6 7896 (2015)
  2. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Sci Rep 10 12618 (2020)
  3. Structural basis for ribosome recycling by RRF and tRNA. Zhou D, Tanzawa T, Lin J, Gagnon MG. Nat Struct Mol Biol 27 25-32 (2020)


Reviews citing this publication (24)

  1. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  2. Ultra-stable organic fluorophores for single-molecule research. Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC. Chem Soc Rev 43 1044-1056 (2014)
  3. Hierarchy of RNA functional dynamics. Mustoe AM, Brooks CL, Al-Hashimi HM. Annu Rev Biochem 83 441-466 (2014)
  4. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CA, Weiss S. Elife 10 e60416 (2021)
  5. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Hudak JE, Bertozzi CR. Chem Biol 21 16-37 (2014)
  6. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 a025361 (2016)
  7. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)
  8. Structural insights into ribosome translocation. Ling C, Ermolenko DN. Wiley Interdiscip Rev RNA 7 620-636 (2016)
  9. Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Robinson A, van Oijen AM. Nat Rev Microbiol 11 303-315 (2013)
  10. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Wang N, Luo J, Deng F, Huang Y, Zhou H. Front Pharmacol 13 839808 (2022)
  11. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Arenz S, Wilson DN. Mol Cell 61 3-14 (2016)
  12. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Thamban Chandrika N, Garneau-Tsodikova S. Chem Soc Rev 47 1189-1249 (2018)
  13. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Wachino JI, Doi Y, Arakawa Y. Infect Dis Clin North Am 34 887-902 (2020)
  14. Destination of aminoglycoside antibiotics in the 'post-antibiotic era'. Takahashi Y, Igarashi M. J Antibiot (Tokyo) (2017)
  15. Non-coding RNAs as antibiotic targets. Colameco S, Elliot MA. Biochem Pharmacol 133 29-42 (2017)
  16. From Worms to Drug Candidate: The Story of Odilorhabdins, a New Class of Antimicrobial Agents. Racine E, Gualtieri M. Front Microbiol 10 2893 (2019)
  17. The case of the missing allosteric ribozymes. Panchapakesan SSS, Breaker RR. Nat Chem Biol 17 375-382 (2021)
  18. Current opinions on the mechanism, classification, imaging diagnosis and treatment of post-traumatic osteomyelitis. Yang J, Yao JL, Wu ZQ, Zeng DL, Zheng LY, Chen D, Guo ZD, Peng L. Chin J Traumatol 24 320-327 (2021)
  19. Identifying targets to prevent aminoglycoside ototoxicity. Kim J, Hemachandran S, Cheng AG, Ricci AJ. Mol Cell Neurosci 120 103722 (2022)
  20. The Role of Mitochondria in Drug-Induced Kidney Injury. Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. Front Physiol 11 1079 (2020)
  21. Whither Ribosome Structure and Dynamics Research? (A Perspective). Frank J. J Mol Biol 428 3565-3569 (2016)
  22. Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles. Coffino P, Cheng Y. Biomolecules 12 764 (2022)
  23. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Lang M, Carvalho A, Baharoglu Z, Mazel D. Microbiol Mol Biol Rev 87 e0003622 (2023)
  24. Mechanistic insights into antibiotic action on the ribosome through single-molecule fluorescence imaging. Wang L, Wasserman MR, Feldman MB, Altman RB, Blanchard SC. Ann N Y Acad Sci 1241 E1-16 (2011)

Articles citing this publication (57)

  1. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. Garneau-Tsodikova S, Labby KJ. Medchemcomm 7 11-27 (2016)
  2. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Juette MF, Terry DS, Wasserman MR, Altman RB, Zhou Z, Zhao H, Blanchard SC. Nat Methods 13 341-344 (2016)
  3. High-resolution structure of the Escherichia coli ribosome. Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH. Nat Struct Mol Biol 22 336-341 (2015)
  4. Structure of the bacterial ribosome at 2 Å resolution. Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Elife 9 e60482 (2020)
  5. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Prokhorova I, Altman RB, Djumagulov M, Shrestha JP, Urzhumtsev A, Ferguson A, Chang CT, Yusupov M, Blanchard SC, Yusupova G. Proc Natl Acad Sci U S A 114 E10899-E10908 (2017)
  6. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N. Proc Natl Acad Sci U S A 110 20994-20999 (2013)
  7. Coordinated conformational and compositional dynamics drive ribosome translocation. Chen J, Petrov A, Tsai A, O'Leary SE, Puglisi JD. Nat Struct Mol Biol 20 718-727 (2013)
  8. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Wasserman MR, Alejo JL, Altman RB, Blanchard SC. Nat Struct Mol Biol 23 333-341 (2016)
  9. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Cell Rep 25 236-248.e6 (2018)
  10. Structural basis of early translocation events on the ribosome. Rundlet EJ, Holm M, Schacherl M, Natchiar SK, Altman RB, Spahn CMT, Myasnikov AG, Blanchard SC. Nature 595 741-745 (2021)
  11. Mutations in Gene fusA1 as a Novel Mechanism of Aminoglycoside Resistance in Clinical Strains of Pseudomonas aeruginosa. Bolard A, Plésiat P, Jeannot K. Antimicrob Agents Chemother 62 e01835-17 (2018)
  12. New trends in aminoglycosides use. Fosso MY, Li Y, Garneau-Tsodikova S. Medchemcomm 5 1075-1091 (2014)
  13. 4'-O-substitutions determine selectivity of aminoglycoside antibiotics. Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, Boukari H, Patak R, Dubbaka SR, Lang K, Meyer M, Akbergenov R, Freihofer P, Vaddi S, Thommes P, Ramakrishnan V, Vasella A, Böttger EC. Nat Commun 5 3112 (2014)
  14. RACK1 on and off the ribosome. Johnson AG, Lapointe CP, Wang J, Corsepius NC, Choi J, Fuchs G, Puglisi JD. RNA 25 881-895 (2019)
  15. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Bulkley D, Brandi L, Polikanov YS, Fabbretti A, O'Connor M, Gualerzi CO, Steitz TA. Cell Rep 6 357-365 (2014)
  16. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. Chandrika NT, Garneau-Tsodikova S. Medchemcomm 7 50-68 (2016)
  17. Three tRNAs on the ribosome slow translation elongation. Choi J, Puglisi JD. Proc Natl Acad Sci U S A 114 13691-13696 (2017)
  18. Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Alejo JL, Blanchard SC. Proc Natl Acad Sci U S A 114 E8603-E8610 (2017)
  19. Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Ling C, Ermolenko DN. Proc Natl Acad Sci U S A 112 15874-15879 (2015)
  20. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Olivier NB, Altman RB, Noeske J, Basarab GS, Code E, Ferguson AD, Gao N, Huang J, Juette MF, Livchak S, Miller MD, Prince DB, Cate JH, Buurman ET, Blanchard SC. Proc Natl Acad Sci U S A 111 16274-16279 (2014)
  21. Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria. Mangano K, Florin T, Shao X, Klepacki D, Chelysheva I, Ignatova Z, Gao Y, Mankin AS, Vázquez-Laslop N. Elife 9 e62655 (2020)
  22. Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Micic J, Li Y, Wu S, Wilson D, Tutuncuoglu B, Gao N, Woolford JL. Nat Commun 11 3751 (2020)
  23. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity. Hong S, Harris KA, Fanning KD, Sarachan KL, Frohlich KM, Agris PF. J Biol Chem 290 19273-19286 (2015)
  24. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate. Halfon Y, Jimenez-Fernandez A, La Rosa R, Espinosa Portero R, Krogh Johansen H, Matzov D, Eyal Z, Bashan A, Zimmerman E, Belousoff M, Molin S, Yonath A. Proc Natl Acad Sci U S A 116 22275-22281 (2019)
  25. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Methods Enzymol 601 205-241 (2018)
  26. Translocation as continuous movement through the ribosome. Belardinelli R, Sharma H, Peske F, Wintermeyer W, Rodnina MV. RNA Biol 13 1197-1203 (2016)
  27. Roles of specific aminoglycoside-ribosome interactions in the inhibition of translation. Ying L, Zhu H, Shoji S, Fredrick K. RNA 25 247-254 (2019)
  28. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Kurata S, Shen B, Liu JO, Takeuchi N, Kaji A, Kaji H. Nucleic Acids Res 41 264-276 (2013)
  29. Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Nicholson D, Edwards TA, O'Neill AJ, Ranson NA. Structure 28 1087-1100.e3 (2020)
  30. An open interface in the pre-80S ribosome coordinated by ribosome assembly factors Tsr1 and Dim1 enables temporal regulation of Fap7. Rai J, Parker MD, Huang H, Choy S, Ghalei H, Johnson MC, Karbstein K, Stroupe ME. RNA 27 221-233 (2021)
  31. Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation. Bock LV, Blau C, Vaiana AC, Grubmüller H. Nucleic Acids Res 43 6747-6760 (2015)
  32. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid target. Kulik M, Markowska-Zagrajek A, Wojciechowska M, Grzela R, Wituła T, Trylska J. Biochimie 138 32-42 (2017)
  33. tRNA Fluctuations Observed on Stalled Ribosomes Are Suppressed during Ongoing Protein Synthesis. Jamiolkowski RM, Chen C, Cooperman BS, Goldman YE. Biophys J 113 2326-2335 (2017)
  34. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins. Dedduwa-Mudalige GN, Chow CS. Int J Mol Sci 16 21392-21409 (2015)
  35. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs. Gutierrez B, Douthwaite S, Gonzalez-Zorn B. RNA Biol 10 1324-1332 (2013)
  36. Ligand- and pH-induced conformational changes of RNA domain helix 69 revealed by 2-aminopurine fluorescence. Sakakibara Y, Abeysirigunawardena SC, Duc AC, Dremann DN, Chow CS. Angew Chem Int Ed Engl 51 12095-12098 (2012)
  37. Ensemble and single-molecule FRET studies of protein synthesis. Lai WC, Ermolenko DN. Methods 137 37-48 (2018)
  38. Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Poole K, Gilmour C, Farha MA, Mullen E, Lau CH, Brown ED. Antimicrob Agents Chemother 60 3509-3518 (2016)
  39. Molecular Dynamics Investigation of a Mechanism of Allosteric Signal Transmission in Ribosomes. Makarov GI, Golovin AV, Sumbatyan NV, Bogdanov AA. Biochemistry (Mosc) 80 1047-1056 (2015)
  40. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome. Thompson CDK, Sharma AK, Frank J, Gonzalez RL, Chowdhury D. J Phys Chem B 119 10888-10901 (2015)
  41. The structural basis for inhibition of ribosomal translocation by viomycin. Zhang L, Wang YH, Zhang X, Lancaster L, Zhou J, Zhou J, Noller HF. Proc Natl Acad Sci U S A 117 10271-10277 (2020)
  42. Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis. Kürkçüoğlu Ö. Turk J Biol 42 392-404 (2018)
  43. Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin. Parajuli NP, Mandava CS, Pavlov MY, Sanyal S. Nucleic Acids Res 49 6880-6892 (2021)
  44. Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes. Desai BJ, Gonzalez RL. Nat Chem Biol 16 1129-1135 (2020)
  45. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Nat Commun 14 5582 (2023)
  46. Perturbation of ribosomal subunit dynamics by inhibitors of tRNA translocation. Belardinelli R, Sharma H, Peske F, Rodnina MV. RNA 27 981-990 (2021)
  47. Cryo-EM structure of Mycobacterium tuberculosis 50S ribosomal subunit bound with clarithromycin reveals dynamic and specific interactions with macrolides. Zhang W, Li Z, Sun Y, Cui P, Liang J, Xing Q, Wu J, Xu Y, Zhang W, Zhang Y, He L, Gao N. Emerg Microbes Infect 11 293-305 (2022)
  48. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter. Huang S, Zhu X, Melançon CE. ACS Chem Biol 11 31-37 (2016)
  49. Flipping through the genetic code: new developments in discrimination between cognate and near-cognate tRNAs and the effect of antibiotics. Sanbonmatsu KY. J Mol Biol 426 3197-3200 (2014)
  50. Fluorescence-based monitoring of ribosome assembly landscapes. Nikolay R, Schloemer R, Mueller S, Deuerling E. BMC Mol Biol 16 3 (2015)
  51. Structure-Based Design of a Eukaryote-Selective Antiprotozoal Fluorinated Aminoglycoside. Kanazawa H, Saavedra OM, Maianti JP, Young SA, Izquierdo L, Smith TK, Hanessian S, Kondo J. ChemMedChem 13 1541-1548 (2018)
  52. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes. Dremann DN, Chow CS. Bioorg Med Chem 24 4486-4491 (2016)
  53. Engineering of Streptoalloteichus tenebrarius 2444 for Sustainable Production of Tobramycin. Mitousis L, Maier H, Martinovic L, Kulik A, Stockert S, Wohlleben W, Stiefel A, Musiol-Kroll EM. Molecules 26 4343 (2021)
  54. Effect of the antibiotic neomycin on the toxicity of the glycoside vicine in rats. Arbid MS, Koriem KM, Asaad GF, Megahed HA. J Toxicol 2013 913128 (2013)
  55. Preparation of ribosomes for smFRET studies: A simplified approach. Shebl B, Menke DE, Pennella M, Poudyal RR, Burke DH, Cornish PV. Arch Biochem Biophys 603 118-130 (2016)
  56. Pseudouridine modifications influence binding of aminoglycosides to helix 69 of bacterial ribosomes. Sakakibara Y, Chow CS. Org Biomol Chem 15 8535-8543 (2017)
  57. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Appl Microbiol Biotechnol 108 304 (2024)