5lj3 Citations

Cryo-EM structure of the spliceosome immediately after branching.

OpenAccess logo Nature 537 197-201 (2016)
Cited: 146 times
EuropePMC logo PMID: 27459055

Abstract

Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.

Reviews - 5lj3 mentioned but not cited (7)

  1. Structural Insights into the Mechanism of Group II Intron Splicing. Zhao C, Pyle AM. Trends Biochem. Sci. 42 470-482 (2017)
  2. Genetics and biochemistry remain essential in the structural era of the spliceosome. Mayerle M, Guthrie C. Methods 125 3-9 (2017)
  3. RNAs in the spliceosome: Insight from cryoEM structures. Zhang L, Vielle A, Espinosa S, Zhao R. Wiley Interdiscip Rev RNA 10 e1523 (2019)
  4. An RNA-centric historical narrative around the Protein Data Bank. Westhof E, Leontis NB. J Biol Chem 296 100555 (2021)
  5. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand. Zhao C, Pyle AM. Curr. Opin. Struct. Biol. 47 30-39 (2017)
  6. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Genes (Basel) 13 1137 (2022)
  7. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. van der Feltz C, Hoskins AA. Crit. Rev. Biochem. Mol. Biol. 54 443-465 (2019)

Articles - 5lj3 mentioned but not cited (13)

  1. Cryo-EM structure of the spliceosome immediately after branching. Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K. Nature 537 197-201 (2016)
  2. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Stamos JL, Lentzsch AM, Lambowitz AM. Mol Cell 68 926-939.e4 (2017)
  3. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Genna V, Colombo M, De Vivo M, Marcia M. Structure 26 40-50.e2 (2018)
  4. Ca2+-Dependent Switch of Calmodulin Interaction Mode with Tandem IQ Motifs in the Scaffolding Protein IQGAP1. Zhang M, Li Z, Jang H, Hedman AC, Sacks DB, Nussinov R. Biochemistry 58 4903-4911 (2019)
  5. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. Nat Commun 12 1488 (2021)
  6. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Martin WJ, Reiter NJ. Biochemistry 56 3-13 (2017)
  7. The splicing component ISY1 regulates APE1 in base excision repair. Jaiswal AS, Williamson EA, Srinivasan G, Kong K, Lomelino CL, McKenna R, Walter C, Sung P, Narayan S, Hromas R. DNA Repair (Amst) 86 102769 (2020)
  8. 3D-PP: A Tool for Discovering Conserved Three-Dimensional Protein Patterns. Valdés-Jiménez A, Larriba-Pey JL, Núñez-Vivanco G, Reyes-Parada M. Int J Mol Sci 20 (2019)
  9. Decrypting the Information Exchange Pathways across the Spliceosome Machinery. Saltalamacchia A, Casalino L, Borišek J, Batista VS, Rivalta I, Magistrato A. J Am Chem Soc 142 8403-8411 (2020)
  10. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? Marcia M, Manigrasso J, De Vivo M. J Chem Inf Model 61 2511-2515 (2021)
  11. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mahbub MM, Chowdhury SM, Christensen SM. Mob DNA 8 16 (2017)
  12. Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. Gautam A, Beggs JD. RNA Biol 16 185-195 (2019)
  13. Prp8 impacts cryptic but not alternative splicing frequency. Mayerle M, Yitiz S, Soulette C, Rogel LE, Ramirez A, Ragle JM, Katzman S, Guthrie C, Zahler AM. Proc. Natl. Acad. Sci. U.S.A. 116 2193-2199 (2019)


Reviews citing this publication (36)

  1. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Kastner B, Will CL, Stark H, Lührmann R. Cold Spring Harb Perspect Biol 11 a032417 (2019)
  2. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Shi Y. Nat. Rev. Mol. Cell Biol. 18 655-670 (2017)
  3. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Nat. Rev. Mol. Cell Biol. 18 637-650 (2017)
  4. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat. Struct. Mol. Biol. 24 791-799 (2017)
  5. A Challenging Pie to Splice: Drugging the Spliceosome. León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, Burkart MD. Angew Chem Int Ed Engl 56 12052-12063 (2017)
  6. The Spliceosome: A Protein-Directed Metalloribozyme. Shi Y. J. Mol. Biol. 429 2640-2653 (2017)
  7. Deciphering the mRNP Code: RNA-Bound Determinants of Post-Transcriptional Gene Regulation. Gehring NH, Wahle E, Fischer U. Trends Biochem. Sci. 42 369-382 (2017)
  8. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Jenkins JL, Kielkopf CL. Trends Genet. 33 336-348 (2017)
  9. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  10. Mobile Group II Introns as Ancestral Eukaryotic Elements. Novikova O, Belfort M. Trends Genet. 33 773-783 (2017)
  11. Functions and regulation of the Brr2 RNA helicase during splicing. Absmeier E, Santos KF, Wahl MC. Cell Cycle 15 3362-3377 (2016)
  12. Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise. Loerch S, Kielkopf CL. RNA 22 1795-1807 (2016)
  13. The life of U6 small nuclear RNA, from cradle to grave. Didychuk AL, Butcher SE, Brow DA. RNA 24 437-460 (2018)
  14. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Plaschka C, Newman AJ, Nagai K. Cold Spring Harb Perspect Biol 11 (2019)
  15. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Patel TR, Chojnowski G, Astha, Koul A, McKenna SA, Bujnicki JM. Methods 118-119 146-162 (2017)
  16. Organellar Introns in Fungi, Algae, and Plants. Mukhopadhyay J, Hausner G. Cells 10 2001 (2021)
  17. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci. 26 69-81 (2017)
  18. Insights from structures of cancer-relevant pre-mRNA splicing factors. Kielkopf CL. Curr. Opin. Genet. Dev. 48 57-66 (2018)
  19. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 (2019)
  20. DEAH-Box RNA Helicases in Pre-mRNA Splicing. De Bortoli F, Espinosa S, Zhao R. Trends Biochem Sci 46 225-238 (2021)
  21. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Wilkinson ME, Lin PC, Plaschka C, Nagai K. Annu Rev Biophys 47 175-199 (2018)
  22. A Day in the Life of the Exon Junction Complex. Schlautmann LP, Gehring NH. Biomolecules 10 (2020)
  23. Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Blijlevens M, Li J, van Beusechem VW. Int J Mol Sci 22 5110 (2021)
  24. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Ray S, Widom JR, Walter NG. Chem. Rev. 118 4120-4155 (2018)
  25. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. van der Feltz C, Hoskins AA. Methods 125 45-54 (2017)
  26. RNA and Proteins: Mutual Respect. Hall KB. F1000Res 6 345 (2017)
  27. Structural studies of the endogenous spliceosome - The supraspliceosome. Sperling J, Sperling R. Methods 125 70-83 (2017)
  28. Structural studies of the spliceosome: Bridging the gaps. Tholen J, Galej WP. Curr Opin Struct Biol 77 102461 (2022)
  29. Structure determination of group II introns. Wiryaman T, Toor N. Methods 125 10-15 (2017)
  30. Computational modeling of RNA 3D structure based on experimental data. Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Biosci. Rep. 39 (2019)
  31. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. Peck SA, Hughes KD, Victorino JF, Mosley AL. Wiley Interdiscip Rev RNA 10 e1529 (2019)
  32. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)
  33. Retroelement origins of pre-mRNA splicing. Haack DB, Toor N. Wiley Interdiscip Rev RNA 11 e1589 (2020)
  34. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. RNA 29 531-550 (2023)
  35. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Idrissou M, Maréchal A. Cancers (Basel) 14 878 (2022)
  36. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Larsen NA. Subcell Biochem 96 409-432 (2021)

Articles citing this publication (90)

  1. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Nature 542 318-323 (2017)
  2. An Atomic Structure of the Human Spliceosome. Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y. Cell 169 918-929.e14 (2017)
  3. Structure of a spliceosome remodelled for exon ligation. Fica SM, Oubridge C, Galej WP, Wilkinson ME, Bai XC, Newman AJ, Nagai K. Nature 542 377-380 (2017)
  4. Structure of a yeast step II catalytically activated spliceosome. Yan C, Wan R, Bai R, Huang G, Shi Y. Science 355 149-155 (2017)
  5. Structure of a pre-catalytic spliceosome. Plaschka C, Lin PC, Nagai K. Nature 546 617-621 (2017)
  6. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT, Bohnsack MT. EMBO Rep. 18 2004-2014 (2017)
  7. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. Cell 170 701-713.e11 (2017)
  8. Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection. Wilkinson ME, Fica SM, Galej WP, Norman CM, Newman AJ, Nagai K. Science 358 1283-1288 (2017)
  9. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Tang Q, Rodriguez-Santiago S, Wang J, Pu J, Yuste A, Gupta V, Moldón A, Xu YZ, Query CC. Genes Dev. 30 2710-2723 (2016)
  10. Structure of the yeast spliceosomal postcatalytic P complex. Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R. Science 358 1278-1283 (2017)
  11. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Teng T, Tsai JH, Puyang X, Seiler M, Peng S, Prajapati S, Aird D, Buonamici S, Caleb B, Chan B, Corson L, Feala J, Fekkes P, Gerard B, Karr C, Korpal M, Liu X, T Lowe J, Mizui Y, Palacino J, Park E, Smith PG, Subramanian V, Wu ZJ, Zou J, Yu L, Chicas A, Warmuth M, Larsen N, Zhu P. Nat Commun 8 15522 (2017)
  12. Structural basis of branch site recognition by the human spliceosome. Tholen J, Razew M, Weis F, Galej WP. Science 375 50-57 (2022)
  13. Structure of the human activated spliceosome in three conformational states. Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Cell Res. 28 307-322 (2018)
  14. Structure of a human catalytic step I spliceosome. Zhan X, Yan C, Zhang X, Lei J, Shi Y. Science 359 537-545 (2018)
  15. Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Jin W, Wang Y, Liu CP, Yang N, Jin M, Cong Y, Wang M, Xu RM. Genes Dev. 30 2391-2403 (2016)
  16. Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA. Haack DB, Yan X, Zhang C, Hingey J, Lyumkis D, Baker TS, Toor N. Cell 178 612-623.e12 (2019)
  17. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Didychuk AL, Montemayor EJ, Carrocci TJ, DeLaitsch AT, Lucarelli SE, Westler WM, Brow DA, Hoskins AA, Butcher SE. Nat Commun 8 497 (2017)
  18. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Casalino L, Palermo G, Spinello A, Rothlisberger U, Magistrato A. Proc. Natl. Acad. Sci. U.S.A. 115 6584-6589 (2018)
  19. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Ho CM, Li X, Lai M, Terwilliger TC, Beck JR, Wohlschlegel J, Goldberg DE, Fitzpatrick AWP, Zhou ZH. Nat Methods 17 79-85 (2020)
  20. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. Sidarovich A, Will CL, Anokhina MM, Ceballos J, Sievers S, Agafonov DE, Samatov T, Bao P, Kastner B, Urlaub H, Waldmann H, Lührmann R. Elife 6 (2017)
  21. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C, Lin PC, Charenton C, Nagai K. Nature 559 419-422 (2018)
  22. Role of Cwc24 in the First Catalytic Step of Splicing and Fidelity of 5' Splice Site Selection. Wu NY, Chung CS, Cheng SC. Mol. Cell. Biol. 37 (2017)
  23. Stress-induced Pseudouridylation Alters the Structural Equilibrium of Yeast U2 snRNA Stem II. van der Feltz C, DeHaven AC, Hoskins AA. J. Mol. Biol. 430 524-536 (2018)
  24. Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Mayerle M, Raghavan M, Ledoux S, Price A, Stepankiw N, Hadjivassiliou H, Moehle EA, Mendoza SD, Pleiss JA, Guthrie C, Abelson J. Proc. Natl. Acad. Sci. U.S.A. 114 4739-4744 (2017)
  25. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. Tseng CK, Chung CS, Chen HC, Cheng SC. RNA 23 546-556 (2017)
  26. Structural and energy determinants in protein-RNA docking. Pérez-Cano L, Romero-Durana M, Fernández-Recio J. Methods 118-119 163-170 (2017)
  27. Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling. Chen W, Moore J, Ozadam H, Shulha HP, Rhind N, Weng Z, Moore MJ. Cell 173 1031-1044.e13 (2018)
  28. Yeast Prp2 liberates the 5' splice site and the branch site adenosine for catalysis of pre-mRNA splicing. Bao P, Höbartner C, Hartmuth K, Lührmann R. RNA 23 1770-1779 (2017)
  29. A genetic screen implicates a CWC16/Yju2/CCDC130 protein and SMU1 in alternative splicing in Arabidopsis thaliana. Kanno T, Lin WD, Fu JL, Matzke AJM, Matzke M. RNA 23 1068-1079 (2017)
  30. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints. Paggi JM, Bejerano G. RNA 24 1647-1658 (2018)
  31. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. Albaqami M, Reddy ASN. Plant Methods 14 1 (2018)
  32. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2. Absmeier E, Becke C, Wollenhaupt J, Santos KF, Wahl MC. Cell Cycle 16 100-112 (2017)
  33. PRPF8 is important for BRCA1-mediated homologous recombination. Onyango DO, Lee G, Stark JM. Oncotarget 8 93319-93337 (2017)
  34. Structural basis for conformational equilibrium of the catalytic spliceosome. Wilkinson ME, Fica SM, Galej WP, Nagai K. Mol Cell 81 1439-1452.e9 (2021)
  35. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. RNA Biol 18 2576-2593 (2021)
  36. A close-up look at the spliceosome, at last. Abelson J. Proc. Natl. Acad. Sci. U.S.A. 114 4288-4293 (2017)
  37. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. van Roon AM, Oubridge C, Obayashi E, Sposito B, Newman AJ, Séraphin B, Nagai K. RNA 23 968-981 (2017)
  38. Optimal molecular crowding accelerates group II intron folding and maximizes catalysis. Paudel BP, Fiorini E, Börner R, Sigel RKO, Rueda DS. Proc. Natl. Acad. Sci. U.S.A. 115 11917-11922 (2018)
  39. Radical probing of spliceosome assembly. Grewal CS, Kent OA, MacMillan AM. Methods 125 16-24 (2017)
  40. Saccharomyces cerevisiae Ecm2 Modulates the Catalytic Steps of pre-mRNA Splicing. van der Feltz C, Nikolai B, Schneider C, Paulson JC, Fu X, Hoskins AA. RNA rna.077727.120 (2021)
  41. Structural basis for RNA translocation by DEAH-box ATPases. Hamann F, Enders M, Ficner R. Nucleic Acids Res. 47 4349-4362 (2019)
  42. Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2. Schwer B, Roth AJ, Shuman S. RNA 23 420-430 (2017)
  43. A Genetic Screen Identifies PRP18a, a Putative Second Step Splicing Factor Important for Alternative Splicing and a Normal Phenotype in Arabidopsis thaliana. Kanno T, Lin WD, Chang CL, Matzke M, Matzke AJM. G3 (Bethesda) 8 1367-1377 (2018)
  44. Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps. Habeck M. Front Mol Biosci 4 15 (2017)
  45. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. RNA Biol 16 754-769 (2019)
  46. Forks in the tracks: Group II introns, spliceosomes, telomeres and beyond. Agrawal RK, Wang HW, Belfort M. RNA Biol 13 1218-1222 (2016)
  47. Global donor and acceptor splicing site kinetics in human cells. Wachutka L, Caizzi L, Gagneur J, Cramer P. Elife 8 (2019)
  48. Long-range allostery mediates cooperative adenine nucleotide binding by the Ski2-like RNA helicase Brr2. Absmeier E, Vester K, Ghane T, Burakovskiy D, Milon P, Imhof P, Rodnina MV, Santos KF, Wahl MC. J Biol Chem 297 100829 (2021)
  49. Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome. Aupič J, Borišek J, Fica SM, Galej WP, Magistrato A. Nat Commun 14 8482 (2023)
  50. Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. MacRae AJ, Mayerle M, Hrabeta-Robinson E, Chalkley RJ, Guthrie C, Burlingame AL, Jurica MS. RNA 24 769-777 (2018)
  51. SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome. Zahler AM, Rogel LE, Glover ML, Yitiz S, Ragle JM, Katzman S. RNA 24 1314-1325 (2018)
  52. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. J Biol Chem 295 2097-2112 (2020)
  53. m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, Joy N, Breidenbach F, Sherwood AV, Barton GJ, Fica SM, Davies BH, Simpson GG. Elife 11 e78808 (2022)
  54. A genetic program mediates cold-warming response and promotes stress-induced phenoptosis in C. elegans. Jiang W, Wei Y, Long Y, Owen A, Wang B, Wu X, Luo S, Dang Y, Ma DK. Elife 7 (2018)
  55. A two-step probing method to compare lysine accessibility across macromolecular complex conformations. MacRae AJ, Coltri P, Hrabeta-Robinson E, Chalkley RJ, Burlingame AL, Jurica MS. RNA Biol 16 1346-1354 (2019)
  56. An ATP-independent role for Prp16 in promoting aberrant splicing. Chung CS, Wai HL, Kao CY, Cheng SC. Nucleic Acids Res 51 10815-10828 (2023)
  57. Auxiliary domains of the HrpB bacterial DExH-box helicase shape its RNA preferences. Hausmann S, Geiser J, Vadas O, Ducret V, Perron K, Valentini M. RNA Biol 17 637-650 (2020)
  58. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. Mendoza-Ochoa GI, Barrass JD, Maudlin IE, Beggs JD. RNA Biol 16 1775-1784 (2019)
  59. Contrast variation SAXS: Sample preparation protocols, experimental procedures, and data analysis. San Emeterio J, Pabit SA, Pollack L. Methods Enzymol 677 41-83 (2022)
  60. Cryo-EM of a heterogeneous biochemical fraction elucidates multiple protein complexes from a multicellular thermophilic eukaryote. Semchonok DA, Kyrilis FL, Hamdi F, Kastritis PL. J Struct Biol X 8 100094 (2023)
  61. CryoEM reveals oligomeric isomers of a multienzyme complex and assembly mechanics. Lee JKJ, Liu YT, Hu JJ, Aphasizheva I, Aphasizhev R, Zhou ZH. J Struct Biol X 7 100088 (2023)
  62. Crystal structure of Prp16 in complex with ADP. Garbers TB, Enders M, Neumann P, Ficner R. Acta Crystallogr F Struct Biol Commun 79 200-207 (2023)
  63. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. Talkish J, Igel H, Hunter O, Horner SW, Jeffery NN, Leach JR, Jenkins JL, Kielkopf CL, Ares M. RNA 25 1020-1037 (2019)
  64. Dynamic protein-RNA interactions in mediating splicing catalysis. Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Nucleic Acids Res. 47 899-910 (2019)
  65. Enantioselective Synthesis of a Cyclopropane Derivative of Spliceostatin A and Evaluation of Bioactivity. Ghosh AK, Reddy GC, Kovela S, Relitti N, Urabe VK, Prichard BE, Jurica MS. Org. Lett. 20 7293-7297 (2018)
  66. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Kao CY, Cao EC, Wai HL, Cheng SC. Nucleic Acids Res 49 9965-9977 (2021)
  67. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. Life Sci Alliance 6 e202201593 (2023)
  68. Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. Martelly W, Fellows B, Senior K, Marlowe T, Sharma S. RNA 25 1509-1521 (2019)
  69. Insights into the Mechanism of Pre-mRNA Splicing of Tiny Introns from the Genome of a Giant Ciliate Stentor coeruleus. Nuadthaisong J, Phetruen T, Techawisutthinan C, Chanarat S. Int J Mol Sci 23 10973 (2022)
  70. Intrinsically Disordered Protein Ntr2 Modulates the Spliceosomal RNA Helicase Brr2. Wollenhaupt J, Henning LM, Sticht J, Becke C, Freund C, Santos KF, Wahl MC. Biophys. J. 114 788-799 (2018)
  71. Multiple RNA-RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome. Bao P, Boon KL, Will CL, Hartmuth K, Lührmann R. Nucleic Acids Res. 46 12126-12138 (2018)
  72. Network theory reveals principles of spliceosome structure and dynamics. Kaur H, van der Feltz C, Sun Y, Hoskins AA. Structure 30 190-200.e2 (2022)
  73. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P. RNA 23 1512-1524 (2017)
  74. Phytophthora effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. Gui X, Zhang P, Wang D, Ding Z, Wu X, Shi J, Shen QH, Xu YZ, Ma W, Qiao Y. Plant Cell 34 3443-3459 (2022)
  75. RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing. Moursy A, Cléry A, Gerhardy S, Betz KM, Rao S, Mazur J, Campagne S, Beusch I, Duszczyk MM, Robinson MD, Panse VG, Panse VG, Allain FH. Nat Commun 14 7166 (2023)
  76. Recruiting more proteins to the RNA world. Scott WG, Nagai K. Science 362 644-645 (2018)
  77. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Acta Crystallogr D Struct Biol 78 1373-1383 (2022)
  78. Structural basis for DEAH-helicase activation by G-patch proteins. Studer MK, Ivanović L, Weber ME, Marti S, Jonas S. Proc Natl Acad Sci U S A 117 7159-7170 (2020)
  79. Structural basis for the second step of group II intron splicing. Chan RT, Peters JK, Robart AR, Wiryaman T, Rajashankar KR, Toor N. Nat Commun 9 4676 (2018)
  80. Structural basis of branching during RNA splicing. Haack DB, Rudolfs B, Zhang C, Lyumkis D, Toor N. Nat Struct Mol Biol 31 179-189 (2024)
  81. Structural basis of catalytic activation in human splicing. Schmitzová J, Cretu C, Dienemann C, Urlaub H, Pena V. Nature 617 842-850 (2023)
  82. Structural biology: Catalytic spliceosome captured. Kosmyna B, Query CC. Nature 537 175-176 (2016)
  83. Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Toroney R, Nielsen KH, Staley JP. Genes Dev. 33 1555-1574 (2019)
  84. The integral spliceosomal component CWC15 is required for development in Arabidopsis. Slane D, Lee CH, Kolb M, Dent C, Miao Y, Franz-Wachtel M, Lau S, Maček B, Balasubramanian S, Bayer M, Jürgens G. Sci Rep 10 13336 (2020)
  85. The structure of Prp2 bound to RNA and ADP-BeF3- reveals structural features important for RNA unwinding by DEAH-box ATPases. Hamann F, Zimmerningkat LC, Becker RA, Garbers TB, Neumann P, Hub JS, Ficner R. Acta Crystallogr D Struct Biol 77 496-509 (2021)
  86. Topology of the U12-U6atac snRNA Complex of the Minor Spliceosome and Binding by NTC-Related Protein RBM22. Ciavarella J, Perea W, Greenbaum NL. ACS Omega 5 23549-23558 (2020)
  87. Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana. Kalesh K, Wei W, Mantilla BS, Roumeliotis TI, Choudhary J, Denny PW. Microbiol Spectr 10 e0242221 (2022)
  88. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. Urabe VK, Stevers M, Ghosh AK, Jurica MS. PLoS One 16 e0258551 (2021)
  89. U5 snRNA Interactions With Exons Ensure Splicing Precision. Artemyeva-Isman OV, Porter ACG. Front Genet 12 676971 (2021)
  90. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Arribere JA, Kuroyanagi H, Hundley HA. Genetics 215 531-568 (2020)