5md6 Citations

The structure and flexibility of conical HIV-1 capsids determined within intact virions.

Science 354 1434-1437 (2016)
Related entries: 5mcx, 5mcy, 5mcz, 5md0, 5md1, 5md2, 5md3, 5md4, 5md5, 5md7, 5md8, 5md9, 5mda, 5mdb, 5mdc, 5mdd, 5mde, 5mdf, 5mdg

Cited: 153 times
EuropePMC logo PMID: 27980210

Abstract

HIV-1 contains a cone-shaped capsid encasing the viral genome. This capsid is thought to follow fullerene geometry-a curved hexameric lattice of the capsid protein, CA, closed by incorporating 12 CA pentamers. Current models for core structure are based on crystallography of hexameric and cross-linked pentameric CA, electron microscopy of tubular CA arrays, and simulations. Here, we report subnanometer-resolution cryo-electron tomography structures of hexameric and pentameric CA within intact HIV-1 particles. Whereas the hexamer structure is compatible with crystallography studies, the pentamer forms using different interfaces. Determining multiple structures revealed how CA flexes to form the variably curved core shell. We show that HIV-1 CA assembles both aberrant and perfect fullerene cones, supporting models in which conical cores assemble de novo after maturation.

Reviews citing this publication (59)

  1. Restriction of HIV-1 and other retroviruses by TRIM5. Ganser-Pornillos BK, Pornillos O. Nat Rev Microbiol 17 546-556 (2019)
  2. Inhibitors of the HIV-1 capsid, a target of opportunity. Carnes SK, Sheehan JH, Aiken C. Curr Opin HIV AIDS 13 359-365 (2018)
  3. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Novikova M, Zhang Y, Freed EO, Peng K. Virol Sin 34 119-134 (2019)
  4. Are microRNAs Important Players in HIV-1 Infection? An Update. Balasubramaniam M, Pandhare J, Dash C. Viruses 10 E110 (2018)
  5. HIV-1 Maturation: Lessons Learned from Inhibitors. Kleinpeter AB, Freed EO. Viruses 12 E940 (2020)
  6. Maturation of retroviruses. Pornillos O, Ganser-Pornillos BK. Curr Opin Virol 36 47-55 (2019)
  7. Advances in cryo-electron tomography and subtomogram averaging and classification. Zhang P. Curr Opin Struct Biol 58 249-258 (2019)
  8. IP6 Regulation of HIV Capsid Assembly, Stability, and Uncoating. Dick RA, Mallery DL, Vogt VM, James LC. Viruses 10 E640 (2018)
  9. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Pyle E, Zanetti G. Biochem J 478 1827-1845 (2021)
  10. HIV Capsid and Integration Targeting. Engelman AN. Viruses 13 125 (2021)
  11. High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity. Ni T, Frosio T, Mendonça L, Sheng Y, Clare D, Himes BA, Zhang P. Nat Protoc 17 421-444 (2022)
  12. Cellular and Structural Studies of Eukaryotic Cells by Cryo-Electron Tomography. Weber MS, Wojtynek M, Medalia O. Cells 8 E57 (2019)
  13. Structure, Function, and Interactions of the HIV-1 Capsid Protein. Rossi E, Meuser ME, Cunanan CJ, Cocklin S. Life (Basel) 11 100 (2021)
  14. Rotten to the core: antivirals targeting the HIV-1 capsid core. McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Retrovirology 18 41 (2021)
  15. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Toccafondi E, Lener D, Negroni M. Front Microbiol 12 652486 (2021)
  16. All-atom virus simulations. Hadden JA, Perilla JR. Curr Opin Virol 31 82-91 (2018)
  17. Factors that mold the nuclear landscape of HIV-1 integration. Bedwell GJ, Engelman AN. Nucleic Acids Res 49 621-635 (2021)
  18. The HIV-1 capsid and reverse transcription. Aiken C, Rousso I. Retrovirology 18 29 (2021)
  19. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Elliott JL, Kutluay SB. Viruses 12 E1005 (2020)
  20. Nuclear Import of HIV-1. Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Viruses 13 2242 (2021)
  21. Postsynaptic protein organization revealed by electron microscopy. Liu YT, Tao CL, Lau PM, Zhou ZH, Bi GQ. Curr Opin Struct Biol 54 152-160 (2019)
  22. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Dick A, Cocklin S. Molecules 25 E1687 (2020)
  23. Fine details in complex environments: the power of cryo-electron tomography. Hutchings J, Zanetti G. Biochem Soc Trans 46 807-816 (2018)
  24. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Zhuang S, Torbett BE. Viruses 13 417 (2021)
  25. Multimodal Functionalities of HIV-1 Integrase. Engelman AN, Kvaratskhelia M. Viruses 14 926 (2022)
  26. Advances in HIV-1 Assembly. Lerner G, Weaver N, Anokhin B, Spearman P. Viruses 14 478 (2022)
  27. Bringing Structure to Cell Biology with Cryo-Electron Tomography. Young LN, Villa E. Annu Rev Biophys 52 573-595 (2023)
  28. Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Sewald X. Viruses 10 E337 (2018)
  29. Structural Analysis of Retrovirus Assembly and Maturation. Krebs AS, Mendonça LM, Zhang P. Viruses 14 54 (2021)
  30. The Role of Capsid in HIV-1 Nuclear Entry. Guedán A, Caroe ER, Barr GCR, Bishop KN. Viruses 13 1425 (2021)
  31. Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Mukherjee S, Boutant E, Réal E, Mély Y, Anton H. Viruses 13 213 (2021)
  32. Locating macromolecules and determining structures inside bacterial cells using electron cryotomography. Melia CE, Bharat TAM. Biochim Biophys Acta Proteins Proteom 1866 973-981 (2018)
  33. The Role of Capsid in the Early Steps of HIV-1 Infection: New Insights into the Core of the Matter. AlBurtamani N, Paul A, Fassati A. Viruses 13 1161 (2021)
  34. Visualizing HIV-1 Capsid and Its Interactions with Antivirals and Host Factors. Wilbourne M, Zhang P. Viruses 13 246 (2021)
  35. A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly. Obr M, Schur FKM, Dick RA. Viruses 13 1853 (2021)
  36. Insights into HIV uncoating from single-particle imaging techniques. Zhang MJ, Stear JH, Jacques DA, Böcking T. Biophys Rev 14 23-32 (2022)
  37. Nuclear Import of Adeno-Associated Viruses Imaged by High-Speed Single-Molecule Microscopy. Junod SL, Saredy J, Yang W. Viruses 13 167 (2021)
  38. Teaching old dogmas new tricks: recent insights into the nuclear import of HIV-1. Dharan A, Campbell EM. Curr Opin Virol 53 101203 (2022)
  39. How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Klingler J, Anton H, Réal E, Zeiger M, Moog C, Mély Y, Boutant E. Viruses 12 E888 (2020)
  40. The Human Immunodeficiency Virus Capsid Is More Than Just a Genome Package. James LC, Jacques DA. Annu Rev Virol 5 209-225 (2018)
  41. Functional insights into pathogen biology from 3D electron microscopy. Cyrklaff M, Frischknecht F, Kudryashev M. FEMS Microbiol Rev 41 828-853 (2017)
  42. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Eriksen MS, Bramham CR. Acta Physiol (Oxf) 236 e13886 (2022)
  43. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Leigh KE, Modis Y. Interface Focus 11 20210019 (2021)
  44. Integrative structural biology of HIV-1 capsid protein assemblies: combining experiment and computation. Perilla JR, Hadden-Perilla JA, Gronenborn AM, Polenova T. Curr Opin Virol 48 57-64 (2021)
  45. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. Microorganisms 9 1389 (2021)
  46. The HIV-1 Gag Protein Displays Extensive Functional and Structural Roles in Virus Replication and Infectivity. Marie V, Gordon ML. Int J Mol Sci 23 7569 (2022)
  47. Human immunodeficiency virus-1 core: The Trojan horse in virus-host interaction. Wang W, Li Y, Zhang Z, Wei W. Front Microbiol 13 1002476 (2022)
  48. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Ricaña CL, Dick RA. Viruses 13 2516 (2021)
  49. Progress in Antiviral Fullerene Research. Xu PY, Li XQ, Chen WG, Deng LL, Tan YZ, Zhang Q, Xie SY, Zheng LS. Nanomaterials (Basel) 12 2547 (2022)
  50. The Viral Capsid: A Master Key to Access the Host Nucleus. Blanco-Rodriguez G, Di Nunzio F. Viruses 13 1178 (2021)
  51. Applications of Atomic Force Microscopy in HIV-1 Research. Rousso I, Deshpande A. Viruses 14 648 (2022)
  52. Recent advances in retroviruses via cryo-electron microscopy. Mak J, de Marco A. Retrovirology 15 23 (2018)
  53. Cryo-electron tomography to study viral infection. Graham M, Zhang P. Biochem Soc Trans 51 1701-1711 (2023)
  54. Stephan Oroszlan and the Proteolytic Processing of Retroviral Proteins: Following A Pro. Swanstrom R, Sundquist WI. Viruses 13 2218 (2021)
  55. Three-dimensional insights into human enveloped viruses in vitro and in situ. Vankadari N, Shepherd DC, Carter SD, Ghosal D. Biochem Soc Trans 50 95-105 (2022)
  56. Capsid-host interactions for HIV-1 ingress. Jang S, Engelman AN. Microbiol Mol Biol Rev 87 e0004822 (2023)
  57. HIV-1 capsid and viral DNA integration. Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. mBio 15 e0021222 (2024)
  58. In Situ Imaging of Virus-Infected Cells by Cryo-Electron Tomography: An Overview. Vijayakrishnan S. Subcell Biochem 106 3-36 (2023)
  59. The HIV-1 gag p6: a promising target for therapeutic intervention. Chen X, Wang X. Retrovirology 21 1 (2024)

Articles citing this publication (94)

  1. HIV-1 uncoats in the nucleus near sites of integration. Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K, Hu WS, Pathak VK. Proc Natl Acad Sci U S A 117 5486-5493 (2020)
  2. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, Mattei S, Allegretti M, Börner K, Rada J, Müller B, Lusic M, Kräusslich HG, Beck M. Cell 184 1032-1046.e18 (2021)
  3. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Bester SM, Wei G, Zhao H, Adu-Ampratwum D, Iqbal N, Courouble VV, Francis AC, Annamalai AS, Singh PK, Shkriabai N, Van Blerkom P, Morrison J, Poeschla EM, Engelman AN, Melikyan GB, Griffin PR, Fuchs JR, Asturias FJ, Kvaratskhelia M. Science 370 360-364 (2020)
  4. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI. Science 370 eabc8420 (2020)
  5. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, Wong A, Aggarwal A, Parker MW, Jacques DA, Turville S, Böcking T. Elife 7 e34772 (2018)
  6. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Li C, Burdick RC, Nagashima K, Hu WS, Pathak VK. Proc Natl Acad Sci U S A 118 e2019467118 (2021)
  7. Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly. Rankovic S, Varadarajan J, Ramalho R, Aiken C, Rousso I. J Virol 91 e00289-17 (2017)
  8. Structure and architecture of immature and mature murine leukemia virus capsids. Qu K, Glass B, Doležal M, Schur FKM, Murciano B, Rein A, Rumlová M, Ruml T, Kräusslich HG, Briggs JAG. Proc Natl Acad Sci U S A 115 E11751-E11760 (2018)
  9. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M, Fruhstorfer P, Plitzko J, Villa E. Nat Protoc 15 2041-2070 (2020)
  10. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. Müller TG, Zila V, Peters K, Schifferdecker S, Stanic M, Lucic B, Laketa V, Lusic M, Müller B, Kräusslich HG. Elife 10 e64776 (2021)
  11. PF74 Reinforces the HIV-1 Capsid To Impair Reverse Transcription-Induced Uncoating. Rankovic S, Ramalho R, Aiken C, Rousso I. J Virol 92 e00845-18 (2018)
  12. Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes. Blanco-Rodriguez G, Gazi A, Monel B, Frabetti S, Scoca V, Mueller F, Schwartz O, Krijnse-Locker J, Charneau P, Di Nunzio F. J Virol 94 e00135-20 (2020)
  13. High-resolution structures of HIV-1 Gag cleavage mutants determine structural switch for virus maturation. Mattei S, Tan A, Glass B, Müller B, Kräusslich HG, Briggs JAG. Proc Natl Acad Sci U S A 115 E9401-E9410 (2018)
  14. Promotion of virus assembly and organization by the measles virus matrix protein. Ke Z, Strauss JD, Hampton CM, Brindley MA, Dillard RS, Leon F, Lamb KM, Plemper RK, Wright ER. Nat Commun 9 1736 (2018)
  15. Sec24C is an HIV-1 host dependency factor crucial for virus replication. Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC, Annamalai AS, Morrison J, Shkriabai N, Huang SW, KewalRamani V, Poeschla EM, Melikyan GB, Kvaratskhelia M. Nat Microbiol 6 435-444 (2021)
  16. Trends in the Electron Microscopy Data Bank (EMDB). Patwardhan A. Acta Crystallogr D Struct Biol 73 503-508 (2017)
  17. Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR. Lu M, Russell RW, Bryer AJ, Quinn CM, Hou G, Zhang H, Schwieters CD, Perilla JR, Gronenborn AM, Polenova T. Nat Struct Mol Biol 27 863-869 (2020)
  18. Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations. Quinn CM, Wang M, Fritz MP, Runge B, Ahn J, Xu C, Perilla JR, Gronenborn AM, Polenova T. Proc Natl Acad Sci U S A 115 11519-11524 (2018)
  19. Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis. Xu C, Fischer DK, Rankovic S, Li W, Dick RA, Runge B, Zadorozhnyi R, Ahn J, Aiken C, Polenova T, Engelman AN, Ambrose Z, Rousso I, Perilla JR. PLoS Biol 18 e3001015 (2020)
  20. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P. Nat Struct Mol Biol 27 855-862 (2020)
  21. PF74 Inhibits HIV-1 Integration by Altering the Composition of the Preintegration Complex. Balasubramaniam M, Zhou J, Addai A, Martinez P, Pandhare J, Aiken C, Dash C. J Virol 93 e01741-18 (2019)
  22. Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Erlendsson S, Morado DR, Cullen HB, Feschotte C, Shepherd JD, Briggs JAG. Nat Neurosci 23 172-175 (2020)
  23. TRIM5α self-assembly and compartmentalization of the HIV-1 viral capsid. Yu A, Skorupka KA, Pak AJ, Ganser-Pornillos BK, Pornillos O, Voth GA. Nat Commun 11 1307 (2020)
  24. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Liu YT, Tao CL, Zhang X, Xia W, Shi DQ, Qi L, Xu C, Sun R, Li XW, Lau PM, Zhou ZH, Bi GQ. Nat Neurosci 23 1589-1596 (2020)
  25. A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly. Renner N, Mallery DL, Faysal KMR, Peng W, Jacques DA, Böcking T, James LC. PLoS Pathog 17 e1009164 (2021)
  26. Structure of the Ty3/Gypsy retrotransposon capsid and the evolution of retroviruses. Dodonova SO, Prinz S, Bilanchone V, Sandmeyer S, Briggs JAG. Proc Natl Acad Sci U S A 116 10048-10057 (2019)
  27. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. Draganova EB, Zhang J, Zhou ZH, Heldwein EE. Elife 9 e56627 (2020)
  28. Modular HIV-1 Capsid Assemblies Reveal Diverse Host-Capsid Recognition Mechanisms. Summers BJ, Digianantonio KM, Smaga SS, Huang PT, Zhou K, Gerber EE, Wang W, Xiong Y. Cell Host Microbe 26 203-216.e6 (2019)
  29. Biochemical Reconstitution of HIV-1 Assembly and Maturation. Kucharska I, Ding P, Zadrozny KK, Dick RA, Summers MF, Ganser-Pornillos BK, Pornillos O. J Virol 94 e01844-19 (2020)
  30. Hierarchical assembly governs TRIM5α recognition of HIV-1 and retroviral capsids. Skorupka KA, Roganowicz MD, Christensen DE, Wan Y, Pornillos O, Ganser-Pornillos BK. Sci Adv 5 eaaw3631 (2019)
  31. goCTF: Geometrically optimized CTF determination for single-particle cryo-EM. Su M. J Struct Biol 205 22-29 (2019)
  32. Immature HIV-1 assembles from Gag dimers leaving partial hexamers at lattice edges as potential substrates for proteolytic maturation. Tan A, Pak AJ, Morado DR, Voth GA, Briggs JAG. Proc Natl Acad Sci U S A 118 e2020054118 (2021)
  33. The advent of structural biology in situ by single particle cryo-electron tomography. Galaz-Montoya JG, Ludtke SJ. Biophys Rep 3 17-35 (2017)
  34. Atomic-scale characterization of mature HIV-1 capsid stabilization by inositol hexakisphosphate (IP6). Yu A, Lee EMY, Jin J, Voth GA. Sci Adv 6 eabc6465 (2020)
  35. A snapshot of HIV-1 capsid-host interactions. Temple J, Tripler TN, Shen Q, Xiong Y. Curr Res Struct Biol 2 222-228 (2020)
  36. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P. J Phys Chem B 121 3853-3863 (2017)
  37. HEMNMA-3D: Cryo Electron Tomography Method Based on Normal Mode Analysis to Study Continuous Conformational Variability of Macromolecular Complexes. Harastani M, Eltsov M, Leforestier A, Jonic S. Front Mol Biosci 8 663121 (2021)
  38. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. Roganowicz MD, Komurlu S, Mukherjee S, Plewka J, Alam SL, Skorupka KA, Wan Y, Dawidowski D, Cafiso DS, Ganser-Pornillos BK, Campbell EM, Pornillos O. PLoS Pathog 13 e1006686 (2017)
  39. HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration. Guedán A, Donaldson CD, Caroe ER, Cosnefroy O, Taylor IA, Bishop KN. PLoS Pathog 17 e1009484 (2021)
  40. Mechanisms of PI(4,5)P2 Enrichment in HIV-1 Viral Membranes. Wen Y, Feigenson GW, Vogt VM, Dick RA. J Mol Biol 432 5343-5364 (2020)
  41. In Vitro Quantification of the Effects of IP6 and Other Small Polyanions on Immature HIV-1 Particle Assembly and Core Stability. Dostálková A, Kaufman F, Křížová I, Vokatá B, Ruml T, Rumlová M. J Virol 94 e00991-20 (2020)
  42. Structure of native HIV-1 cores and their interactions with IP6 and CypA. Ni T, Zhu Y, Yang Z, Xu C, Chaban Y, Nesterova T, Ning J, Böcking T, Parker MW, Monnie C, Ahn J, Perilla JR, Zhang P. Sci Adv 7 eabj5715 (2021)
  43. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. Gupta S, Tycko R. J Biomol NMR 70 103-114 (2018)
  44. Structural basis for Fullerene geometry in a human endogenous retrovirus capsid. Acton O, Grant T, Nicastro G, Ball NJ, Goldstone DC, Robertson LE, Sader K, Nans A, Ramos A, Stoye JP, Taylor IA, Rosenthal PB. Nat Commun 10 5822 (2019)
  45. Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. Eschbach JE, Elliott JL, Li W, Zadrozny KK, Davis K, Mohammed SJ, Lawson DQ, Pornillos O, Engelman AN, Kutluay SB. J Virol 95 e00984-20 (2020)
  46. Complete atomic structure of a native archaeal cell surface. von Kügelgen A, Alva V, Bharat TAM. Cell Rep 37 110052 (2021)
  47. Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Obr M, Ricana CL, Nikulin N, Feathers JR, Klanschnig M, Thader A, Johnson MC, Vogt VM, Schur FKM, Dick RA. Nat Commun 12 3226 (2021)
  48. A molecular switch modulates assembly and host factor binding of the HIV-1 capsid. Schirra RT, Dos Santos NFB, Zadrozny KK, Kucharska I, Ganser-Pornillos BK, Pornillos O. Nat Struct Mol Biol 30 383-390 (2023)
  49. Identification of a Structural Element in HIV-1 Gag Required for Virus Particle Assembly and Maturation. Novikova M, Adams LJ, Fontana J, Gres AT, Balasubramaniam M, Winkler DC, Kudchodkar SB, Soheilian F, Sarafianos SG, Steven AC, Freed EO. mBio 9 e01567-18 (2018)
  50. Polymorphic Nature of Human T-Cell Leukemia Virus Type 1 Particle Cores as Revealed through Characterization of a Chronically Infected Cell Line. Meissner ME, Mendonça LM, Zhang W, Mansky LM. J Virol 91 e00369-17 (2017)
  51. Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Yoh SM, Mamede JI, Lau D, Ahn N, Sánchez-Aparicio MT, Temple J, Tuckwell A, Fuchs NV, Cianci GC, Riva L, Curry H, Yin X, Gambut S, Simons LM, Hultquist JF, König R, Xiong Y, García-Sastre A, Böcking T, Hope TJ, Chanda SK. Mol Cell 82 2871-2884.e6 (2022)
  52. Critical mechanistic features of HIV-1 viral capsid assembly. Gupta M, Pak AJ, Voth GA. Sci Adv 9 eadd7434 (2023)
  53. Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable Inhibitor Binding Pocket. Craveur P, Gres AT, Kirby KA, Liu D, Hammond JA, Deng Y, Forli S, Goodsell DS, Williamson JR, Sarafianos SG, Olson AJ. mBio 10 e02858-18 (2019)
  54. Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A. Peng W, Shi J, Márquez CL, Lau D, Walsh J, Faysal KMR, Byeon CH, Byeon IL, Aiken C, Böcking T. Retrovirology 16 10 (2019)
  55. Strain and rupture of HIV-1 capsids during uncoating. Yu A, Lee EMY, Briggs JAG, Ganser-Pornillos BK, Pornillos O, Voth GA. Proc Natl Acad Sci U S A 119 e2117781119 (2022)
  56. Prion-like low complexity regions enable avid virus-host interactions during HIV-1 infection. Wei G, Iqbal N, Courouble VV, Francis AC, Singh PK, Hudait A, Annamalai AS, Bester S, Huang SW, Shkriabai N, Briganti L, Haney R, KewalRamani VN, Voth GA, Engelman AN, Melikyan GB, Griffin PR, Asturias F, Kvaratskhelia M. Nat Commun 13 5879 (2022)
  57. Critical Role of the Human T-Cell Leukemia Virus Type 1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly. Martin JL, Mendonça LM, Marusinec R, Zuczek J, Angert I, Blower RJ, Mueller JD, Perilla JR, Zhang W, Mansky LM. J Virol 92 e00333-18 (2018)
  58. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline. Folio C, Sierra N, Dujardin M, Alvarez G, Guillon C. Viruses 9 E335 (2017)
  59. Preservation of HIV-1 Gag Helical Bundle Symmetry by Bevirimat Is Central to Maturation Inhibition. Pak AJ, Purdy MD, Yeager M, Voth GA. J Am Chem Soc 143 19137-19148 (2021)
  60. A Small Molecule, ACAi-028, with Anti-HIV-1 Activity Targets a Novel Hydrophobic Pocket on HIV-1 Capsid. Chia T, Nakamura T, Amano M, Takamune N, Matsuoka M, Nakata H. Antimicrob Agents Chemother 65 e0103921 (2021)
  61. Structure of a Ty1 restriction factor reveals the molecular basis of transposition copy number control. Cottee MA, Beckwith SL, Letham SC, Kim SJ, Young GR, Stoye JP, Garfinkel DJ, Taylor IA. Nat Commun 12 5590 (2021)
  62. The impact of Gag non-cleavage site mutations on HIV-1 viral fitness from integrative modelling and simulations. Samsudin F, Gan SK, Bond PJ. Comput Struct Biotechnol J 19 330-342 (2021)
  63. Two structural switches in HIV-1 capsid regulate capsid curvature and host factor binding. Stacey JCV, Tan A, Lu JM, James LC, Dick RA, Briggs JAG. Proc Natl Acad Sci U S A 120 e2220557120 (2023)
  64. HIV-1 Preintegration Complex Preferentially Integrates the Viral DNA into Nucleosomes Containing Trimethylated Histone 3-Lysine 36 Modification and Flanking Linker DNA. Sapp N, Burge N, Cox K, Prakash P, Balasubramaniam M, Thapa S, Christensen D, Li M, Linderberger J, Kvaratskhelia M, Pandhare J, Craigie R, Poirier MG, Dash C. J Virol 96 e0101122 (2022)
  65. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Nucleic Acids Res 50 1701-1717 (2022)
  66. Structures of enveloped virions determined by cryogenic electron microscopy and tomography. Stass R, Ng WM, Kim YC, Huiskonen JT. Adv Virus Res 105 35-71 (2019)
  67. Curvature of the Retroviral Capsid Assembly Is Modulated by a Molecular Switch. Thames T, Bryer AJ, Qiao X, Jeon J, Weed R, Janicki K, Hu B, Gor'kov PL, Hung I, Gan Z, Perilla JR, Chen B. J Phys Chem Lett 12 7768-7776 (2021)
  68. PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles. Dostálková A, Škach K, Kaufman F, Křížová I, Hadravová R, Flegel M, Ruml T, Hrabal R, Rumlová M. Molecules 25 E1895 (2020)
  69. Structural insights into HIV-1 polyanion-dependent capsid lattice formation revealed by single particle cryo-EM. Highland CM, Tan A, Ricaña CL, Briggs JAG, Dick RA. Proc Natl Acad Sci U S A 120 e2220545120 (2023)
  70. Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55Gag and its maturation products. Gilmer O, Mailler E, Paillart JC, Mouhand A, Tisné C, Mak J, Smyth RP, Marquet R, Vivet-Boudou V. RNA Biol 19 191-205 (2022)
  71. Subtomogram averaging for biophysical analysis and supramolecular context. Metskas LA, Wilfong R, Jensen GJ. J Struct Biol X 6 100076 (2022)
  72. T = 4 Icosahedral HIV-1 Capsid As an Immunogenic Vector for HIV-1 V3 Loop Epitope Display. Zhang Z, He M, Bai S, Zhang F, Jiang J, Zheng Q, Gao S, Yan X, Li S, Gu Y, Xia N. Viruses 10 E667 (2018)
  73. Human Three Prime Repair Exonuclease 1 Promotes HIV-1 Integration by Preferentially Degrading Unprocessed Viral DNA. Davids BO, Balasubramaniam M, Sapp N, Prakash P, Ingram S, Li M, Craigie R, Hollis T, Pandhare J, Dash C. J Virol 95 e0055521 (2021)
  74. The secrets of the stability of the HIV-1 capsid. Obr M, Kräusslich HG. Elife 7 e38895 (2018)
  75. Fullerene Derivatives Prevent Packaging of Viral Genomic RNA into HIV-1 Particles by Binding Nucleocapsid Protein. Křížová I, Dostálková A, Castro E, Prchal J, Hadravová R, Kaufman F, Hrabal R, Ruml T, Llano M, Echegoyen L, Rumlová M. Viruses 13 2451 (2021)
  76. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Elife 13 e83605 (2024)
  77. Tree Shrew Cells Transduced with Human CD4 and CCR5 Support Early Steps of HIV-1 Replication, but Viral Infectivity Is Restricted by APOBEC3. Luo MT, Mu D, Yang X, Luo RH, Zheng HY, Chen M, Guo YQ, Zheng YT. J Virol 95 e0002021 (2021)
  78. A novel viral vaccine platform based on engineered transfer RNA. Wang TY, Meng FD, Sang GJ, Zhang HL, Tian ZJ, Zheng H, Cai XH, Tang YD. Emerg Microbes Infect 12 2157339 (2023)
  79. Antiviral Properties of HIV-1 Capsid Inhibitor GSK878. Wang C, Huang H, Mallon K, Valera L, Parcella K, Cockett MI, Kadow JF, Gillis EP, Krystal M, Fridell RA. Antimicrob Agents Chemother 67 e0169422 (2023)
  80. Discovery and Mechanistic Investigation of Piperazinone Phenylalanine Derivatives with Terminal Indole or Benzene Ring as Novel HIV-1 Capsid Modulators. Xu S, Sun L, Zalloum WA, Huang T, Zhang X, Ding D, Shao X, Jiang X, Zhao F, Cocklin S, De Clercq E, Pannecouque C, Dick A, Liu X, Zhan P. Molecules 27 8415 (2022)
  81. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Hudait A, Voth GA. Proc Natl Acad Sci U S A 121 e2313737121 (2024)
  82. HIV-1 capsid stability enables inositol phosphate-independent infection of target cells and promotes integration into genes. Sowd GA, Shi J, Fulmer A, Aiken C. PLoS Pathog 19 e1011423 (2023)
  83. HIV-2 Immature Particle Morphology Provides Insights into Gag Lattice Stability and Virus Maturation. Talledge N, Yang H, Shi K, Coray R, Yu G, Arndt WG, Meng S, Baxter GC, Mendonça LM, Castaño-Díez D, Aihara H, Mansky LM, Zhang W. J Mol Biol 435 168143 (2023)
  84. Editorial Molecular Genetics of Retrovirus Replication. Levin JG, Musier-Forsyth K, Rein A. Viruses 15 1549 (2023)
  85. Structural evidence that MOAP1 and PEG10 are derived from retrovirus/retrotransposon Gag proteins. Zurowska K, Alam A, Ganser-Pornillos BK, Pornillos O. Proteins 90 309-313 (2022)
  86. K-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules. Wu J, Xue W, Voth GA. J Chem Theory Comput 19 8987-8997 (2023)
  87. Characterization and epitope mapping of a panel of monoclonal antibodies against HIV-1 matrix protein. Zhang Z, Zhang F, Bai S, Qiao J, Shen H, Huang F, Gao S, Li S, Gu Y, Xia N. Biotechnol Appl Biochem 65 807-815 (2018)
  88. Enrich and switch: IP6 and maturation of HIV-1 capsid. Wu C, Xiong Y. Nat Struct Mol Biol 30 239-241 (2023)
  89. Expression, Purification and Characterization of Hiv-1 Capsid Precursor Protein p41. Zhang Z, Wang L, Bai S, Qiao J, Shen H, Huang F, Gao S, Li S, Li S, Gu Y, Xia N. Protein J 37 194-202 (2018)
  90. HIV-1 Virus Interactions With Host Proteins: Interaction of the N-terminal Domain of the HIV-1 Capsid Protein With Human Calmodulin. Tzou YM, Shin R, Krishna NR. Nat Prod Commun 14 (2019)
  91. Immunomolecular assay based on selective virion capture by spike antibody and viral nucleic acid amplification for detecting intact SARS-CoV-2 particles. Wu X, Liu J, Zhang H, Zhou H, Wang W, Ma Y, Shen S, Cai X, Huang A, Wang D. J Nanobiotechnology 20 399 (2022)
  92. Molecular Biology and Diversification of Human Retroviruses. Meissner ME, Talledge N, Mansky LM. Front Virol 2 872599 (2022)
  93. PNMA2 forms immunogenic non-enveloped virus-like capsids associated with paraneoplastic neurological syndrome. Xu J, Erlendsson S, Singh M, Holling GA, Regier M, Ibiricu I, Einstein J, Hantak MP, Day GS, Piquet AL, Smith TL, Clardy SL, Whiteley AM, Feschotte C, Briggs JAG, Shepherd JD. Cell 187 831-845.e19 (2024)
  94. The universal suppressor mutation restores membrane budding defects in the HSV-1 nuclear egress complex by stabilizing the oligomeric lattice. Draganova EB, Wang H, Wu M, Liao S, Vu A, Gonzalez-Del Pino GL, Zhou ZH, Roller RJ, Heldwein EE. PLoS Pathog 20 e1011936 (2024)