4wo5 Citations

Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation.

Nat Struct Mol Biol 22 37-43 (2015)
Cited: 87 times
EuropePMC logo PMID: 25437913

Abstract

Reported RAF kinase domain structures adopt a side-to-side dimer configuration reflective of an 'on' state that underpins an allosteric mechanism of regulation. Atomic details of the monomer 'off' state have been elusive. Reinspection of the BRAF kinase domain structures revealed that sulfonamide inhibitors induce features of an off state, primarily a laterally displaced helix αC stabilized by the activation segment helix 1 (AS-H1). These features correlated with the ability of sulfonamides to disrupt human BRAF homodimers in cells, in vitro and in crystals yielding a structure of BRAF in a monomer state. The crystal structure revealed exaggerated, nonproductive positions of helix αC and AS-H1, the latter of which is the target of potent BRAF oncogenic mutations. Together, this work provides formal proof of an allosteric link between the RAF dimer interface, the activation segment and the catalytic infrastructure.

Reviews - 4wo5 mentioned but not cited (2)

  1. Ras-Mediated Activation of the Raf Family Kinases. Terrell EM, Morrison DK. Cold Spring Harb Perspect Med 9 a033746 (2019)
  2. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Biophys Rev 10 1263-1282 (2018)

Articles - 4wo5 mentioned but not cited (13)

  1. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H, Eck MJ. Nature 575 545-550 (2019)
  2. Insights into the binding mode of MEK type-III inhibitors. A step towards discovering and designing allosteric kinase inhibitors across the human kinome. Zhao Z, Xie L, Bourne PE. PLoS One 12 e0179936 (2017)
  3. A case study of an integrative genomic and experimental therapeutic approach for rare tumors: identification of vulnerabilities in a pediatric poorly differentiated carcinoma. Dela Cruz FS, Diolaiti D, Turk AT, Rainey AR, Ambesi-Impiombato A, Andrews SJ, Mansukhani MM, Nagy PL, Alvarez MJ, Califano A, Forouhar F, Modzelewski B, Mitchell CM, Yamashiro DJ, Marks LJ, Glade Bender JL, Kung AL. Genome Med 8 116 (2016)
  4. B-Raf autoinhibition in the presence and absence of 14-3-3. Zhang M, Jang H, Li Z, Sacks DB, Nussinov R. Structure 29 768-777.e2 (2021)
  5. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation. Pellegrini E, Signor L, Singh S, Boeri Erba E, Cusack S. PLoS One 12 e0177161 (2017)
  6. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. Tse A, Verkhivker GM. PLoS One 11 e0166583 (2016)
  7. Chemically Linked Vemurafenib Inhibitors Promote an Inactive BRAFV600E Conformation. Grasso M, Estrada MA, Ventocilla C, Samanta M, Maksimoska J, Villanueva J, Winkler JD, Marmorstein R. ACS Chem Biol 11 2876-2888 (2016)
  8. Analyses of the oncogenic BRAFD594G variant reveal a kinase-independent function of BRAF in activating MAPK signaling. Cope NJ, Novak B, Liu Z, Cavallo M, Gunderwala AY, Connolly M, Wang Z. J Biol Chem 295 2407-2420 (2020)
  9. Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer. Murugan AK, Qasem E, Al-Hindi H, Shi Y, Alzahrani AS. J Transl Med 14 204 (2016)
  10. Anatomy of protein disorder, flexibility and disease-related mutations. Lu HC, Chung SS, Fornili A, Fraternali F. Front Mol Biosci 2 47 (2015)
  11. The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. Kiel C, Benisty H, Lloréns-Rico V, Serrano L. Elife 5 e12814 (2016)
  12. Effects of rigidity on the selectivity of protein kinase inhibitors. Assadieskandar A, Yu C, Maisonneuve P, Liu X, Chen YC, Prakash GKS, Kurinov I, Sicheri F, Zhang C. Eur J Med Chem 146 519-528 (2018)
  13. Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. Assadieskandar A, Yu C, Maisonneuve P, Kurinov I, Sicheri F, Zhang C. ACS Med Chem Lett 10 1074-1080 (2019)


Reviews citing this publication (21)

  1. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat Rev Mol Cell Biol 16 281-298 (2015)
  2. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. Microbiol Mol Biol Rev 80 793-835 (2016)
  3. New perspectives for targeting RAF kinase in human cancer. Karoulia Z, Gavathiotis E, Poulikakos PI. Nat Rev Cancer 17 676-691 (2017)
  4. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 E198 (2020)
  5. Targeting Alterations in the RAF-MEK Pathway. Yaeger R, Corcoran RB. Cancer Discov 9 329-341 (2019)
  6. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Oncogene 37 3183-3199 (2018)
  7. Structural Basis for the Non-catalytic Functions of Protein Kinases. Kung JE, Jura N. Structure 24 7-24 (2016)
  8. Targeting the ERK Signaling Pathway in Melanoma. Savoia P, Fava P, Casoni F, Cremona O. Int J Mol Sci 20 E1483 (2019)
  9. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  10. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Int J Mol Sci 20 E2885 (2019)
  11. RAF kinase dimerization: implications for drug discovery and clinical outcomes. Brummer T, McInnes C. Oncogene 39 4155-4169 (2020)
  12. Protein ensembles link genotype to phenotype. Nussinov R, Tsai CJ, Jang H. PLoS Comput Biol 15 e1006648 (2019)
  13. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. Signal Transduct Target Ther 7 181 (2022)
  14. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Zhang M, Jang H, Nussinov R. Cancer Res 81 237-247 (2021)
  15. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Poulikakos PI, Sullivan RJ, Yaeger R. Clin Cancer Res 28 4618-4628 (2022)
  16. Somatic DNA mutation analysis in targeted therapy of solid tumours. Yu B, O'Toole SA, Trent RJ. Transl Pediatr 4 125-138 (2015)
  17. Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. Paton EL, Turner JA, Schlaepfer IR. J Oncol 2020 1079827 (2020)
  18. Drug resistance in targeted cancer therapies with RAF inhibitors. Degirmenci U, Yap J, Sim YRM, Qin S, Hu J. Cancer Drug Resist 4 665-683 (2021)
  19. Post-translational modifications at the ATP-positioning G-loop that regulate protein kinase activity. Steinberg SF. Pharmacol Res 135 181-187 (2018)
  20. Mechanism and inhibition of BRAF kinase. Gunderwala A, Cope N, Wang Z. Curr Opin Chem Biol 71 102205 (2022)
  21. PROTACs: A novel strategy for cancer drug discovery and development. Han X, Sun Y. MedComm (2020) 4 e290 (2023)

Articles citing this publication (51)

  1. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2. Foster SA, Whalen DM, Özen A, Wongchenko MJ, Yin J, Yen I, Schaefer G, Mayfield JD, Chmielecki J, Stephens PJ, Albacker LA, Yan Y, Song K, Hatzivassiliou G, Eigenbrot C, Yu C, Shaw AS, Manning G, Skelton NJ, Hymowitz SG, Malek S. Cancer Cell 29 477-493 (2016)
  2. An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, Wu X, Zhang C, Bollag G, Herlyn M, Fagin JA, Lujambio A, Gavathiotis E, Poulikakos PI. Cancer Cell 30 485-498 (2016)
  3. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Kondo Y, Ognjenović J, Banerjee S, Karandur D, Merk A, Kulhanek K, Wong K, Roose JP, Subramaniam S, Kuriyan J. Science 366 109-115 (2019)
  4. MEK drives BRAF activation through allosteric control of KSR proteins. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, Kurinov I, Sicheri F, Therrien M. Nature 554 549-553 (2018)
  5. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Travers T, López CA, Van QN, Neale C, Tonelli M, Stephen AG, Gnanakaran S. Sci Rep 8 8461 (2018)
  6. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Keramisanou D, Aboalroub A, Zhang Z, Liu W, Marshall D, Diviney A, Larsen RW, Landgraf R, Gelis I. Mol Cell 62 260-271 (2016)
  7. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Liau NPD, Wendorff TJ, Quinn JG, Steffek M, Phung W, Liu P, Tang J, Irudayanathan FJ, Izadi S, Shaw AS, Malek S, Hymowitz SG, Sudhamsu J. Nat Struct Mol Biol 27 134-141 (2020)
  8. Functional characterization of a PROTAC directed against BRAF mutant V600E. Posternak G, Tang X, Maisonneuve P, Jin T, Lavoie H, Daou S, Orlicky S, Goullet de Rugy T, Caldwell L, Chan K, Aman A, Prakesch M, Poda G, Mader P, Wong C, Maier S, Kitaygorodsky J, Larsen B, Colwill K, Yin Z, Ceccarelli DF, Batey RA, Taipale M, Kurinov I, Uehling D, Wrana J, Durocher D, Gingras AC, Al-Awar R, Therrien M, Sicheri F. Nat Chem Biol 16 1170-1178 (2020)
  9. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, Murphy RF, Brummer T, Dengjel J. EMBO J 36 646-663 (2017)
  10. Inhibitor-induced HER2-HER3 heterodimerisation promotes proliferation through a novel dimer interface. Claus J, Patel G, Autore F, Colomba A, Weitsman G, Soliman TN, Roberts S, Zanetti-Domingues LC, Hirsch M, Collu F, George R, Ortiz-Zapater E, Barber PR, Vojnovic B, Yarden Y, Martin-Fernandez ML, Cameron A, Fraternali F, Ng T, Parker PJ. Elife 7 e32271 (2018)
  11. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Jin T, Lavoie H, Sahmi M, David M, Hilt C, Hammell A, Therrien M. Nat Commun 8 1211 (2017)
  12. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. Angew Chem Int Ed Engl 55 983-986 (2016)
  13. Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis. Yuan J, Ng WH, Tian Z, Yap J, Baccarini M, Chen Z, Hu J. Sci Signal 11 eaar6795 (2018)
  14. Inhibitors of BRAF dimers using an allosteric site. Cotto-Rios XM, Agianian B, Gitego N, Zacharioudakis E, Giricz O, Wu Y, Zou Y, Verma A, Poulikakos PI, Gavathiotis E. Nat Commun 11 4370 (2020)
  15. An atlas of substrate specificities for the human serine/threonine kinome. Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. Nature 613 759-766 (2023)
  16. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Kordes M, Röring M, Heining C, Braun S, Hutter B, Richter D, Geörg C, Scholl C, Gröschel S, Roth W, Rosenwald A, Geissinger E, von Kalle C, Jäger D, Brors B, Weichert W, Grüllich C, Glimm H, Brummer T, Fröhling S. Leukemia 30 937-946 (2016)
  17. The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Yuan J, Ng WH, Lam PYP, Wang Y, Xia H, Yap J, Guan SP, Lee ASG, Wang M, Baccarini M, Hu J. Oncogene 37 5719-5734 (2018)
  18. The mechanism of activation of monomeric B-Raf V600E. Maloney RC, Zhang M, Jang H, Nussinov R. Comput Struct Biotechnol J 19 3349-3363 (2021)
  19. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants. Köhler M, Röring M, Schorch B, Heilmann K, Stickel N, Fiala GJ, Schmitt LC, Braun S, Ehrenfeld S, Uhl FM, Kaltenbacher T, Weinberg F, Herzog S, Zeiser R, Schamel WW, Jumaa H, Brummer T. EMBO J 35 143-161 (2016)
  20. BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Vido MJ, Le K, Hartsough EJ, Aplin AE. Cell Rep 25 1501-1510.e3 (2018)
  21. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Proc Natl Acad Sci U S A 114 E2096-E2105 (2017)
  22. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Martinez Fiesco JA, Durrant DE, Morrison DK, Zhang P. Nat Commun 13 486 (2022)
  23. Kinase domain dimerization drives RIPK3-dependent necroptosis. Raju S, Whalen DM, Mengistu M, Swanson C, Quinn JG, Taylor SS, Webster JD, Newton K, Shaw AS. Sci Signal 11 eaar2188 (2018)
  24. The RAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase Exhibits Allosteric Conformational Changes upon Binding HRAS. Aramini JM, Vorobiev SM, Tuberty LM, Janjua H, Campbell ET, Seetharaman J, Su M, Huang YJ, Acton TB, Xiao R, Tong L, Montelione GT. Structure 23 1382-1393 (2015)
  25. BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Röck R, Mayrhofer JE, Torres-Quesada O, Enzler F, Raffeiner A, Raffeiner P, Feichtner A, Huber RG, Koide S, Taylor SS, Troppmair J, Stefan E. Sci Adv 5 eaav8463 (2019)
  26. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, Braun S, Orth J, Diedrich B, Lanner U, Tscherwinski N, Schuster S, Dumaz N, Schmidt E, Baumeister R, Schlosser A, Dengjel J, Brummer T. Oncotarget 7 26628-26652 (2016)
  27. Development of Allosteric BRAF Peptide Inhibitors Targeting the Dimer Interface of BRAF. Gunderwala AY, Nimbvikar AA, Cope NJ, Li Z, Wang Z. ACS Chem Biol 14 1471-1480 (2019)
  28. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Kubiniok P, Lavoie H, Therrien M, Thibault P. Mol Cell Proteomics 16 663-679 (2017)
  29. Prevalence of class I-III BRAF mutations among 114,662 cancer patients in a large genomic database. Owsley J, Stein MK, Porter J, In GK, Salem M, O'Day S, Elliott A, Poorman K, Gibney G, VanderWalde A. Exp Biol Med (Maywood) 246 31-39 (2021)
  30. Putative genomic characteristics of BRAF V600K versus V600E cutaneous melanoma. Li Y, Umbach DM, Li L. Melanoma Res 27 527-535 (2017)
  31. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation. Verkhivker GM. Mol Biosyst 12 3146-3165 (2016)
  32. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Persky NS, Hernandez D, Do Carmo M, Brenan L, Cohen O, Kitajima S, Nayar U, Walker A, Pantel S, Lee Y, Cordova J, Sathappa M, Zhu C, Hayes TK, Ram P, Pancholi P, Mikkelsen TS, Barbie DA, Yang X, Haq R, Piccioni F, Root DE, Johannessen CM. Nat Struct Mol Biol 27 92-104 (2020)
  33. Phosphorylation of the C-Raf N Region Promotes Raf Dimerization. Takahashi M, Li Y, Dillon TJ, Kariya Y, Stork PJS. Mol Cell Biol 37 e00132-17 (2017)
  34. Response and Resistance to Paradox-Breaking BRAF Inhibitor in Melanomas In Vivo and Ex Vivo. Hartsough EJ, Kugel CH, Vido MJ, Berger AC, Purwin TJ, Goldberg A, Davies MA, Schiewer MJ, Knudsen KE, Bollag G, Aplin AE. Mol Cancer Ther 17 84-95 (2018)
  35. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. Mitra S, Ghosh B, Gayen N, Roy J, Mandal AK. J Biol Chem 291 24579-24593 (2016)
  36. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Biophys J 119 525-538 (2020)
  37. B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model. Köhler M, Ehrenfeld S, Halbach S, Lauinger M, Burk U, Reischmann N, Cheng S, Spohr C, Uhl FM, Köhler N, Ringwald K, Braun S, Peters C, Zeiser R, Reinheckel T, Brummer T. Oncogene 38 1324-1339 (2019)
  38. Clinical Activity of Mitogen-Activated Protein Kinase-Targeted Therapies in Patients With Non-V600 BRAF-Mutant Tumors. Dankner M, Wang Y, Fazelzad R, Johnson B, Nebhan CA, Dagogo-Jack I, Myall NJ, Richtig G, Bracht JWP, Gerlinger M, Shinozaki E, Yoshino T, Kotani D, Fangusaro JR, Gautschi O, Mazieres J, Sosman JA, Kopetz S, Subbiah V, Davies MA, Groover AL, Sullivan RJ, Flaherty KT, Johnson DB, Benedetti A, Cescon DW, Spreafico A, Zogopoulos G, Rose AAN. JCO Precis Oncol 6 e2200107 (2022)
  39. N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK632) Promotes Inhibition of BRAF through the Induction of Inhibited Dimers. Grasso M, Estrada MA, Berrios KN, Winkler JD, Marmorstein R. J Med Chem 61 5034-5046 (2018)
  40. Three distinct regions of cRaf kinase domain interact with membrane. Prakash P, Hancock JF, Gorfe AA. Sci Rep 9 2057 (2019)
  41. DoMY-Seq: A yeast two-hybrid-based technique for precision mapping of protein-protein interaction motifs. Castel P, Holtz-Morris A, Kwon Y, Suter BP, McCormick F. J Biol Chem 296 100023 (2021)
  42. Deletion Mutations Keep Kinase Inhibitors in the Loop. Freed DM, Park JH, Radhakrishnan R, Lemmon MA. Cancer Cell 29 423-425 (2016)
  43. Chemotherapeutic drug selectivity between wild-type and mutant BRaf kinases in colon cancer. Zhang J, Ji T. J Mol Model 23 1 (2017)
  44. article-commentary Knock-in(g) RAF for a loop. Varga A, Baccarini M. EMBO J 35 118-120 (2016)
  45. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. J Biol Chem 299 104634 (2023)
  46. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. Rohrer L, Spohr C, Beha C, Griffin R, Braun S, Halbach S, Brummer T. Cell Commun Signal 21 136 (2023)
  47. Conformational control and regulation of the pseudokinase KSR via small molecule binding interactions. Chow A, Khan ZM, Marsiglia WM, Dar AC. Methods Enzymol 667 365-402 (2022)
  48. Live-cell target engagement of allosteric MEKi on MEK-RAF/KSR-14-3-3 complexes. Marsiglia WM, Chow A, Khan ZM, He L, Dar AC. Nat Chem Biol (2023)
  49. Pan-cancer clinical impact of latent drivers from double mutations. Yavuz BR, Tsai CJ, Nussinov R, Tuncbag N. Commun Biol 6 202 (2023)
  50. Theoretical analysis reveals a role for RAF conformational autoinhibition in paradoxical activation. Mendiratta G, Stites E. Elife 12 e82739 (2023)
  51. Comment αC IN, αC OUT-that's what it's all about. Hartsough EJ, Vido MJ. Pigment Cell Melanoma Res 30 177-178 (2017)